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Pedestrian crossing detection based on evidential fusion

of video-sensors

Laurence Boudet∗,1, Sophie Midenet
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GRETIA, 2 rue de la Butte Verte, 93166 Noisy-le-Grand cedex, France

Abstract

This paper introduces an online pedestrian crossing detection system that

uses pre-existing traffic-oriented video-sensors which, at regular intervals,

provide coarse spatial measurements on areas along a crosswalk. Pedes-

trian crossing detection is based on the recognition of occupancy patterns

induced by pedestrians when they move on the crosswalk. In order to im-

prove the ability of non-dedicated sensors to detect pedestrians, we introduce

an evidential-based data fusion process that exploits redundant information

coming from one or two sensors: intra-sensor fusion uses spatiotemporal

characteristics of the measurements, and inter-sensor fusion uses redundancy

between the two sensors. As part of the EU funded TRACKSS project on co-

operative advanced sensors for road traffic applications, real data have been

collected on an urban intersection equipped with two cameras. The results

obtained show that the data fusion process enhances the quality of occupancy
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patterns obtained and leads to high detection rates of pedestrian crossings

with multi-purpose sensors in operational conditions, especially when a sec-

ondary sensor is available.

Key words: Urban traffic management, Multi-purpose video-sensor,

Pedestrian crossing detection, Multi-sensor fusion, Theory of evidence

1. Introduction1

Considering the issue raised by the impact of road traffic on climate, urban2

traffic management systems have to evolve toward a better consideration of3

non-pollutant modes of transport. Solutions are being investigated to favor4

pedestrian mobility by improving safety and comfort (Hughes et al., 2000).5

These improvements often require infrastructure modifications, but can also6

be achieved through traffic management actions, such as pedestrian-oriented7

traffic light strategies like Puffin or Pelican (Catchpole, 2003). This paper8

addresses the detection of pedestrians on multi-camera equipped signalized9

intersections, and describes an online system that detects pedestrian crossing10

events on crosswalks. This system is to be part of an observatory system11

dedicated to pedestrian mobility in signalized intersections, with focus on12

the assessment of time sharing between pedestrians and road traffic. Our13

aim is to analyze the impact of traffic light strategies and to evaluate how14

green and red phases for pedestrians relate to demand and to pedestrian15

crossing practices (McLeod et al., 2004).16

Video-sensors are becoming more and more widespread for urban traffic17

management systems, and provide usual and innovative traffic measurements18

such as flow, queue length or spatial occupancy. A big advantage of video19
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sensors in urban contexts is that the same cameras used for motorized traffic20

analysis can provide information on specific traffic like trucks or buses, and21

also on pedestrian flow. Video-sensors can be considered as potential multi-22

purpose sensors for urban traffic control systems.23

INRETS-GRETIA is participating in the TRACKSS project which ad-24

dresses the potential of video-sensors in such matters. As part of the Infor-25

mation Society policies of the European Commission, the TRACKSS project26

- Technologies for Road Advanced Cooperative Knowledge Sharing Sen-27

sors - aims to develop new systems for cooperative sensing and predic-28

tive flow, infrastructure and environmental conditions surrounding traffic,29

with a view to improving the safety and efficiency of road transport opera-30

tions (Trackss, 2008). As part of this project INRETS-GRETIA is working31

with the TRACKSS partner Citilog on the potential of using existing non-32

dedicated video sensors for online detection of pedestrian crossing events; at33

the same time Citilog and the ITACA Institute are working on bus detection34

and tracking through cooperation between magnetic loop and video-sensor.35

This paper reports the results obtained on pedestrian crossing event de-36

tection. The system developed for that purpose receives inputs from traffic-37

oriented video sensors that compute spatial occupancy rates on predefined38

regions over a pedestrian pathway. The system is made up of two modules39

that transform these occupancy rates into pedestrian crossing occurrence40

detection:41

- a data fusion module, which improves the basic measurement using42

spatiotemporal information redundancy, and multi-sensor redundancy43

when two cameras are available for analysis;44
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- a pattern recognition module, which detects temporal patterns induced45

by pedestrians crossing the road.46

Our idea is twofold: exploiting when possible existing sensors to develop47

pedestrian crossing detection ability, and using a data fusion model to address48

the potential weaknesses of pedestrian detection due to non-optimal camera49

positions.50

The data fusion process concerns both inter-sensor and intra-sensor fu-51

sion: inter-sensor fusion takes advantage of two sensors observing one cross-52

walk from different angles, while intra-sensor fusion takes advantage of the53

spatiotemporal characteristic of spatial occupancy. Both fusion processes are54

defined within the transferable belief model framework.55

The pattern recognition module detects pedestrian crossings in the spa-56

tiotemporal data obtained after data fusion. It aims to detect as many pedes-57

trian crossing patterns as possible and before their ending. Depending on the58

type of data used, these principles apply when a small number of pedestrians59

move in the scene, but not in crowded scenes such as station accesses.60

2. System architecture61

Over the last few years INRETS-GRETIA has equipped a real inter-62

section in the close suburbs of Paris with a multi-camera system for road63

traffic management research projects (Midenet et al., 2004; Boillot et al.,64

2006). Figure 1(a) depicts one view of this experimental site, which shows65

one double-lane outbound link. The crosswalk that goes over this link has66

been chosen for the experiments reported here.67
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TRACKSS partner Citilog has provided us with traffic-oriented video sen-68

sors based on their product MediaCity; it has been adapted to pedestrians by69

internal parameters tuned to take into account the size and speed of pedes-70

trian movements in the image. The underlying image processing software is71

based on movement detection (Auber et al., 1996) and provides spatial occu-72

pancy rates on predefined regions every second. For the pedestrian crossing73

event detection application, we define at least two regions of interest (ROI)74

covering the pedestrian pathway on the pavement, one region per lane in the75

case of a larger link. Two additional ROI are considered on each sidewalk76

(see Figure 1).77

place Fig. 1 about here78

We define a pedestrian crossing event (PCE) as an event lasting several79

seconds characterized by the presence of at least one pedestrian on the pave-80

ment. Occupancy state patterns (where the state is empty or occupied) on81

ROI induced by PCE reflect pedestrian movements from one side of the road82

to the other. These patterns differ from those caused by other events which83

induce occupancy rate variations such as vehicle flow: vehicles clear the cross-84

walk perpendicularly whereas pedestrians follow the crosswalk direction.85

PCE and other occupancy-inducing events are differentiated using a pat-86

tern recognition module on the basis of the occupancy state spatiotemporal87

patterns. Those that are consistent with the evolution of pedestrian move-88

ment on the crosswalk are detected as PCE based on an analysis of local89

occupancy dynamics. Occupancy state patterns are more appropriate than90

occupancy rate patterns as they do not depend on the number or apparent91

size of pedestrians.92
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PCE detection performance depends on the performance of the video93

sensors that compute occupancy rates (OR) on the ROI. Video sensor per-94

formance in turn is very much dependent on the position of the camera, but95

some general trends can be observed.96

- Being based on movement detection, the spatial occupancy rate over97

the region of the image constitutes a coarse but robust basic measure-98

ment that can be exploited under a large variety of weather and lighting99

conditions.100

- Pedestrian movement is better translated into occupancy rate when the101

crosswalk is positioned horizontally in the image - like in Figure 1(a) -,102

since pedestrian appearance remains comparable from one side to the103

other.104

- A single pedestrian may not produce sufficient apparent movement and105

may not be detected over some ROI. This is because movement detec-106

tion is intentionally thresholded to avoid noise.107

- Other events than pedestrian movement also induce positive occupancy108

rates, perpendicular vehicle flow for instance, since movement is de-109

tected without pattern recognition.110

The principle we apply consists in using data fusion techniques in order111

to enhance the quality of this non-dedicated and robust sensor: the redun-112

dancy of information can thus offset the non-optimality of multi-purpose113

video sensors. Firstly, we exploit the gradual occupancy transmission be-114

tween adjacent ROI when pedestrians cross over on a crosswalk by defining115

an intra-sensor fusion process to rectify the gaps in the spatiotemporal OR116
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pattern. Secondly, we define an inter-sensor fusion process that takes advan-117

tage of the redundancy between video-sensors when crosswalks happen to be118

covered by two cameras. This is the case for most crosswalks of our experi-119

mental site, including the one we are focusing on. The view of the secondary120

video sensor that covers it is depicted in Figure 1(b). Movement detection121

on pedestrians with the secondary sensor is not as good as with the primary122

sensor because of the effects of perspective along the crosswalk. However,123

it provides information that can be useful for solving under-detection prob-124

lems, or in the case of occluding lateral flow event. This is the purpose of125

the inter-sensor fusion process.126

The system architecture is depicted in Figure 2. The first module is127

provided with occupancy rates given by the primary video sensor, and with128

those given by the secondary video sensor, if any. The second module receives129

the occupancy states given by the first module, and provides the final output.130

place Fig. 2 about here131

3. Data Fusion132

The data fusion module is responsible for transforming an array of oc-133

cupancy rates (OR) coming from one - or two - video-sensors, into an array134

of occupancy states (OS) that reflects as correctly as possible the true oc-135

cupation of corresponding regions over the crosswalk. In order to exploit136

and combine the various sources of information about OR arrays, we use the137

transferable belief model framework that is briefly presented below.138
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3.1. The TBM framework139

The belief functions stated in the Dempster-Shafer theory of evidence140

(Dempster, 1968; Shafer, 1976) provide a powerful tool for representing con-141

fidence levels and uncertainty. Smets (Smets and Kennes, 1994) has recently142

proposed justifications and innovative interpretation of the theory of evi-143

dence within the so-called transferable belief model framework (TBM). One144

of the most interesting aspects of this theory relies on its ability to represent145

ignorance and conflicting sources. Within the TBM the set Ω of all possible146

states of a system is called the frame of discernment. Basic belief assign-147

ments (bba) are defined on the powerset 2Ω and make it possible to work148

with non-mutually exclusive evidence represented by subsets of 2Ω:149

m : 2Ω → [0, 1] (1)

A → m(A)

where
∑

A∈2Ω m(A) = 1. Subsets A where m(A) 6= 0 are called focal ele-150

ments, and m(A) values are called basic belief masses (bbm). Mass m(A)151

can be interpreted as the degree of belief given to A and to none of its sub-152

sets, given available evidence. Partial ignorance is represented by assigning a153

non-zero value to Ω, whereas total ignorance is represented by the bba with154

Ω as the only focal element. Basic belief masses are used to define belief155

function Bel(A) which describes the level of belief given to A under a given156

belief structure:157

Bel(A) =
∑

B|B⊆A

m(B),∀A ∈ 2Ω (2)

The TBM framework provides several rules for combining sources of evi-158
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dence (Smets, 2007). The choice of a combination rule is a key point in data159

fusion modelling: the rules differ in the way they deal with conflict. The160

original combination rule, known as Dempster’s rule, is a conjunctive one:161

it emphasizes the agreement between sources and ignores all the conflicting162

evidence through a normalization factor. The combination is calculated from163

the two bbas m1 and m2 in the following way:164

m1,2(C) =
1

1 − K

∑

A∩B=C

m1(A)m2(B),∀C ∈ 2Ω\∅ (3)

m1,2(∅) = 0

where K =
∑

A∩B=∅ m1(A)m2(B) measures the amount of conflict between165

the two sources of information. The normalization factor 1 − K reallocates166

the amount of conflict to all the other focal elements. Some authors have167

proposed other conjunctive rules: Yager’s rule (Yager, 1987) attributes the168

conflict to Ω, that is to total ignorance. Dubois and Prade’s rule (Dubois and169

Prade, 1988) assigns each source of conflict to the immediate super-set, that170

is to the origin of the conflict. Dubois and Prade’s rule can be formulated171

for all C in 2Ω \ ∅ in the following way:172

m1,2(C) =
∑

A∩B=C

m1(A)m2(B) +
∑

A∩B=∅,A∪B=C

m1(A)m2(B) (4)

m1,2(∅) = 0

Note that disjunctive or compromise rules exist which may be better173

suited for a high level of conflict between sources (Smets, 1990, 1993).174
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Another big advantage of the TBM framework is that the reliability of175

a source can be taken into account with a reliability factor α. A source176

characterized by its bba structure is affected by the discount factor (1 − α)177

in the following way:178

m′(A) = αm(A),∀A ∈ 2Ω\Ω (5)

m′(Ω) = (1 − α) + αm(Ω)

Several transformations of belief structure into decision variables are179

available. One strategy consists in spreading bbm into singletons: the so-180

called pignistic probabilities BetP (Smets, 1990) are computed and the hy-181

pothesis (i.e. the singleton Ci) that maximizes it is selected.182

BetP (Ci) =
∑

A|Ci∈A

m(A)

|A|(1 − m(∅))
(6)

3.2. Occupancy rate processing within the TBM framework183

The overall schema concerning occupancy data processing within the184

TBM framework is the following. Each sensor measurement (OR) is con-185

sidered as a piece of evidence characterizing the occupancy state (OS) of186

an ROI. This piece of evidence is framed in the TBM: occupancy rates are187

converted into basic belief masses. After being combined with other bbms188

corresponding to other sources of information, the basic belief mass is con-189

verted into occupancy state through a pignistic probability decision (Eq. 6).190

The frame of discernment is composed of the two possible hypotheses on191
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the occupancy state of ROI: Ω = {E, O} with E stands for empty and O for192

occupied. Let us note n the number of ROI and ri
t,k the sensor measurement193

given by sensor i on the ROI k at time t where 1 ≤ i ≤ 2 and 1 ≤ k ≤ n.194

We define a basic belief assignment on 2Ω in the following way:195

m̃i
t,k =

















0

ρ(ri
t,k)α

i

(1 − ρ(ri
t,k))α

i

1 − αi

















(7)

using the vector notation m =
[

m(∅) m(E) m(O) m(Ω)
]T

.196

The parameter αi introduces a discount process and the function ρ con-197

verts the measurement into the degree of belief that this ROI is empty; ρ is198

chosen as an exponential function:199

ρ : [0, 100] → [0, 1] (8)

ri
t,k → ρ(ri

t,k) = exp

(

−
(

ri
t,k

)2

σ2

)

The parameter σ tunes the sensitivity of sensors to movement detection.200

Since the occupancy rate may be rather low when a single pedestrian crosses201

the street, σ is set at a very low value (σ = 4). An example of sensor202

measurement is shown in Figure 3.203

place Fig. 3 about here204
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3.3. Intra-sensor data fusion205

The intra-sensor data fusion model is based on the assumptions that,206

when a pedestrian crosses the street, (i) the occupancy states last several207

seconds for each ROI and (ii) there is a spatial propagation of the occupancy208

between adjacent ROI. Thus, the proposed model uses (i) temporal informa-209

tion in order to extend the current OS and (ii) spatial information in order210

to model spatial propagation of occupancy. Temporal information is widely211

used in temporal filtering methods such as Kalman filters. Even if filters212

have already been studied in the context of the TBM (Ramasso et al., 2007;213

Smets and Ristic, 2007), this approach has not been kept here because mea-214

surement frequency (each second) is rather low compared to the duration of215

the events: information integration about state transition would be delayed216

for several seconds, which does not comply with online constraints.217

The idea is to identify situation changes and to anticipate temporal con-218

flict. The model is meant (i) to integrate spatiotemporal information that219

increases the degree of belief in the current state and (ii) to adapt the re-220

action time to a situation change thanks to an evolution model. As we are221

interested in favoring occupancy detection, the evolution models are chosen222

in order (i) to increase rapidly the degree of belief in the state O when there223

is evidence of the state transition from E to O, and (ii) to decrease slowly the224

degree of belief in the state O when there is evidence of the reverse transition.225

The intra-sensor fusion model is composed of three main steps (Figure226

4):227

1. Evolution model selection: by comparing the previous bbms on ROI228

k and its neighbors with the new observation ri
t,k, the system determines229
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the new context characterizing ROI k. The region may be ”becoming230

occupied” (O.a), ”being occupied” (O.b), ”holding occupied” (E.a) or231

”being empty” (E.b). According to this context, an evolution model is232

selected that provides the evolution bba mei
t,k.233

2. Update fusion: the past bbms mi
t−1,k are updated by fusing them234

with the evolution bba. It gives updated bbms mui
t−1,k.235

3. Temporal fusion: The new bbms mi
t,k are provided by the temporal236

fusion between the instantaneous bbms m̃i
t,k and the updated bbms237

mui
t−1,k.238

place Fig. 4 about here239

Both fusion steps use the combination rule of Dubois and Prade (Eq. 4)240

that transfers the conflict to the set of conflicting hypotheses. As the set of241

discernment is made up of two exclusive hypotheses, this rule is equivalent242

to Yager’s conjunctive rule that transfers the conflict into the ignorance Ω.243

When the conflict is high, the rule assumes that the current belief on a state244

has to be reconsidered in the light of a new piece of evidence. As it is applied245

twice in our application, it enables state change.246

Context O.a and O.b: If the sensor measurement ri
t,k is higher than σ,247

the context is either ”becoming occupied” if an adjacent ROI was occupied248

at (t − 1), or ”being occupied” if not. We aim at favoring a quick increase249

of the degree of belief of state O. A state change from E to O is performed250

when the bba at time (t − 1) better supports hypothesis E than hypothesis251

O for the region k. In that case, the model trusts the new measurement and252

forgets the past knowledge. Indeed, using Dubois and Prade’s rule with the253

two fusion steps enable this state change. The fusion of the previous bbms254
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with the evolution bba creates a high level conflict during the update fusion255

step, which is transferred to Ω. Since the measurement is high enough, the256

level of conflict can be reallocated to O at the temporal fusion step.257

Context E.a and E.b: If the sensor measurement ri
t,k is lower than258

σ, the context is either ”holding occupied” if the previous degree of belief259

on state O is sufficiently high, or ”staying empty” if not. We favor a slow260

decrease of the degree of belief of state O.261

Details of the evolution bbm used in each of these four contexts are given262

in Boudet and Midenet (2008).263

3.4. Inter-sensor data fusion264

Figure 5 depicts the overall fusion process in the case of a single video-265

sensor and in case of two video-sensors. When a secondary video-sensor266

gives additional sensor measurements, a multi-sensor fusion step is added267

that provides a new bbm m1,2
t,k on the basis of the bbms outputted by the two268

intra-sensor fusion processes. The multi-sensor fusion step is performed with269

the Dubois and Prade’s combination rule (Eq. 4). The pignistic decision270

that provides the OS st,k is computed on the basis of the fused bbms m1,2
t,k .271

Furthermore, the fused bbms m1,2
t,k are also used in the intra-sensor fusion272

steps of each sensor.273

place Fig. 5 about here274

3.5. Input-dependant discounting of sources275

During the data fusion processes, discounting factors are introduced twice:276

in the bba computation step (see 3.2) and in the multi-sensor fusion step277

(see 3.4). Traditionally, the discount process (see Eq. 5) enables to take into278
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account sensor reliability and to minor the influence of a sensor considered279

as less reliable. In our case, we observed that pedestrian movement under-280

detection happens on both sensors from time to time. Thus, we defined281

input-dependant discount processes to weaken the influence of a sensor only282

when it may have failed to detect pedestrian movement.283

The input-dependant discount process α(ri
t,k) of the bba (see Eq. 7) is set284

to a value αi when the measurement ri
t,k is higher than σ and is reduced to285

αi−γ otherwise. Regarding the multi-sensor fusion step, the discount process286

is applied when only one sensor detects movement on a ROI. If the sensor287

a is the one that does not detect movement, the bba ma
t,k taken as input of288

the multi-sensor fusion is discounted by a factor (1−αa) = 0.3 + 0.2ma
t,k(E).289

Thus, the discounting factor is higher when the hypothesis E is more strongly290

supported.291

4. Pattern recognition292

The goal of the pattern recognition step is to distinguish pedestrians293

from other items moving on the crosswalk. It is based on spatiotemporal294

occupancy state pattern recognition and classifies the event in progress either295

as a pedestrian crossing event (PCE) or not as a PCE (noted as PCE).296

Evolution of pedestrian movement on the crosswalk is quite typical: a297

pedestrian takes the crosswalk from one sidewalk to the other. Occupancy298

patterns induced by pedestrian crossings depend on crossing features such as299

direction and walking speed. They are highly variable since several pedes-300

trians may cross the street at the same time or successively, in the same or301

opposite directions.302
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Correlation-based pattern matching could have been used to recognize303

pedestrian crossings with occupancy patterns. However, this technique re-304

quires listing a set of pattern examples that has to contain all possible pat-305

terns. Thus, the learning set has to be big enough, especially as occupancy306

may not be detected for a few seconds. Instead, we choose to recognize the307

local dynamics induced by pedestrian crossings: occupancy is temporally308

shifted between adjacent ROI and usually lasts a few seconds on each of309

them. Occupancy patterns induced by vehicle flows are different: occupancy310

begins quasi-simultaneously on the pavement regions and lasts for a longer311

or shorter period of time; occupancy on the sidewalk regions may occur due312

to the perspective effects (occlusions) of video imaging or vehicle shadows.313

In order to characterize these properties, we convert the occupancy state314

sequences into occupancy duration states. Thus, the proposed pattern recog-315

nition method is based on a double-level process: at a local level, the class of316

the occupancy source is inferred by considering the occupancy duration states317

of two adjacent ROI; at a global level, a decision on the event in progress is318

taken based on the local level.319

4.1. Occupancy state coding: fuzzy occupancy duration states320

Fuzzy functions are used to convert occupancy state sequences into fuzzy321

occupancy duration (FOD) states. We use two fuzzy functions per OS: the322

OS is either ”recent” or ”long”. The transition value between them is fixed323

at 3 seconds: it corresponds to the mean time that a pedestrian takes to324

cross a crosswalk region; fuzziness makes it possible to obtain pedestrian325

speed variability. The set of fuzzy functions F = {fRE, fLE, fRO, fLO} shown326

in Figure 6 converts an OS sequence into a FOD array δ ∈ [0, 1]4 that cor-327
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responds to the fuzzy values of each state in D = {dRE, dLE, dRO, dLO}. An328

FOD state is considered as active if its value is strictly positive. Depending329

on the fuzzy functions used, only one state is active each second except at330

transitions where there are two.331

place Fig. 6 about here332

4.2. Local pattern recognition333

The recognition of occupancy source is based on analysis of the local334

occupancy dynamics. We consider the FOD arrays of two adjacent ROI: the335

active FOD states are usually different in the case of pedestrian crossings336

whereas they are usually the same in the case of vehicle flow.337

Bayesian inference is a simple and effective way to address this recognition338

problem. The conditional probability of observing a pair of active FOD states339

(di
k, d

j
k+1) in D2 on ROI (k, k+1) given the class c of a local occupancy source340

is computed from a learning set following the frequentist approach; posterior341

probabilities are computed by applying Bayes’ theorem which reverses the342

conditional probabilities (9).343

P (c|di
k, d

j
k+1) =

P (di
k, d

j
k+1|c)P (c)

∑

c P (di
k, d

j
k+1|c)

(9)

The FOD arrays are taken into account for the computation of frequency344

occurrence and posterior probabilities: the probability that the local oc-345

cupancy source belongs to a class c given a pair of FOD arrays (δk, δk+1)346

becomes (10).347

P (c|δk, δk+1) =
∑

(i,j)∈[1,4]

δi
kδ

j
k+1P (c|di

k, d
j
k+1) (10)
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The set ΩL of classes learnt represents the possible sources of the local348

occupancy. It contains three classes:349

- cN, a class for the local event ”no occupancy”,350

- cPC, a class for the local event ”pedestrian crossing”, and351

- cVF, a class for the local event ”vehicle flow”.352

The class cVF is considered because these events are very frequent with353

a characterizable occupancy dynamics. Bayes’inference principle is shown as354

a bayesian network in Figure 7(a); Figure 7(b) depicts a short illustrative355

sequence and shows the influence of the FOD states on the local occupancy356

sources inferred.357

place Fig. 7 about here358

For the generation of learning set, the OS have been labeled each second359

for each ROI according to the video records. However, errors in occupancy360

state estimation have to be learnt as well: if an OS is empty whereas an361

event occurs on the video, it is labeled as ”no occupancy”. When the two362

labels of a pair of ROI are different, we keep the instance only if one label363

of them is cN; otherwise we discard it from the learning set. In addition, we364

select events that are well separated from others; concerning pedestrian, we365

discard bi-directional simultaneous crossings. Our objective is to provide the366

system with ”pedagogical” examples.367

4.3. Global pattern recognition368

The aims of the global pattern recognition process is to determine the369

event in progress on the pavement part of the crosswalk. It accumulates370
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the local inferences computed for all the inference nodes over several sec-371

onds in order to determine whether the spatiotemporal occupancy pattern is372

consistent with a pedestrian crossing or not.373

Inference nodes are treated differently if they are linked to a sidewalk374

region (outer nodes) or if they are linked to pavement regions (inner nodes).375

The former are used to accumulate evidence of the beginning or end of pedes-376

trian crossing, while the latter are used to accumulate evidence of the occu-377

pancy source on the pavement. Formally, the time during which the most378

probable occupancy source remains the same is computed on each node, and379

then duration thresholds are used to confirm the occupancy source. These380

thresholds set the trade-off between the delay for taking a decision and its381

robustness. They are set at 3 consecutive seconds for vehicle flow, and at 5382

consecutive seconds for pedestrian crossing (including the accumulation on383

outer nodes). An additional condition, the detection of a beginning or an384

end, is required for pedestrian crossing confirmation (see Figure 8).385

place Fig. 8 about here386

Once an occupancy source is confirmed, the beginning of the correspond-387

ing event is looked for backward. If the occupancy source is a pedestrian388

crossing, the event in progress is classified as PCE; it is classified as PCE389

otherwise. For each PCE decision, different time variables are saved (Figure390

8): Tb, the time of the PCE beginning on the pavement; Te the time of PCE391

end on the pavement and Td the time of the decision.392
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5. Experiments393

5.1. Experimental data394

The two views shown in Figure 1 have been used in the experiments: they395

cover the same crosswalk from two different points of view but are primarily396

positioned for road traffic measurements. In this scene, the main classes of397

event are the pedestrian crossing events (PCEs) and the vehicle flow events398

(VFEs) that occur when the vehicles clear the crosswalk perpendicularly.399

A third class of event exists on this site: an occluding lateral flow event400

(OLFE) occurs when high vehicles (like buses and trucks) move in front of401

the crosswalk and occlude it from the primary sensor only.402

The two internal ROI have been used to label the events and determine403

their limits: a PCE begins when a pedestrian steps onto the pavement and404

ends when the last pedestrian steps onto the second sidewalk. Two events405

belonging to the same class are distinct when there is a break longer than406

2 seconds between them. Events of different classes are not exclusive, for407

instance a PCE is in conjunction with a VFE when a pedestrian is on the408

pavement while a vehicle is still on the other lane.409

Two 40-minute sequences have been recorded at two different dates. The410

learning set has been generated based on a 15-minute sequence: it is com-411

posed of 15 PCEs (1’37) and 24 VFEs (6’16”). The test set is composed of412

87 PCEs (9’37), 260 VFEs (21’03”) and 17 OLFEs (1’18).413

5.2. Illustration of the data processing414

Figure 9 shows a 90-second sequence of sensor measurement on the four415

ROI that cover the crosswalk. In the first 30-second period, there are two416

20



pedestrian crossings. The pedestrian patterns show a typical occupancy417

propagation from one sidewalk to the other one. Then, there are several418

vehicle flow events detected on the pavement (the two inner ROI). Figure 9419

shows the bbms obtained (m12
t,k) on the states E and O when the data fusion420

process2 is applied on these data. At the beginning of a new occupancy in an421

ROI, the bbm on O increases gradually when only one sensor detects some422

movement and increases very quickly when both do. The bbm on O decreases423

to a low value after two seconds without movement detection. The bbm on424

Ω, defined as (1 − m12
t,k(O) − m12

t,k(E)), is high mainly at state transitions.425

place Fig. 9 about here426

Figure 10 shows the system results on the same 90-second sequence.427

Graphs 1 to 4 show the pignistic decisions on the occupancy states derived428

from the bbms. Graph 5 shows the classes of local occupancy sources ob-429

tained through the local pattern recognition process; the height of the vertical430

bars gives the posterior probability on the class obtained on the inner node431

linked to ROI 2 and 3. As shown in graphs 6 and 7, the system succeeds432

to detect the two pedestrian crossings and to discard as PCE the following433

events.434

place Fig. 10 about here435

5.3. Evaluation protocol and metrics436

Evaluation objectives are twofold: firstly, to evaluate the whole pedestrian437

crossing detection system, and secondly to evaluate the benefit of using a438

secondary sensor in the system as well as the benefit of using the data fusion439

2The reliability coefficient is defined with α
i = 0.9 and γ = 0.2 for both sensors.
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process proposed.440

The real events and the detected events need to be matched within the441

evaluation process. We consider that a real PCE is detected as soon as a442

detected PCE overlaps and that a detected PCE is a false alarm if no real443

PCE overlaps. Let us note T the set of real PCEs and R the set of detected444

PCEs, the evaluation criteria are:445

- the PCE detection rate (DR) defined by DR = ‖R∩T ‖
‖T ‖

,446

- the false alarm rate (FAR) defined by FAR = 1 − ‖R∩T ‖
‖R‖

.447

These evaluation criteria are compared for different test configurations: with448

or without intra-sensor fusion, and with or without inter-sensor fusion. The449

details of the six test configurations are given in Table 1 with the measure-450

ment used.451

place Table 1 about here452

In order to assess the quality of PCE detection, we use another criteria453

that measures how well the real PCE time intervals are matched by the de-454

tected PCE time intervals. We define the time percentage of PCE detections455

by TP = dur(re∗∩te)
dur(te)

, where a real PCE te is detected by the PCE re∗ if any,456

and dur(e) computes the duration of an event e. This criteria is computed457

on all the real events and is given as cumulative distribution.458

Additional evaluation criteria are computed to estimate the performance459

of the online detection system. They are made up of:460

- the error on the beginning time: time difference between the beginning461

time Tb of a detected PCE and the beginning time T ∗
b of the real PCE462

(if any), defined by Tb − T ∗
b ;463
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- the error on the end time: time difference between the end time Te of464

a detected PCE and the end time T ∗
e of the real PCE (if any), defined465

by Te − T ∗
e ;466

- the delay for detecting a PCE according to the real PCE (if any) defined467

by Td − T ∗
b .468

Figure 8 gives an example of an event with Tb, Td and Te.469

5.4. Evaluation results470

All the results given in this section relate to the test set.471

PCE detection results are given in Table 2 according to the test configu-472

ration. These results are quite satisfactory when the primary sensor is used473

with and without data fusion (H1,S1): the detection rate of real PCEs is474

high (81%) even if the FARs are quite high. Note that the PCEs represent475

only one fourth of real events in the test set. The application of the intra-476

sensor fusion (H1) enables a 10% drop in the FAR: this process extends the477

occupancy a few seconds and fills the gaps between very close occupancy478

sequences. The FAR is reduced because fewer occupancy state patterns are479

consistent with pedestrian crossing patterns.480

place Table 2 about here481

As foreseen, the performance of the secondary sensor is quite poor. Nev-482

ertheless, the results show that a secondary sensor is a good complement to483

a primary optimal sensor and improves its performance in terms of detection484

rate and reduction in the number of false alarms. The best test configuration485

is the one that uses the double fusion process (F12): the FAR is the lowest486

obtained for all test configurations. A lot of false alarms are due (i) to side-487
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by-side vehicles that are slightly shifted when they clear the crosswalk and488

(ii) to pedestrians that come into a sidewalk region of the crosswalk whereas489

a VFE is on-going.490

Figure 11 depicts the cumulative distribution of PCE detection time per-491

centage (TP ) for the configurations that use data fusion. It makes possible492

to compare the PCE detection quality of the different configurations. For in-493

stance, 40% (resp. 45%, 16%, 46%) of real PCEs are detected during at least494

80% of their duration for F12 (resp. H1,H2,G12). The best configuration495

is the one whose graph is at top left, which is G12 or H1. This figure shows496

that the benefit in false alarms obtained by F12 (see Table 2) is not at the497

expense of the detection quality.498

place Fig. 11 about here499

Table 3 gives the detection rates obtained on real PCEs according to500

type: whether or not the pedestrian is alone, whether or not the crossing is501

isolated from other events. A crossing is isolated from other events if there is502

a gap longer than 2 seconds between the crossing and the previous and next503

events. The detection rate of pedestrian groups and isolated crossings are504

very high: OS patterns induced by these crossings are complete and disjoined505

from vehicle flow-inducing OS patterns. The intra-sensor fusion improves the506

detection of single pedestrians and isolated crossings. The poor performance507

of the systems using the secondary sensor (S2,H2) comes from their failure508

in detecting single pedestrians.509

place Table 3 about here510

The evaluation results of the online detection system based on the double511

fusion process (F12) are shown as distributions in Figure 12 and 13. Figure512
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12 shows the errors made on the beginning and end of the detected events,513

whereas Figure 13 shows the detection delays. Figure 12 shows that the PCE514

decisions are good when they relate to a real PCE: their beginning time and515

end time are accurate (± 2 seconds) for around 70% of them. The error on516

the beginning time is centered at zero. The detected events last mostly one517

second longer than the real ones.518

place Fig. 12 and 13 about here519

Figure 13 shows that the events are detected mostly 4 seconds after the520

beginning of the real PCE on the pavement. This delay is acceptable as it521

corresponds to the mean time taken by a pedestrian for crossing one lane.522

Let us note that the few cases of negative delays are due to false alarms523

occurring right before the real PCEs.524

6. Conclusion525

We have introduced an online pedestrian crossing detection system sup-526

plied with traffic-oriented video-sensors that provide coarse measurements527

on areas along a crosswalk. One of its components is a pattern recognition528

module that detects pedestrian crossings as soon as possible in temporal oc-529

cupancy state sequences. This module recognizes the occupancy patterns530

compliant with pedestrian evolution on a crosswalk based on the analysis of531

local occupancy dynamics. The other component is a data fusion module532

that fuses the measurements provided by two sensors and that transforms533

them into occupancy states. It has been devised to exploit spatiotemporal534

characteristics of the measurements in order to correct the under-detection535

of pedestrians by video-sensors and to remain usable with only one sensor.536
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The results obtained with real operational data show that the fusion537

process enhances the quality of occupancy state patterns used for pattern538

recognition and leads to significant improvements in pedestrian detection as539

well as in false alarm reduction. This shows that the same cameras fixed on540

the infrastructure can be used for multi-purpose traffic scene analysis once541

efficient post-processing is provided.542

The next step in data fusion developments will deal with enhanced inter-543

sensor conflict management in order to solve pedestrian detection issues in544

the case of occluding lateral flow events. New traffic scenes collected as545

part of the TRACKSS project will enrich our data base for further develop-546

ment and assessment processing. The pedestrian crossing detection system547

is planned to be used on INRETS experimental site for traffic management548

studies aiming at analyzing and improving pedestrian mobility and safety.549

Acknowledgment550

The authors would like to thank the European Commission for funding551

this work within the TRACKSS project.552

References553

Aubert, D., Bouzar S., Lenoir, F., Blosseville J.M., 1996. Automic vehicle554

queue measurement at intersections using image-processing. Proceedings of555

the 8th International Conference on Road Traffic Monitoring and Control,556

422, London, pp. 100-104.557

Boillot, F., Midenet, S., Pierrelée, J.C., 2006. The real-time urban traffic558

26



control system CRONOS: algorithm and experiments. Transportation Re-559

search C 14, 18-39.560

Boudet, L., Midenet, S., 2008. A spatiotemporal data fusion model for occu-561

pancy state estimation: an evidential approach. Proceedings of the 11th562

International Conference on Information Fusion, Cologne, 30 June-3 July563

2008, pp. 1333-1339.564

Catchpole, J., 2003. Win-win outcomes for pedestrians and drivers by opti-565

mizing traffic signal timing. Road and Transport Research Journal 12(3),566

74-82.567

Dempster, A., 1968. A generalization of bayesian inference. Journal of the568

Royal Statistical Society 30, 205-247.569

Dubois, D., Prade, H., 1988. Representation and combination of uncertainty570

with belief functions and possibility measures. Computational Intelligence571

4, 244-264.572

Hughes, R., Huang, H., Zegeer, C., Cynecki, M., 2000. Automated detection573

of pedestrians in conjunction with standard pedestrian push button at574

signalized intersections. Transportation Research Record 1705, 32-39.575

McLeod, F.N., Hounsell, N.B., Rajbhandari, B., 2004. Improving traffic sig-576

nal control for pedestrians. IEE International Conference on Road Trans-577

port Information and Control 12, London, 20-22 April 2004, pp. 268-277.578

Midenet, S., Boillot, F., Pierrelée, J.C., 2004. Signalized intersection with579

real-time adaptive control: on-field assessment of CO2 and pollutant emis-580

sion prediction. Transportation Research D 9, 29-47.581

27



Ramasso, E., Rombaut, M., Pellerin, P., 2007. State filtering and change582

detection using TBM conflict. Application to human action recognition in583

athletics videos. IEEE Trans. Circuits Syst. Video Techn., 17(7), 944-949.584

Shafer, G., 1976. A mathematical theory of evidence. Princeton University585

Press.586

Smets, P., 1990. Constructing the Pignistic Probability Function in a context587

of uncertainty. Uncertainy in Artificial Intelligence 5, 29-39.588

Smets, P., 1993. Belief functions: The disjunctive rule of combination and589

the Generalized Bayesian theorem. International Journal of Approximate590

Reasoning 9(1), 1-35.591

Smets, P., 2007. Analyzing the combination of conflicting belief functions.592

Information Fusion 8(4), 387-412.593

Smets, P., Kennes, R., 1994. The Transferable Belief Model. Artificial Intel-594

ligence 66, 191-243.595

Smets, P., Ristic, B., 2007. Kalman filter and joint tracking and classification596

based on belief functions in the TBM framework. Information Fusion, Spe-597

cial Issue on the Seventh International Conference on Information Fusion,598

Part II, 8(1), pp. 16-27.599

TRACKSS project, 2008, www.trackss.net600

Yager, R.R., 1987. On the Dempster-Shafer framework and new combination601

rules. Information Sciences 41, 93-137.602

28



List of Figures603

1 An example of the two views with the underlined regions of604

interest on the same crosswalk. . . . . . . . . . . . . . . . . . 31605

2 System architecture with a primary sensor and an optional606

secondary sensor. . . . . . . . . . . . . . . . . . . . . . . . . . 32607

3 An example of sensor measurements on a 4-ROI crosswalk; the608

time scale is in seconds. . . . . . . . . . . . . . . . . . . . . . 33609

4 Intra-sensor data fusion process. . . . . . . . . . . . . . . . . . 34610

5 Data fusion processes: the mono-sensor and the multi-sensor611

cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35612

6 Conversion of an Occupancy State sequence into Fuzzy Oc-613

cupancy Duration states where R: Recently, L: Lengthily, E:614

Empty and O: Occupied. . . . . . . . . . . . . . . . . . . . . . 36615

7 Bayesian inference of local occupancy souces based on FOD616

states of pairs of adjacent ROI, where R: Recently, L: Lengthily,617

E: Empty and O: Occupied. . . . . . . . . . . . . . . . . . . . 37618

8 Illustration of the global pattern recognition process based on619

temporal inferences in the 3 local occupancy source nodes.620

The inner nodes (only one when n = 4) are linked to ROI on621

the pavement. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38622

9 An example of sensor measurement and the results of the data623

fusion process; the time scale is in seconds. . . . . . . . . . . . 39624

29



10 Pignistic decisions on occupancy state on the 4-ROI crosswalk625

- the state occupied is represented by st,k = 1 and the state626

empty by st,k = 0 - (graphs 1 to 4), local and global pattern627

recognition results (graphs 5 to 6), and real events (graph 7). . 40628

11 Cumulative distribution of time percentage of PCE detection. 41629

12 Distribution of errors between real PCEs and PCE decisions630

for the configuration F12: errors on the beginning time (left)631

and end time (right). . . . . . . . . . . . . . . . . . . . . . . . 42632

13 Distribution of delays of PCE decisions according to the real633

PCEs for the configuration F12. . . . . . . . . . . . . . . . . . 43634

30



(a) Primary sensor: horizontal view (b) Secondary sensor: lateral view

Figure 1: An example of the two views with the underlined regions of interest on the same
crosswalk.
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Figure 2: System architecture with a primary sensor and an optional secondary sensor.
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Figure 7: Bayesian inference of local occupancy souces based on FOD states of pairs of
adjacent ROI, where R: Recently, L: Lengthily, E: Empty and O: Occupied.
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Table 1: Data fusion processes used according to the configurations

Test

configuration

Measurement

used

Intra-sensor

fusion

Inter-sensor

fusion

S1 r1
t,k - -

S2 r2
t,k - -

H1 r1
t,k X -

H2 r2
t,k X -

G12 r1
t,k; r2

t,k - X

F12 r1
t,k; r

2
t,k X X
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Table 2: PCE detection results according to test configurations (with the number of
examples)

Test configuration S1 S2 H1 H2 G12 F12 #
PCE detection rate 81.6% 48.3% 81.6% 52.9% 88.5% 87.4% 87
PCE false alarm rate 38.4% 32.4% 28.4% 33% 34.7% 21.6% [61, 125]
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Table 3: PCE detection rate obtained according to type of crossing and test configuration
(with the number of examples)

Test configuration S1 S2 H1 H2 G12 F12 #
PCE detection rate on
single pedestrian

76.7% 33.3% 78.3% 36.7% 86.7% 86.7% 60

PCE detection rate on
pedestrian groups

92.6% 81.5% 88.9% 88.9% 92.6% 88.9% 27

PCE detection rate on
isolated crossings

85.4% 50.0% 87.5% 54.2% 93.8% 93.8% 48

PCE detection rate on
non-isolated crossings

76.5% 47.1% 73.5% 52.9% 82.4% 76.5% 34
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