Gabriel Oshiro Zardo
email: gabrieloshiro@gmail.com

Dominique Houzet
email: dominique.houzet@gipsa-lab.inpg.fr

Sylvain Huet
email: sylvain.huet@gipsa-lab.inpg.fr

Crossbus: a Design Flow and a NoC for MPSoPC

In this paper we present Crossbus: a NoC and a design flow developed at the GIPSA-lab which targets the implementation of dataflow applications, e.g. signal, image, video processing, on Xilinx FPGAs.

Introduction

The number of Processing Elements (PE) on MPSoC is increasing rapidly: the 2007 ITRS roadmap predicts that the number of PE in consumer portable design will evolve from 60 in 2009 to 1400 in 2022. The Network on Chip (NoC) appeared to be solution to achieve an efficient on-chip communication for such complex designs. It offers a better performance/scalability/reliability compromise than classical communication topologies such as shared buses, point to point links… Many NoCs have been developed since the 2000 either in academia or industry [START_REF]Networks on Chips M[END_REF]. Many of them target ASICs. Nevertheless, the ever increasing density of integration makes the NoC a relevant communication design paradigm even for FPGAs [START_REF] Marescaux | Networks on Chip as Hardware Components of an OS for Reconfigurable Systems[END_REF] [START_REF] Riso | Réseau d'Interconnexion pour les Systèmes sur Puce : le Réseau HERMES SCS[END_REF]. Crossbus is a NoC and a design flow developed at the GIPSA-lab which targets the implementation of dataflow applications, e.g. signal, image, video processing, on Xilinx FPGAs. The multi FPGAs feature of Crossbus, which is totally transparent from the application designer point of view, is one of the novelties of this work. Besides, the NoC has been developed in conjunction with a dataflow programming model expressed with SystemC. This allows optimizing the NoC by implementing some primitives of the programming model in hardware.

Hardware Architecture

The Crossbus NoC allows interconnecting N FPGAs as a bidirectional full duplex ring network. Rocket IOs, high speed serial links from Xilinx, are used for these inter FPGAs links. Each FPGA embeds a 0xP 2 dimensional matrix of routers. Some places in the matrix can be left empty. The routers are linked has a 2D torus. The links are monodirectional either in the vertical or horizontal directions, except the first row which is bidirectional full duplex. The interconnections between routers, inside FPGAs, are handled by FSLs (Xilinx FIFOs). An example of the Crossbus topology is given in Figure 1. Each grey square inside a FPGA symbolizes a router, the FPGAs matrix size is 0=P=3. [START_REF] Kaouane | SysCellC: SystemC on Cell[END_REF]. We developed an implementation of these primitives for the MicroBlaze processor from Xilinx, the processor we target with Crossbus. We hardwired the implementation of MPI_Barrier and MPI_Comm_Rank primitives. MPI_Put transfers information between PEs through DMA. At last we generate the hardware description of the system in MHS file format. This file format is used by the EDK Tool from Xilinx to describe the hardware architecture of a system [START_REF]Xilinx, EDK Concepts, Tools, and Techniques A Hands-On Guide to Effective Embedded System Design[END_REF]. All the hardware components composing the system (the NoC infrastructure, the hardware and software PEs connected to each router) are instantiated in this file. The hardware PEs can be either hand-written or instantiated from a library or generated with a High Level Synthesis (HLS) tool, e.g. we experience in the context of this work the generation of hardware PEs with ImpulseC [START_REF]Impulse Accelerated Technologies, ImpulseC[END_REF]. We generated the software description of the System in the XMP and MSS files format. These files format is used by the EDK Tool from Xilinx to describe the software projects embedded in each software processors composing the system and to specify the drivers associated the hardware components [START_REF]Xilinx, EDK Concepts, Tools, and Techniques A Hands-On Guide to Effective Embedded System Design[END_REF]. Bitfiles are generated by EDK from these MHS and MSS and XMP files.

Programming model and design flow

Results

The Crossbus NoC and design flow have been validated on two case studies. A producer/consumer case and a CDMA software radio case. Table 1 shows the hardware cost of a router in function of the number of connected PEs. It points out that the size of a router connected to 4 PE is comparable with the size of a MicroBlaze.

Conclusion

Our results show that it is possible to efficiently implement an application described at a high level of abstraction on a multi FPGAs platform with a multiprocessor plus NoC design paradigm. Although we initially target FPGAs, we plan to extend this work to ASICs solutions: we believe that a small footprint NoC is also pertinent for ASICs.

Figure 1 :

 1 Figure 1: Crossbus Architecture Example Each router can be connected with up to 4 hardware or software PEs. Crossbus uses an XY routing policy.

 Design FlowThanks to its expertise and the profiling results, the designer defines (1) the hardware architecture, i.e. the NoC topology and the number of PEs and their kind (hardware or software) attached to each router (2) the mapping of the sc_modules on the PEs. The software code embedded in the software PEs is generated with our SysCellC tool[START_REF] Kaouane | SysCellC: SystemC on Cell[END_REF]. With the view to obtain a fast code with a small footprint, it transforms the MPI_Init is used to initialize the application, MPI_Comm_Rank is called during the initialization by the software PEs to obtain their identifier, the synchronization is expressed with MPI_Barrier, MPI_Put is used to express the data transfers and MPI_Finalize is called at the end of the program. This MPI based C code is generic and can be compiled on any kind of software PE as long as we dispose of the implementation of the mentioned above primitives, e.g. we use this C code to simulate applications on a Cell processor

	SystemC specification in a C code which respects the
	SystemC semantics. This tool generates (1) a lightweight
	static application specific scheduler and (2) transforms the
	SystemC primitives' calls with MPI-2 RAM [4] calls. For
	example,
	SystemC Specification
	Simulation Validation Profiling
	(ModelSim)
	NoC Architecture Definition
	(Topology and PEs)
	Tasks Mapping
	(sc_modules)
	C Code Generation
	(MPI Based+Lightweight Scheduler)
	EDK System Generation
	(XMP MSS MHS)

Crossbus design flow is presented in figure

2

. It relies on the SystemC programming model and allows generating both the software and hardware parts of the system. The application is specified with a subset of SystemC which allows expressing the parallelism of the application. It is described as a set of sc_modules interconnected by sc_signal and sc_fifo communication channels. The synchronisation is expressed with the help of calls to the wait primitive on a clock signal. The application is validated and profiled through simulations with ModelSim. Bitfiles

Figure 2:

 Table 2 shows the execution time in clock cycles in function of the number of words in a message of several primitives for the producer/consumer case study. The system initialisation and the write_signal are proportional to the size of the message whereas MPI_init and the scheduling only depend on the number of communication channels. Since MPI_Comm_Rank and MPI_barrier are hardwired they only take 2 clock cycles. Execution Time in clock cycles in function of the number of words in a message

	Num.	Ios	Funct.	CLB	DFFs	Freq.
	of PE		gen.	Slices	or Latches	(Mhz)
	1	497	2987	1494	628	173.3
	2	582	3277	1639	609	178.6
	4	743	3987	1994	668	203.3
			Table1: Router costs	
	Primitive			4 words	8 words	16 words
	System initialization	1385	2281	4057
	MPI_init()		426	426	426
	MPI_Comm_Rank()	2	2	2
	Scheduling(wait())	60	60	60
	write_signal		86	133	175
	MPI_Barrier()		2	2	2
	Table2: