
HAL Id: hal-00506488
https://hal.science/hal-00506488

Preprint submitted on 27 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed electric absorbers of beam vibrations
Francesco Dell’Isola, Dionisio del Vescovo, Corrado Maurini

To cite this version:
Francesco Dell’Isola, Dionisio del Vescovo, Corrado Maurini. Distributed electric absorbers of beam
vibrations. 2010. �hal-00506488�

https://hal.science/hal-00506488
https://hal.archives-ouvertes.fr


Distributed electric absorbers of beam vibrations

Francesco dell’Isolaa, Dionisio Del Vescovob, Corrado Maurinia,c

a
Dip. Meccanica e Aeronautica, Università di Roma "La Sapienza", Via Eudossiana 18, I-00184 Roma, Italy.

b
Dip. Ingegneria Strutturale e Geotecnica, Università di Roma "La Sapienza", Via Eudossiana 18, I-00184 Roma, Italy.

c
LEMA (FRE 2481), Université Versailles/S.Quentin-en-Yvelines, 45 ave. des Etats-Unis, 78035 Versailles cedex, France.

ABSTRACT

Several electric vibration absorbers based on distributed piezoelectric control of beam vibrations are studied.
The damping devices are conceived by interconnecting with different modular electric networks an array of
piezoelectric transducers uniformly distributed on a beam. Five different vibration absorbers made of five
different network interconnecting topologies are considered and their damping performances are analyzed and
compared. The analysis is based on homogenized models of modular piezo-electromechanical systems. The opti-
mal parameters of these absorbers are found by adopting the criterion of critical damping of waves with a single
wave number. We show that: i) there is an interconnecting network providing an optimal multimodal damping;
ii) the performances required to the electr(on)ic components can be significantly decreased by increasing the
number (and decreasing the dimensions) of the piezoelectric transducers.

Keywords: piezoelectric transducers, distributed vibration absorbers, electric damping, passive vibration
damping, electromechanical coupling, piezoelectric shunting, electromechanical waves.

1. INTRODUCTION

Passive vibration control can be achieved by coupling a mechanical structure S to an auxiliary dissipative system
SR by means of an appropriate coupling device T . Once the properties of T are given, a proper design of the
auxiliary system SR allows to enhance the energy exchange between S and SR and the energy dissipation in
SR by exploiting an internal resonance phenomenon in (S, T, SR). The electromechanical coupling provided by
piezoelectric transducers allows for using electric additional systems to damp vibrations of mechanical structures.
For example, a given vibration mode of a beam can be damped by positioning on it a piezoelectric transducer
shunted to a resistor and an inductor (resonant shunted piezoelectric transducer), as shown by Hagood and
Von Flotow1 and Hollkamp2. In this paper, we analyze distributed vibration absorbers for beam vibrations in
which the additional system SR is a distributed electric network and the coupling is attained through distributed
piezoelectric transducers. These systems can be designed by interconnecting an array of piezoelectric transducers
bonded on a beam by suitable RL electric networks, aiming at synthesizing a smart structure consisting of
an electromechanical continuum the damping properties of which are controlled by electric parameters (see
Vidoli and dell’Isola3,4 and Alessandroni et al.5). We analyze and compare the optimal damping performances
achievable by means of five different interconnecting networks which are synthesized in order to realize, together
with the piezoelectric transducers, electric auxiliary systems with assigned equations of motion.

If an Euler model is accepted, the beam flexural vibrations are governed by a fourth order differential
equation of the type (here and henceforth %R = ∂/∂x, %̇ = ∂/∂t)

UIV (X, t) +
1

c2b
Ü(X, t) = 0 (1)

where U(X, t) is the beam axis transversal displacement at time t at the point labelled by the abscissa X
and cb is the bending waves phase velocity. We consider the damping performances which can be achieved by
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Figure 1: Generic modular PiezoElectroMechanical (PEM ) beam

piezoelectrically coupling a beam to the electric networks characterized by the following homogenized evolution
equations for the electric flux-linkage Ψ (the electric flux-linkage is defined as the time primitive of the electric
potential).

(Z, Z) - network: Ψ̈(X, t) + δ0Ψ̇(X, t)− β0Ψ(X, t) = 0 (2a)

(S, Z) - network: Ψ̈(X, t) + δ0Ψ̇(X, t)− β2Ψ
==(X, t) = 0 (2b)

(S, S) - network: Ψ̈(X, t)− δ2Ψ̇
==(X, t)− β2Ψ

==(X, t) = 0 (2c)

(F, Z) - network: Ψ̈(X, t) + δ0Ψ̇(X, t) + β4Ψ
IV (X, t) = 0 (2d)

(F, S) - network: Ψ̈(X, t)− δ2Ψ̇
==(X, t) + β4Ψ

IV (X, t) = 0 (2e)

The (·, ·) - network nomenclature above refers to the order of spatial derivatives appearing respectively in
the third and second term of the LHS of the homogenized equations of motion (2). For example, the (F, S)
- network is characterized by a forth order spatial derivative on Ψ and a second order spatial derivative on
Ψ̇ (Z ≡ 0th, S ≡ 2nd F ≡ 4th). In order to synthesize PiezoElectroMechanical (PEM) beams in which the
electric networks (2) are coupled to the beam vibrations (1) through distributed piezoelectric transducers, it
is necessary to find suitable topologies for the electric interconnection of the piezoelectric transducers. To this
end, we consider as interconnecting network a one-dimensional electric lattice with next-to-nearest-neighbour
interactions as defined by Brillouin6 (see Fig.1). In section 2, we establish a continuous homogenized model
for such a system and we show that the desired PEM beams can be obtained by particular choices of the
inductors and resistors of the assumed interconnecting network. In section 3, the dynamics of the so obtained
electromechanical systems is analyzed, the electric parameters of the different electric networks are optimized
and their damping performances are compared. The analysis is based on the study of the properties of wave-form
solutions for the homogenized equations of motion.

2. MATHEMATICAL MODELLING

In this section homogenized equations of motion for the modular PEM beam in Fig.1 are derived. We introduce
two mathematical descriptions of such a system: a micro model, which regards the system as an axially non
homogeneous layered piezoelectric beam coupled to a lumped electric network; amacro model, which regards the
system as an electromechanical microstructured continuum the constitutive properties of which are determined
by those of the basic module (see Eringen7). In the micro model, the system dynamics is expressed by a partial
differential equation coupled to a set of ordinary differential equations; in the macro model by two coupled
partial differential equations. In the following sections, the dynamic analysis is based on the homogenized model.
However, the description at micro level is necessary to rationally deduce the macro constitutive properties. To
this aim, we adopt the identification method in virtual powers presented by Wózniac.8 This method starts
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Figure 2. Generic modular PEM beam: (a) basic module; (b) beam cross section: piezoelectric layers in bending
bimorph configuration.

from the weak formulation of evolutionary problems based on D’Alembert principle of virtual powers (for its
modern presentation see Maugin9).

2.1. Kinematics

The PEM beam can be regarded as a modular system composed by the assembly of basic modules like the one
in Fig.2. In each module a pair of piezoelectric transducer is bonded in the bimorph bending configuration. In
the following, the beam axis is denoted by A and the part of the beam axis in the i − th module by Ai. The
the basic module length is denoted by lb.

In the micro model the kinematical state of the PEM beam is specified by the transverse displacement field
u : A × R → R and by a set of nodal flux-linkages {ψh : R→ R} . In the homogenized model the kinematical
state is specified by the macro scalar fields

U : A×R→ R Ψ : A×R→ R (3a)

representing the homogenized beam axis transversal displacement and flux-linkage, respectively. At macro level,
the system is an electromechanical beam which, at each axial point X, has the microstructure in Fig.2: the part
Ai of the beam axis and the corresponding circuitry, should be regarded as an infinitesimal neighborhood of
the generic point X. Locating the generic point in Ai by a micro coordinate ξ ∈ [−lb/2, lb/2] , we assume that
the micro state of the neighborhood Ai of the point X is given as a function of the macro kinematical fields
through the following expansions

u(ξ, t) = U(X, t) + U R(X, t)ξ + U RR(X, t)
ξ2

2
(4a)

ψi(t) = Ψ(X, t) (4b)

ψi±1(t) = Ψ(X, t)±ΨR(X, t)lb +Ψ
RR(X, t)

l2b
2

(4c)

The relations above can be regarded as a local (around the point X) kinematical map between the micro and
macro models. This map assumes that lb/λ → 0, where λ is the characteristic wavelength of the considered
phenomena. Here and henceforth we denote by the upper-case letters the macro quantities, by lower-case the
micro ones.

2.2. Micro model

Once the micro kinematical descriptors are introduced, the micro model is specified by defining the internal and

external virtual power functionals per module. By denoting with u̇∗ : Ai → R and {ψ̇
∗
h ∈ R} the generalized



virtual velocities acting as test functions, we assume

Pint(t) = χi,0(t)ψ̇
∗
i + χi,1(t)

2
ψ̇
∗
i+1 − ψ̇

∗
i

3
+ χi,2(t)

2
ψ̇
∗
i+1 − ψ̇

∗
i−1

3
+

¦

Ai

m(ξ, t)u̇∗RR(ξ)dξ (5a)

Pext(t) =

¦

Ai

q(ξ, t)u̇∗(ξ)dξ (5b)

where the bending moment m(ξ, t) and the electric current χi,0(t), χi,1(t), χi,2(t) (refer to Fig.2 for naming)
are determined by the following micro constitutive relations

m(ξ, t) = gmmu
RR(ξ, t) + ψ̇i(t)

¦

Ai

gme(ξ)dξ (6)

χi,0(t) = T0 (ψi(t))−
¦

Ai

gme(ξ)u̇
RR(ξ, t)dξ + ψ̈i(t)

¦

Ai

gee(ξ)dξ (7)

χi,1(t) = T1
"
ψi+1(t)− ψi(t)

#
(8)

χi,2(t) = T2
"
ψi+1(t)− ψi−1(t)

#
(9)

where

Th (·) :=
1

Rh

∂ (·)

∂t
+
1

Lh
(·) (10)

When dynamic phenomena are considered, the basic inertia effects are modelled by the constitutive equation

q(ξ, t) = −σ(ξ)ü(ξ,t) (11)

The power functionals (5) and the constitutive equations (6) and (11) assume an equivalent single layer Euler
model for the layered piezoelectric beam and a constant distribution of the electric field inside each piezoelectric
transducer. If one assumes also an uniaxial stress state both in the piezoelectric and elastic layers, a perfect
bonding conditions between the different layers and a purely extensional membranal behavior of the piezoelectric
layers, the following expressions for the constitutive coefficients gmm,gee,gme are found as a function of geometric
and material properties of the layered beam as a three dimensional continuum (see10 for further details)

gmm(ξ) = YbIb + Y
E
p h

2
cSpΠ(ξ) gme(ξ) = −d31Y Ep hcSp

hp
Π(ξ) gee(ξ) = 1S33

Sp
h2p
Π(ξ) σ(ξ) = ρbSb + ρpSpΠ(ξ)

(12)
In the expressions above, Yb is the Young modulus of the elastic layer, Y Ep the Young modulus of the piezoelectric

layer for null electric field, d31 the charge piezoelectric coupling coefficient, 1S33 the dielectric constant of the
piezoelectric material for null mechanical deformation, ρb and ρp the mass densities of the elastic and piezoelectric
layers, hb and hp their thicknesses, wb and wp = ϑwwb the respective widths, with the so defined transversal
covering factor ϑw. The function Π(ξ) is introduced in order to describe the axial discontinuities caused by the
piezoelectric transducers: its value is 1 in the axial region where the piezoelectric transducers are present, 0
everywhere else. Moreover, the following geometrical quantities have been introduced

Ib =
wbh

3

b

12 Sp = 2ϑwwbhp Sb = wbhb hc =
hb+hp
2

(13)

The interested reader can refer to Saravanos11 for further details and references about models of laminated
piezoelectric beams.

2.3. Macro model

We impose that the power densities per unit length of the macro model are given by the average of the
corresponding micro quantities over a module, once the macro-micro kinematical map (4) is prescribed. In
this way, the balance and constitutive equations of the macro model are obtained. For sake of brevity, we
omit all the details and we simply present the homogenized equations of motion in the following dimensionless



matrix form by introducing the dimensionless electromechanical state vector s(X, t) = {U(X, t),Ψ(X, t)}
t

(the
dimensionless variables are denoted by the same letters of the dimensional ones)

s̈(X, t) +D(1)ṡ(X, t) +D(0)s(X, t) = 0 (14)

In the equations above D1 and D0 are space-differential operators. It is possible to show that for the PEM
beam in Fig.1

D(1) =

D
0 γ ∂2

∂X2

−γ ∂2

∂X2 δ0 − δ2
∂2

∂X2 + δ4
∂4

∂X4

E
D(0) =

D
∂4

∂X4 0

0 β0 − β2
∂2

∂X2 + β4
∂4

∂X4

E
(15)

where γ is a coupling parameter given by

γ =
ḡme√
ḡmmḡee

, (16)

(β0,β2,β4) and (δ0, δ2, δ4) are sets of tuning and damping parameters, respectively. They depend on the micro
parameters as follows

β0 =
1
L0
ncβ β2 =

2
1
L1
+ 4

L2

3
cβ
n

β4 =
1
4L1

cβ
n3

δ0 =
1
R0
ncδ δ2 =

2
1
R1
+ 4

R2

3
cδ
n

δ4 =
1
4R1

cδ
n3

(17)

where
cβ =

σ̄
ḡeeḡmm

X3
0 cδ =

1
ḡee

‡
σ̄

ḡmm
X0 (18)

The dimensionless parameters n := X0/lb, which represents the number of modules in the characteristic length
X0, has been introduced. Moreover, the following expressions for the homogenized constitutive coefficients
(ḡmm, ḡee, ḡme, σ̄) are found (ϑl := lp/lb is a longitudinal covering factor)

ḡmm =
Ybwbh

3

p

12 + 2ϑlϑwY
E
p h

2
chpwb ḡme = −2ϑlϑwd31Y Ep hcwb

ḡee = 2ϑlϑw1
S
33
wb
hp

σ̄ = ρbwbhb + 2ϑlϑwρpwbhp
(19)

The dimensionless form (14-15) implies the choice of the scaling time t0 = X2
0

†
ρ̄/ḡmm and the scaling flux-

linkage Ψ0 =
†

ρ̄/ḡeeU0. For further details refer to the forthcoming paper.12

The equations of motions above have been deduced by considering the circuital topology in Fig.1. An
opportune choice of the electrical parameters appearing in T0, T1, T2 allows to design the impedances of each
circuital branch in order to obtain a desired system of differential equations. In particular we report in Table 1
how the circuital parameters (R0, R1, R2, L0, L1, L2) can be chosen in order to synthesize PEM beams in which
the electric evolution is governed (as far as a homogenized model is concerned) by each one of the differential
equations (2). When the beam is coupled with one of the distributed electric vibration absorbers (2) only one
between the three tuning parameters (β0,β2,β4) and one between the three damping parameters (δ0, δ2, δ4)
is not vanishing, as it is ruled by Table 2. We underline that the adopted circuital topology requires the use
of active components as negative inductors in order to synthesize the forth order networks (F,Z) and (F,S).
Negative inductors can be electronically simulated by active filters. However, one can aims at avoiding the use
of active components to synthesize passive systems like the forth order networks. To this end, different synthesis
solutions can be developed as discussed in Karplus13 and Andreaus et al..14

3. ELECTROMECHANICAL DYNAMICS

In the previous section, the evolution equations for homogenized models of the PEM beams were derived. In
the present section, the dependence of their dynamic properties on the electric parameters is studied and the
damping performances of the different network configurations are compared. To this end, the temporal decay
of k-waves (i.e. solutions in the form of electromechanical waves characterized by a single real wave number
k) evolving in infinite PEM beams is studied. The optimal electric parameters are found as function of k for
the five vibration absorbers and the corresponding damping performances are compared. An application to the
case of a simply-supported beam is presented.



Table 1. Electric parameters in order to obtain the five distributed vibration absorbers from the generic network
topology.

Network (Z,Z) (S,Z) (S,S) (F,Z) (F,S)

L0 L ∞ ∞ ∞ ∞
L1 ∞ ∞ ∞ L L
L2 ∞ L L −4L −4L
R0 R R ∞ R ∞
R1 ∞ ∞ ∞ ∞ ∞
R2 ∞ ∞ R ∞ R

Table 2: Non-vaninishing tuning and damping parameter for the five distributed vibration absorbers.

Network (Z,Z) (S,Z) (S,S) (F,Z) (F,S)

Tuning β0 β2 β2 β4 β4
Damping δ0 δ0 δ0 δ2 δ2

3.1. K-waves solutions

Let us look for solutions sk(X, t) of the system (14) in the form

sk(X, t) = s(t)e
ikX (20)

We call a solution in this form a k-wave, which is a particular standing wave as defined by Courant and Hilbert.15

The analysis of k-waves is relevant because, by means of a Fourier Transform (or Series), the general solution
of a dynamic problem for a infinite (or finite) beam can be written as the superposition of k-waves, each one
with a fixed wave number. The substitution of the wave form solution (20) into the equations of motion (14)
leads to the following system of two second-order ordinary differential equations for the temporal evolution s(t)

s̈(t) +D
(1)
k ṡ(t) +D

(0)
k s(t) = 0 (21)

where D
(1)
k ,D

(0)
k are real algebraic operators since only even order spatial derivatives appear in D(1) and D(0).

The system (21) can be conveniently rewritten as a system of four first-order ordinary differential equations
with constant coefficients in terms of the state vector y(t) = {s(t), ṡ(t)}t, as follows

ẏ(t) = Aky(t) (22)

For the general system in Fig.1

Ak =




0 0 1 0
0 0 0 1
−k4 0 0 γk2

0 −β(k) −γk2 −δ(k)


 (23)

where subscript k on Ak underlines that the system (22) is written for the temporal evolution of k-waves. The
following parameters have been introduced

β(k) := β0 + k
2β2 + k

4β4 δ(k) := δ0 + k
2δ2 + k

4δ4 (24)

They can be regarded as equivalent tuning and damping parameters as a function of wave number. The char-
acteristic polynomial associated to (23) is

µ4 + δ(k)µ3 +
"
β(k) + k4(1 + γ2)

#
µ2 + k4δ(k)µ+ k4β(k) = 0 (25)

We denote by {µi}i=1...4 the corresponding roots. The solution of (22) starting from a generic initial condition
y0 = y(0) is given by

y(t) = eAkty0 (26)



We characterize the damping properties of the y(t) (and consequently of s(t)) by the following exponential decay
rate G and damping time τ

G := min
j=1,...,4

(−Re(µj)) τ := 1/G (27)

Moreover, we define a system damping ratio ζ as

ζ := min
j=1,...,4


 −Re(µj)‡

Re(µj)
2 + Im(µj)

2


 (28)

All the quantities above are referred to a fixed wave number k and, when necessary, the functional dependence
on k is explicitly underlined. We remark that the proposed characterization of the temporal evolution s(t) is
based only on the system eigenvalues and it is completely independent on the initial data y0.

3.2. K-waves optimal damping

The system performances are optimized by minimizing the temporal decay obtained for a k̄-wave (i.e. an
electromechanical wave in the form (20) with a fixed wave number k̄). Since the temporal evolution of a k-wave
is determined by means of the system of the two second order differential equations (21), the optimal design of
the electric part of that system is equivalent to the optimization of a dissipative one-degree-of-freedom dynamic
vibration absorber gyroscopically coupled to a harmonic oscillator. Hence, the optimization techniques which
were developed for that application can be fruitfully revisited. In particular, we follow a pole-placement method
analog to the one that was adopted by Hagood and Von Flotow1 . We choose as performance index PI the
system decay rate (27). Let us underline its functional dependence on the wave number k, the tuning parameter
β and damping parameter δ by writing

PI(k,β, δ) := G(k,β, δ) = min
j=1...4

"
−Re(µj(k,β, δ))

#
(29)

We assume that δ,β ≥ 0. The definition (29) implies the assumption of a pole-placement criterion for the system
optimization. The optimization of a given network implies the maximization of (29) with respect to (β, δ) when
the wave number k is fixed and equal to k̄. To this end, we proceed by employing an useful properties of (29):
it is maximum when the four eigenvalues of Ak appear in the form of two coincident complex conjugate pairs.
This property is widely exploited in the literature (see e.g. Hagood and Von Flotow1 and Alessandroni et al.5).
With this method the following optimal values for the equivalent tuning and damping parameters β(k) and δ(k)
defined by (24) are found

βopt(k̄) = k̄4 δopt(k̄) = 2γk̄2 . (30)

The corresponding eigenvalues of (23) are

µ1,2 = µ3,4 = −
1

2
k̄2γ ± k̄2

·
1− γ2

4
(31)

The associated system damping ratio is

ζ =
γ

2
(32)

The optimal damping ratio depends only on the dimensionless coupling parameter γ and it is the same for the
five network configurations. For each network a single pair (βi, δj) , with proper i and j, must be considered,
as it is ruled by Table 2. Hence, relations (30) and definitions (24) allow for deriving the following optimal
parameters.

βopt0 (k̄) = k̄4 βopt2 (k̄) = k̄2 βopt4 (k̄) = 1 δopt0 (k̄) = 2γk̄2 δopt2 (k̄) = 2γ δopt4 (k̄) = 2γ/k̄2 (33)

The corresponding optimal inductors and resistors as a function of k̄ and of the number of modules in a
characteristic length n are immediately found through the definitions (17). They are reported in Table 3. By
comparing the expressions for the optimal parameters of the different circuital topologies, the following facts
can be noted.



Table 3: Optimal inductors and resistors in each module for the five distributed vibration absorbers

Network Optimal Inductors Optimal Resistors

(Z,Z) Lopt0

"
k̄
#
=

cβ

k̄4
n Ropt0

"
k̄
#
= cδ

2γk̄2
n

(S,Z) Lopt2

"
k̄
#
=

4cβ
k̄2

1
n

Ropt0

"
k̄
#
= cδ

2γk̄2
n

(S,S) Lopt2

"
k̄
#
=

4cβ
k̄2

1
n

Ropt2

"
k̄
#
= 2cδ

γ
1
n

(F,Z) Lopt1

"
k̄
#
=

cβ
4

1
n3

Lopt2

"
k̄
#
= −cβ 1

n3
Ropt0

"
k̄
#
= cδ

2γk̄2
n

(F,S) Lopt1

"
k̄
#
=

cβ
4

1
n3

Lopt2

"
k̄
#
= −cβ 1

n3
Ropt2

"
k̄
#
= 2cδ

γ
1
n

1. Dependence on location. The optimal values of the resistors and the inductors in each module are the
same if they are located in the same circuital branch (e.g. the optimal value of the ground resistor R0

"
k̄
#

is the same in the (Z,Z), (S,Z) and (F,Z) networks, as well as the optimal value of the line inductor
L2

"
k̄
#

is the same in the (S,Z) and (S,S) networks);

2. Dependence on wave number. If the resistors and the inductors are properly located, their optimal
values are independent of the wave number k̄. Indeed, the optimal resistors are independent of the wave
number if the corresponding dissipation term appears in the homogenized equations with a second order
spatial derivative ((S,S) and (F,S) networks); the optimal inductors are independent of the wave number
if they are located so as to lead to fourth order networks ((F,Z) and (F,S)). The (F,S) network satisfies
both the conditions, therefore we expect that such a system can be optimized for all the wave numbers at
the same time (this important result is confirmed by the plots in Fig.3).

3. Dependence on number of modules. The optimal inductance in each module is proportional to n in
the zeroth order network, proportional to 1/n in the second order networks, proportional to 1/n3 in the
fourth order networks. Hence, in second order and fourth order networks the optimal inductances can be
significantly decreased by increasing the number of modules per unit of length. This fact can be relevant
because the construction of high-value inductors implies significant technological problems. Moreover, in
the networks with a second order dissipation, the optimal value of the parallel-connected resistances R2
decreases for increasing n. Also this effect is desirable because the unavoidable parasite resistances of the
electric components imply a technological upper bound on the value of R2.

Once a system is optimized for a fixed wave number k̄, it is interesting to study the corresponding damp-
ing properties for k-waves which are characterized by a wave number k different from k̄. Let us denote with
βopti (k̄), δoptj (k̄) the optimal damping and tuning parameters relative to a generic i − th order electric network
with a j−th order dissipation (refer to equations (2a-2e)). As it is evident from equation (32) the corresponding
optimal damping ratio is independent of the electric network. In order to point out the different damping perfor-
mances shown by different distributed vibration absorbers it is useful to define a function, named characteristic
decay time function, as follows

Topt(k, k̄) :=
1

PI(k,βopti (k̄), δoptj (k̄))
(34)

It furnishes the value of the characteristic (dimensionless) decay time for a wave number k in a structure the
electric circuitry of which is optimized for the wave number k̄. The optimal decay time function obtained for
k̄ = k, i.e. the characteristic decay time obtained by optimizing the system for the current wave number k, can
be evaluated explicitly from relations (31)

Topt(k, k) =
2

γk2
(35)

Expression (35) depends only on the considered wave number and coupling coefficient and, as one could expect,
the bigger is the wave number the smaller is the decay time. Hence, it shows that the same optimal decay
time function may be attained regardless of the circuital topologies. On the contrary, we anticipate that, when
k X= k̄, the performances of the different PEM system depend significantly on the chosen circuital topology (see



Table 4: Aluminum beam and piezoelectric sheets cross section dimensions and constitutive parameters

Beam PZT

Width (wb, wp) 40× 10−3m 36.2× 10−3m
Thickness (hb, hp) 4.0× 10−3m 0.267× 10−3m
Covering factor θl - 0.9
Young Modulus (Yb,Y

E
p ) 70× 109N/m2 62× 109N/m2

Mass Density (ρb,ρp) 2700 kg/m3 7800 kg/m3

Dielectric Constant (eT33) − 3800× ε0= 3. 36× 10
−8 Fm−1

Charge Constant (d31) − −320× 10−12m/V

e.g. the plots in the following Fig.3). Since the optimal decay time function depends on k as ruled by (35), it
is convenient to define a relative decay time function as follows

T̃opt(k, k̄) :=
Topt(k, k̄)

Topt(k, k)
=

γ

2
k2Topt(k, k̄) (36)

It will be interesting also to analyze the behavior of the system damping ratio ζ(k, k̄) as function of k in a
system optimized for the wave number k̄.

3.3. Design of PEM beams

In the present subsection, considering a numerical example, the optimal values of the electric parameters are
found for a generic wave number k̄ and the corresponding damping performances of the five network configura-
tions are analyzed and compared. Since the systems described by the dimensionless differential equations (21)
are studied, it is always possible to consider k̄ = 1 (if k̄d is the dimensional value of the wave number k̄, the
scaling length X0 = 1/k̄d can be fixed).

Let us consider as a numerical case study a rectangular cross section aluminum beam on which piezoelectric
sheets made by the piezoelectric material PSI-5H-S4-ENH are bonded. In Table 4, the cross section and material
properties of the beam and of the piezoelectric sheets are reported. The corresponding numerical values of the
homogenized material properties, the dimensionless coupling coefficient γ and the constants (cβ , cδ) are

ḡmm = 19.8Nm
2 ḡee = 6.83× 10

−6 F
m ḡme = 2.76× 10

−3 Nm
V

σ̄ = 0.568 kg
m

cβ = 4.19× 10
3X3

0 H cδ = 24.8× 10
3X0Ω

The associated dimensionless coupling coefficient is γ = 0.237 and the following optimal damping ratio (32) is
found (it is the same for the five vibration absorbers)

ζ = 11.78% (37)

In Fig.3 the relative decay time function (36) and the system damping ratio (28) are plotted as a function of
k for the numerical values above. These plots show some important results. The (F,S)-Network attains the
optimal performances for all the wave numbers: this means that T̃opt(k, 1) := Topt(k, k̄)/Topt(k, k) = 1 for each
k. This fact could be established also from Table 3, which shows that in this case the optimal resistances and
inductances are independent of k. Furthermore, the (S,S)-Network can appreciably damp free oscillations with
k > 1, although the corresponding damping ratio is much lower than the optimal one which is reached only for
k = k̄ = 1. Also this behavior is in accordance with the relations for the optimal resistances and inductances in
Table 3. Indeed, in the (S,S)-Network the dissipation is always optimal, while the electromechanical resonant
energy exchange is effective only for a narrow band of wave numbers.

It is important to recall that the proposed dynamic analysis is based on homogenized beam model of the
modular systems. As a consequence the presented results are meaningful only for wave numbers which are
small enough. Roughly speaking, the dimensionless wave number k must be smaller than i) the wave number
kw = 2π/(wb/X0) corresponding to a wave length equal to the beam width (we assume hb < wb), ii) the wave
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Figure 3. Damping performances for the five network configurations when optimized for a dimensionless wavenumber
k̄ = 1. (a) relative decay time T̃opt(k, 1), (b) system damping ratio ζ(k, 1).

Table 5: Optimal inductors and resistors in each module for the simply supported PEM beam

Network Optimal Inductors Optimal Resistors

(Z,Z) Lopt0

"
k̄
#
= 66.5H Ropt0

"
k̄
#
= 32.1 kΩ

(S,Z) Lopt2

"
k̄
#
= 18.2H Ropt0

"
k̄
#
= 32.1 kΩ

(S,S) Lopt2

"
k̄
#
= 18.2H Ropt2

"
k̄
#
= 8.80 kΩ

(F,Z) Lopt1

"
k̄
#
= 781mH L2

"
k̄
#
= −312mH Ropt0

"
k̄
#
= 32.1 kΩ

(F,S) Lopt1

"
k̄
#
= 781mH L2

"
k̄
#
= −312mH Ropt2

"
k̄
#
= 8.80 kΩ

number kl = π/(lb/X0) = nπ corresponding to a wavelength equal twice the longitudinal dimension of a single
module. The first limit is an intrinsic drawback of the assumption of a one-dimensional beam model. The
second restriction is related to the approximation implied by the homogenized model which was based on a
second order Taylor expansion of the state variables in each module.

The performance of the five different distributed vibration absorbers for the forced response are compared
in Fig.4. The plot refers to the case of a simply supported beam of length ld = 0.5m, equipped with twelve
circuital modules. The boundary modules of the electric networks were chosen in order to realize the boundary
conditions Ψ(0, t) = Ψ(l, t) = ΨRR(0, t) = ΨRR(l, t) = 0 for the forth order networks, and the boundary conditions
Ψ(0, t) = Ψ(l, t) = 0 for the second order networks. All the electric networks are optimized in order to damp
a wave with a wavelength corresponding to the first vibration mode of the beam. The numerical values of the
optimal inductors and resistor in each module are reported in Table 5.

4. CONCLUSIONS

In the present paper the concept of distributed piezoelectric vibration control was proved to be interesting for
technological applications. We considered several electromechanical systems made of distributed piezoelectric
transducers bonded on a beam and interconnected by properly designed electric networks. These systems can
be regarded as waveguides supporting electromechanical oscillations. The electric network interconnecting the
piezoelectric transducers are designed in order to enhance, by taking advantage of internal resonance effects,
the transformation of mechanical energy into the electric form. In these networks, the mechanical energy is
dissipated in dedicated resistors, which are designed to obtain optimal vibration decay times. The performances
of different circuital topologies interconnecting the piezoelectric transducers were compared and it was shown
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Figure 4. Mechanical frequency response function for the vibration absorbers optimized to damp the free oscillations
of the first mechanical mode. The response obtained by means of the forth order line (F,S) is compared with those
related to the other networks. The plot corresponds to the transverse displacement of the beam axis point xu = 0.3l for
an excitation in the form of a transverse force applied at the point xf = 0.7l.

that a passive controller able to optimally damp multiple vibration modes at the same time can be obtained.
The main results obtained for the control of the transversal vibrations of an Euler beam are resumed in the
following list.

i) Every considered electric vibration absorber may be optimized to achieve the optimal damping perfor-
mances for a single wave number. This optimal damping is the same for every circuital topology and
depends only on the electromechanical coupling coefficient.

ii) The performances of the different absorbers optimized for a single wave number, vary significantly when
waves having different wave numbers are considered. There is a distributed vibration absorber with proper
dynamic properties for which the optimal electric parameters are independent of the wave number. To
this purpose, the "dissipation" term associated to the resistors must appear in the homogenized equations
with a second order spatial derivative, the "electric stiffness" term due to the inductors with a fourth
order spatial derivative. This system is the fourth order transmission line with second order dissipation
((F, S)− network). It supplies the optimal decay time for every wave number.

iv) For different electric networks the nominal value of the inductances in each module depends on the number
n of modules (i.e. transducers) per unit length in different ways. The most convenient circuit is again
the fourth order network: in this case the inductances in each module are proportional to 1/n3. This
fact is interesting because the lower the inductances are the easier is their technological construction with
electr(on)ic components.

v) The piezoelectric controller obtained with the (F,S) network is robust under forcing frequency shifts,
accomplishing a multimodal optimal damping. This point was illustrated by means of a numerical example
consisting of a simply-supported PEM beam (see Fig.4).



The proposed damping devices can be actually constructed. Although technological aspects have not been
detailed in this paper, it should be noted that the required high or negative inductances are feasible only using
electronic active filters. The technological and theoretical problems to be solved in this context are related to
the synthesis of equivalent electric networks which are completely passive.
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