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Abstract

This research deals with a real-world planning problem in railway infrastructure
operations. It is part of the RECIFE project, which seeks to develop a decision
support software to help evaluate the capacity of a rail junction or station. To this
end, the project is working on a timetable optimization model, as well as timetable
evaluation modules. This paper presents a module for evaluating timetable stability,
which uses an original method based on delay propagation and using shortest path
problem resolution. A didactic example and a complete case study applying this
method to the Pierrefitte-Gonesse junction are also presented.

Key words: Railway infrastructure capacity, Timetable stability, Shortest path,
Multi-objective optimization

1 Introduction

This paper is an extended version of a previous article (Delorme et al., 2006).
It focuses on railway infrastructure operations planning at the level of a rail
junction or station (also called a node). In order to implement a rail transport
supply strategy, tools able to identify the limits of an existing or future net-
work, with one or more possible supply configurations, are needed. Such tools
allow a decision-maker to evaluate the network limits, and must facilitate the
detailed investigation of each infrastructure variant to enable its benefits to
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be assessed. This kind of careful analysis is crucial given the extremely high
costs and the long-term implications of system modifications. It is especially
important in certain complex junctions or stations where bottlenecks develop
due to increasing traffic.

Usually, the capacity of a rail system component is assessed by measuring the
maximum number of trains that can be operated on it within a certain unit
of time. Analytical models can be used to measure the capacity C of railway
lines in a given direction. This capacity can be expressed theoretically as:

C =
u

h
(1)

where h is the minimum headway time between two successive trains and u is
the unit of time. The minimum headway time depends on the signaling system
installed on the line being evaluated. More accurate analytical expressions can
be used to include more rail system features (U.I.C., 1978). However, analytical
models alone are not sufficient for measuring the junction or station capacity
because the capacity of these nodes is not simply the sum of the capacity of
the converging lines. In Florio and Mussone (1996), an analytical method is
proposed for junctions and stations, but the authors concluded on the need
of search tools to find good or optimal solutions. For this reason, junction
capacity is determined by solving an optimization problem called the “Railway
Infrastructure Saturation Problem” (RISP) (see Delorme et al., 2001). The
RISP of a junction can be stated as follows:

Given the layout of a junction and a set of trains T , how many trains of T
can be routed through the junction within a certain unit of time, such that
all safety constraints are satisfied and all practical operations conditions are
respected?

As stated in U.I.C. (2004), the rail capacity is actually a multidimensional
concept (see figure 1). So, although defining a saturated timetable is a large
part of capacity evaluation, other elements often have to be considered, such
as the feasibility of a given combination of trains. In addition to the number
of trains, other objectives that must be considered include:

(1) the average speed of trains, which is directly linked with the stopping
distance and thus may reduce the number of trains considerably,

(2) the uniformity of the train characteristics (e.g. type, speed), since a mixed
traffic will limit the number of trains that can be scheduled, and

(3) the stability of the timetable which is the timetable’s ability to absorb
delays.
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Fig. 1. Balancing the multiple dimensions of rail capacity

The project RECIFE 1 was created to integrate theorectical research into a
complete decision support software, which provides other functionalities in
addition to the resolution of the saturation problem. An optimization model
and several resolution algorithms, proposed to solve this capacity problem (De-
lorme, 2003), have already been integrated into the decision support software
proposed by the RECIFE project. However, this software also include several
analysis and visualization modules. The main functionalities provided in ad-
dition to the RISP problem resolution module are track layout visulization
module, a Gantt diagram display module, and a timetable stability evaluation
module. The software also includes a track layout editor to allow infrastruc-
ture modifications. These four modules will help decision-makers to evaluate
the stability of the generated timetables and to determine the critical elements
that must be modified to improve capacity and stability. Spatial and temporal
aspects can be analyzed via a train run animation to the track layout (see fig-
ure 2), and various display parameters (e.g., zoom, marking elements, slowing
down/speeding up) can be used to experiment freely with possible solutions.
The Gantt diagram display module (see figure 3), which permits to identify
the sections of a route with the heaviest traffic and shows the impact of the sig-
nalling system, also provides details about how the sequence of detection zones
is used. With the graphics editor (see figure 4), railway infrastructure elements
can be created and located along the track layout. The principal components
include the track circuits, the points, the track crossings, the platforms, the
maximum speed gauges and the signals that mark the limits between blocks.
After identifying critical sections, the decision-makers can use this editor to
define new infrastructure variants to evaluate.

1 The project RECIFE is a collaborative effort involving the French National
Institute for Transport and Safety Research (INRETS), the École des Mines of
Saint-Etienne, the University of Nantes and the French National Railway Company
(SNCF), and up until the end of 2004, the University of Valenciennes.
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Fig. 2. Track layout timetable animation in RECIFE

Fig. 3. Gantt chart timetable visualization in RECIFE

Fig. 4. Infrastructure layout editor in RECIFE

4



The RECIFE decision support software described above is now fully opera-
tional and has been implemented at the Pierrefitte-Gonesse junction and the
Lille-Flandres station in order to validate the principles and the proposed al-
gorithms in real railway environments. In the future, this software could be
embedded into a larger railway management system.

This paper describes the original method proposed to evaluate the stability
of the generated timetables, dealing with the same variables defined in the
optimization model under the same assumptions. This evaluation method, in-
spired by the know-how and the practical experience of railway managers,
uses a model that propagates potential delays, which are computed by solving
several shortest path problems. The objective is to determine the overall delay
that results from an initial delay of any single train, and the direct or indirect
effect of this delay on the other trains in the timetable.

The paper is organised as follows. The next section introduces the optimization
model. Section 3 describes the stability evaluation model, and sections 4 and
5, respectively, present a didactic example and a case study of this model used
in a real rail infrastructure situation. Section 6 offers our conclusions based
on a discussion of the issues raised earlier in the article.

2 The railway infrastructure operation model

This section briefly describes the optimization model used by the RECIFE
project to assess rail infrastructure capacity. The complete version of this
model was proposed by Delorme (2003). Many articles exist in the literature
about the optimization of railway problems (see Bussieck et al., 1997; Cordeau
et al., 1998), and various models have been proposed to solve many routing
and scheduling problems for railways. However, few studies or softwares deal
with analyzing infrastructure capacity. To date, only three studies have been
published in this area, and they focus mainly on the capacity of global networks
rather than on the capacity of a junction or a station:

• the project DONS (Design Of Network Schedules), initialy proposed by
van den Berg and Odijk (1994), was developed by the Nederlandse Spoor-
wegen. The DONS subproject, CADANS (Lindner, 2000), deals with the
global network, while the subproject STATIONS (Kroon et al., 1997; Zwan-
eveld, 1997; Zwaneveld et al., 1996, 2001) focuses on the station level.

• The Swiss project CAPRES, based on the research of Hachemane (1997),
resulted in a commercial software (Curchod and Lucchini, 2001).

• The French project, DEMIURGE, is currently under development by the
SNCF (Labouisse and Djellab, 2001).
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Like these three projects, the model presented in this paper uses a timetable
saturation approach to evaluate capacity. A real timetable is produced using
a construction method which builds a timetable that maximizes the num-
ber of train runs. This model is based on a list of trains, represented by bi-
nary variables, whose possible routes and arrival times have been pre-defined.
Since the target is saturation at the node level, only the conflicts occurring
within the studied area are taken into account. This approach makes sense
because only the trains and times that are compatible with both the traffic
demands and the extra-node requirements are relevant, which permits cer-
tain extra-node factors to be taken into account. The model seeks to optimize
the timetable’s feasability and saturation objectives, as well as the objective
representing decision-maker preferences. The model’s constraints formulation
can cover a wide range of situations: several trains stopping at one platform,
connecting trains, train coupling or uncoupling, and cyclic timetables, for ex-
ample. Based on an incompatibility graph of the train-route assignments, the
model is structured as a multi-objective combinatorial optimization set pack-
ing problem (SPP), a well known NP-hard problem. The highly detailed model
allows practicable timetables to be generated for the infrastructures studied.

The following notations are used in the model:

T : the set of trains.

Types: the set of different types of trains (e.g., passenger and freight).

TFeas: the subset of trains considered for the feasibility objective (TFeas ⊆ T ).

TSat: the subset of trains considered for the saturation objectives. (TSat =
T \ TFeas); this subset can be divided into |Types| subsets T q

Sat in order to
study the uniformity dimension of rail capacity.

Rt: the set of possible routes for a train t ∈ T .

∆t: the set of possible arrival times for a train t ∈ T .

pt,r,δ: the pre-defined preference of decision-makers for the train t ∈ T and its
possible combination of route and arrival date (r, δ), r ∈ Rt, δ ∈ ∆t.

Inc: the set of all the incompatibilities between all the trains for all the possible
combinations of routes and arrival dates; two incompatible trains selected in
a timetable would produce a conflict and thus generate a delay.

Using binary decision variables xt,r,δ with a value of 1 if the train t is routed
on the route r with an arrival date δ, and 0 if otherwise, the problem can be
defined by the lexicographic model (2). The first objective (zFeas), correspond-
ing to a feasibility problem, has top priority, followed by the other objectives
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Sat, zPref )

sc zFeas =
∑

t∈TFeas,r∈Rt,δ∈∆t

xt,r,δ

zq
Sat =

∑

t∈T
q

Sat
,r∈Rt,δ∈∆t

xt,r,δ ,∀q ∈ Types

zPref =
∑
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pt,r,δxt,r,δ

∑

r∈Rt,δ∈∆t

xt,r,δ ≤ 1 ,∀t ∈ T

xt,r,δ + xt′,r′,δ′ ≤ 1 ,∀t, t′ ∈ T 2

,∀r, r′ ∈ Rt × Rt′

,∀δ, δ′ ∈ ∆t × ∆t′

, ((t, r, δ), (t′, r′, δ′)) ∈ Inc

xt,r,δ ∈ {0, 1} ,∀t ∈ T,∀r ∈ Rt, δ ∈ ∆t













































































(2)

(zq
Sat, zPref ) that all have equal priority, which leads to a multi-objective prob-

lem. The first constraint ensures that at most one route and one arrival date
is chosen for each train. The second constraint prevents incompatible trains
from being selected for the timetable.

3 The stability evaluation model

This section describes the approach used to analyze the stability of the timetable(s)
obtained with the optimization model. Because several timetables with the
same number of trains can be generated, stability evaluation can be used to
distinguish between them.

Several methods have already been proposed to complete such an analysis,
mainly for cyclic timetables. Many of these methods are based on Petri nets
and Max-plus algebra (see Goverde, 2005, 2006, for recent work) and consider
three types of stability evaluation:

(1) the time needed for the defined cyclic timetable to recover when a delay
occurs,

(2) the permissible time margins for the different trains before they will delay
any other trains, and

(3) the delay propagation statistics for various initial delay scenarios.

The first two types of evaluations are not appropriate for the problem under
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consideration, the first because timetables may be non-cyclic, and the second
because time margins in saturated timetables are nearly null. On the other
hand, delay propagation statistics can be provided by other methods, such as
simulation (e.g. see Carey and Carville, 2000).

In addition to the above works on stability evaluation in existing timetables,
de Kort et al. (2003) have proposed including stability as part of a probabilis-
tic capacity evaluation model: this model is designed to process the maximum
number of trains from unspecific timetables, while respecting a predefined
stability threshold. Also, Vromans (2005) has recently considered stability op-
timization at the network level using a stochastic optimization model - which
is, in fact, a large linear programming model - to optimize the average prop-
agated delay of a cyclic timetable for a given set of disturbances. Finally,
Engelhardt-Funke and Kolonko (2004) have presented a biobjective genetic
algorithm, which achieves a compromise between investment cost and passen-
ger waiting time by considering the propagation of random delays. However,
this algorithm works only at the network level and does not take safety dis-
tances or capacity restrictions into account.

In this paper, we focus on stability evaluation in timetables based on delay
propagation. As stated in Goverde (2005), two types of delay can be distin-
guished in railways. First, delays can be caused by a disruption within the
process (e.g., time fluctuations due to technical or environmental conditions).
Such delays, called primary delays or initial delays, do not depend on the
timetable. Second, other delays can be caused by these primary delay due to
train interactions (e.g., shared platforms or track sections, passenger connec-
tions, train coupling). Such delays, called secondary delays or knock-on delays,
can sometimes be avoided, or at least limited, by certain timetable provisions.

Our stability model is based on calculating the secondary delays caused by
a primary delay of one of the trains in the timetable. We assume that these
secondary delays can be computed using the same route and scheduling se-
lected for each train; only the arrival time can be updated to avoid conflicts.
This assumption is justified by the practical difficulty of re-optimizing the
timetable in real-time, but only makes sense with a short primary delay that
is not expected to exceed the time needed by a train to go through the node.
The evaluation corresponds then to the sum of all the secondary delays gener-
ated by a single primary delay, for each train in the timetable. Such stability
evaluation has already been used at the SNCF, but computed by simulation
rather than by our method. Since the result of such a stability evaluation is
highly dependant on the value retained for the primary delay, several values
should be considered making the stability evaluation itself a multi-objective
problem. Figure 5 shows how this stability evaluation has been integrated into
RECIFE, highlighting the strong links to the optimization model.
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Fig. 5. Integration of the stability evaluation within RECIFE

The following notations are used to describe our stability evaluation method:

X∗: the set of trains in the timetable to be evaluated (i.e., the variables selected
in the corresponding saturation problem solution):

X∗ = {(t, r, δ), t ∈ T, r ∈ Rt, δ ∈ ∆t, xt,r,δ = 1}

primaryDelay: the value considered for the primary delay, applied successively
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to each train x ∈ X∗.

Pd: the set of potential direct conflicts between any couple of trains x ∈ X∗:

Pd = {((t, r, δ), (t′, r′, δ′)) ∈ X∗2, t 6= t′,

∃∆ > 0, ((t, r, δ + ∆), (t′, r′, δ′)) ∈ Inc}

wd : Pd → IN : the direct time interval between the two trains (i.e., the largest
possible delay value for the first train before generating a direct conflict with
the second train).

wd(e) = max (d,∀∆ ∈ {1, . . . , d}, ((t, r, δ + ∆), (t′, r′, δ′)) /∈ Inc),

∀e = ((t, r, δ), (t′, r′, δ′)) ∈ Pd

The whole set of secondary delays generated by a primary delay of any train in
the timetable can be computed with the oriented and valued graph G(X∗, Pd, wd).
On this graph, each node represents one train in the timetable. Each couple of
nodes is linked by an oriented edge when a delay associated to the first node
can delay the second, the minimal value of such a delay corresponding to the
value of the edge (the function wd). Once such a graph has been generated for
the whole set of trains T , the subgraph corresponding to a particular timetable
is easily obtained.

However, a train can be delayed either by a direct or indirect conflict, with
the secondary delays of some trains generating other secondary delays in a
snowball effect. Thus, the real time interval available between two trains, rep-
resented by two nodes x1 and x2 on the graph, corresponds to the maximal
possible delay for train x1 that will not generate, directly or indirectly, a delay
for train x2. The real time interval between each couple of trains can be ob-
tained by computing the shortest path between the two corresponding nodes
(which can be easily done in polynomial time) and represented by a graph
G(X∗, Pr, wr) where:

Pr: couples of train with a path in G(X∗, Pd, wd).

wr : Pr → IN : the shortest path between each couple of nodes in G(X∗, Pd, wd).

Once this time interval is known, the secondary delay for train x2 generated
by any primary delay of train x1 on the can be computed. Indeed, the graph
G(X∗, Pr, wr) depends only on the timetable and can be computed only once
whatever the number of primary delay values that might be considered. The
stability evaluation for the set primaryDelaySet containing the primary delay
values considered can be deduced from all these secondary delays, as follows:
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zStab(primaryDelay) =
∑

x1∈X∗

(
∑

x2∈X∗\{x1}

max (0, primaryDelay − wr(x1, x2))),

∀primaryDelay ∈ primaryDelaySet

This approach can be compared to the one proposed recently by Goverde
(2006), which is based on critical path searches in the timed event graph
associated with the max-plus model considered.

As indicated above, this is a multi-objective evaluation. The main definitions
considered are introduced below. Let y1 and y2 be two timetables. The stability
evaluation for all primary delays k ∈ PrimaryDelaySet considered is noted
zk

Stab(y1). y1 dominates y2 in the sense of Pareto dominance if and only if
zk

Stab(y1) ≤ zk
Stab(y2),∀k ∈ PrimaryDelaySet with zk

Stab(y1) < zk
Stab(y2) for

some k. Considering the set Y containing all the feasible timetables with the
same number of trains, a timetable is considered to be efficient if there is no
y′ ∈ Y such that y′ dominates y. This means that no timetable is at least as
good as y for all primary delays, and none is strictly better for at least one
primary delay. The set of efficient solutions YE ⊆ Y represents a frontier, or
trade-off surface. However, since the whole Y set is not evaluated, but only
a subset Y ′ ⊆ Y generated from the optimization model, the efficient set
YE cannot be determined. Instead, the set of potentially efficient timetables
YPE ⊆ Y ′ is considered, such that no timetable in YPE is dominated by a
timetable from Y ′. Usually, decision-makers can limit their investigation to
the potentially efficient timetables and look for the best compromise among
them.

In addition to the quantitative evaluation provided by these sums, the graph
G(X∗, Pr, wr) also permits a qualitative evaluation of a particular timetable,
thus allowing the decision-makers to determine which are the critical trains
and/or the blocking ressources.

It should also be noted that, though this stability evaluation method was de-
veloped as part of the RECIFE project and thus was designed to deal with
the same variables and assumptions as the RECIFE optimization model, the
method can be used independently to evaluate the stability of timetables pro-
vided by other approaches. Thus, this method permits the stability evaluation
of any real timetable, saturated or not.

4 An example of stability evaluation

This section presents a didactic example of the stability evaluation method
presented above. The example is based on the Pierrefitte-Gonesse node (Figure
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6), located north of Paris. Three main kinds of trains run through this node
in both directions:

• TGV (High speed trains) between Paris and the High Speed Line (HSL),
• Inter-City trains between Paris and Chantilly, and
• Freight trains between Chantilly and the Grande Ceinture which cuts across

the TGV routes.

Paris Chantilly

HSL

Grande ceinture

Fig. 6. Railway track map of the Pierrefitte-Gonesse node

Consider an instance problem with a set T composed of six trains: two TGV,
two Inter-City trains, and two Freight trains. Each train has only one possible
arrival date and the interval between the first and the last arrival date is equal
to 450 seconds. The set Inc has been computed using the data provided by
the railway simulator SISYFE (Fontaine and Gauyacq, 2001).

The resulting optimization model for this problem is a set packing problem
with 36 variables. The heuristic proposed by Delorme et al. (2004) was chosen
to solve this SPP, first, because it generates several solutions with the same
objective value, which is necessary to compare their stability, and, second,
because this is one of the best published heuristics for the SPP according to
the recent paper of Alidaee et al. (2007).

This heuristic, based on the GRASP metaheuristic proposed by Féo and Re-
sende (1989) (see Resende and Ribeiro, 2002, for a recent overview), is derived
from the classic GRASP scheme (i.e., a multistart greedy algorithm coupled
with a local search) enhanced by three advanced components: automatic pa-
rameters tuning (reactive GRASP), a learning process and a path-relinking
strategy.

The best solutions obtained with this heuristic contain five trains, which ac-
tually corresponds to the optimal solution for this problem, no solution with
six trains being feasible due to the possible arrival time of each train (either
an inter-city train or a freight train is excluded from the timetable generated).
Such exclusions frequently occur when some trains belong to a saturation list.
Fifteen different timetables with five trains were generated by the heuristic,
and the stability evaluation method can help decision-makers choose between
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the different timetables.

1 23

4

5

216 s

135 s

385 s

237 s

90 s

115 s71 s

Fig. 7. Example of a graph G(X∗, Pd, wd)

To compute the stability evaluation of the timetables, the graph G(X∗, Pd, wd)
associated with each one must be generated. Figure 7 represents the graph
obtained for one of the solutions. The five nodes correspond to the five trains
routed, and the edges to the maximal delay before a conflict will occur. As
the figure shows, a delay of train 1 longer than 216 seconds would delay train
2, but any potential delay of train 4 would not delay train 3 since there is no
edge from node 4 to 3.

Once the graphs for each timetable have been generated, the time interval can
be deduced by computing the shortest path between all couples of nodes in
each graph. Figure 8 gives the shortest paths computed for the graph interval
in the figure 7: the new value for the edge (1, 4) (resp. (1, 5)) is due to the
delay propagated via the train 2 (resp. 3).

1 23

4

5

216 s

135 s

306 s

206 s

90 s

115 s71 s

Fig. 8. Example of a graph G(X∗, Pr, wr) computed using shortest paths

At this point the different stability evaluations can be computed. Each evalu-
ation is related to the value of a train’s primary delay. Figure 9 presents the
secondary delays generated by a primary delay of 180 seconds for the example
described above. The edge from the node 1 to node 3 indicates that a primary
delay of 180 seconds for train 1 would result in a delay of 45 seconds for train
3. Thus, the stability evaluation for this timetable given a primary delay of
180 seconds is equal to the sum of the secondary delays (i.e., 309 seconds).
Moreover, as indicated in section 3, these secondary delays can be analyzed
qualitatively: for a primary delay of 180 seconds, train 2 generates the most
delays for the other trains (i.e., 155 seconds or 50% of the total); train 5 is the
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most delayed (i.e., 174 seconds or 56%).

1 23

4

5

45 s

90 s

65 s109 s

Fig. 9. Secondary delays generated for the example by a primary delay of 180 s

The stability evaluation for the fifteen timetables was computed for a primary
delay of 180 seconds and of 300 seconds. The results are reported in Figure
10. In this figure, each timetable is represented by a point with an abscissa
equal to its stability evaluation for a primary delay of 180 seconds, and an
ordinate equal to its stability evaluation for a primary delay of 300 seconds
(the example illustrated in Figures 7-9 corresponds to solution 15). Solution
10 thus clearly seems to be the most stable timetable since it is the better on
both evaluations, making it the only potentially efficient timetable. However,
as is illustrated in section 5, more than one potentially efficient timetable is
usually obtained.
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Fig. 10. Stability evaluation of the solutions to the example for the two primary
delays
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5 Case study

This section presents a case study of our stability evaluation. The main charac-
teristics of the six instances of the capacity problem considered are presented
in table 1. They correspond to six real sets of trains to be routed through
the Pierrefitte-Gonesse junction (125 ≤ |T | ≤ 200). Again, the set Inc was
computed using data provided by the SISYFE simulator, and the resulting
optimization models were solved using the same GRASP algorithm as in sec-
tion 4. Obviously, the optimization model could also be solved with another
heuristic or an exact algorithm, or the timetables could even be produced with
another method. In order to keep a graphic display in the objective space of
the stability evaluations, two primary delays (60s and 300s) were considered,
but similar results were obtained with more than two primary delays.

Instance |T | SPP Variables |X∗| Number of
timetables with
|X∗| trains

Number of po-
tentially efficient
timetables

1 150 2,400 83 38 1

2 125 2,683 87 36 2

3 200 2,880 87 353 4

4 157 3,210 86 500 1

5 150 2,160 86 6 2

6 130 2,503 102 30 3

Table 1
Numerical characteristics of the instances

Depending on the instance considered, the number of different timetables with
the same number of trains (i.e., the maximum number of trains found by
GRASP) can be quite different. This can mean a large number of timetables
to evaluate (e.g., instances 3 and 4) and thus a large number of shortest path
problems to solve. However, the graphs are small (around 100 nodes), and very
efficient algorithms for solving them exist. In fact, on an Pentium M with 1.8
GHz, less than two minutes was necessary to compute the whole set of stability
evaluations presented in this section. This CPU time is fully compatible with
an interactive use for strategic studies. Moreover, despite the large number of
timetables evaluated, the CPU time necessary for the stability evaluation is
negligible compared to the time needed for the optimization phase (i.e., more
than 20 minutes for each instance).

For all the instances considered, there is a very low number of potentially
efficient timetables, so decision-makers can really focus on each of them. All
the stability evaluations for each instance are displayed in Figure 11. In this
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figure, each timetable is represented by a point with an abscissa equal to its
stability evaluation for a primary delay of 60 seconds, and an ordinate equal
to its stability evaluation for a primary delay of 300 seconds. Please note that
the number of points can be lower than the number of timetables since several
timetables can have the same value for both stability evaluations.
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Fig. 11. Stability evaluation of the solutions for two primary delays

The stability values involved can be quite large since the timetables evaluated
were saturated: for the instance 6, with 102 trains on the timetables, the
largest value obtained is 702,838s, which means that the average value of the
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total secondary delays, generated by a primary delay of 300s for a single train,
is 6,890s.

Instance 3 presents interesting results since, among the very large number of
timetables evaluated, the potentially efficients timetables correspond to two
quite different trade-offs for the impact of the two primary delays. For all the
instances, including those with a very large number of timetables obtained
with the same number of trains, the dominance relationship used as a filter
appears strong enough to drastically reduce the number of solutions that must
be examined.

Nevertheless, looking at the stability evaluation for each primary delay inde-
pendently, it is interesting to note that the stability evaluation gap between
the best and worst timetables can be very large, up to 32.9% (the mean and
maximal gap are reported in table 2 for each instance and for each primary
delay). Only instance 1 has a small gap between the best and the mean value
(less than 1%), and this is true for both stability evaluations. However, since
there is only one potentially efficient timetable for this instance, the gap ob-
served for the two stability evaluations is obtained by the same timetable.

Thus, it appears that choosing one of the potentially efficient timetables in-
stead of a random one can yield significant gains in terms of stability. These
results are very promising since the gains were obtained on saturated instances
which yield timetable solutions whose stability is known to be difficult to im-
prove. In addition, the results were obtained by just evaluating the available
timetables without optimizing for stability.

Instance Stability evaluation
gap for a primary
delay of 60s

Stability evaluation
gap for a primary
delay of 300s

Mean Maximal Mean Maximal

1 0.52% 4.44% 0.95% 3.32%

2 17.48% 32.90% 3.20% 5.75%

3 5.94% 11.12% 4.68% 7.92%

4 2.02% 4.29% 3.21% 9.17%

5 2.32% 6.13% 5.38% 11.48%

6 7.55% 17.96% 1.05% 2.28%

Table 2
Stability evaluation gap
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6 Conclusion

In this paper, a new model for evaluating the stability of railway timetables was
presented. Based on a delay propagation method, this evaluation is obtained
by computing shortest path on a graph. The evaluation also matches the
indicator used daily by our railway partner. To the best of our knowledge,
this is the first multi-objective stability evaluation method.

The case study presented demonstrated the method’s potential for producing
significant gain in terms of stability, even without optimizing this dimension.
The results obtained highlight the importance of a multi-objective stability
evaluation capable of taking several primary delays into account.

Such a stability analysis can thus facilitate the choice between several timeta-
bles in a decision support software designed to assess the capacity of a junction
or a station. For a particular timetable, studying the distribution of the sec-
ondary delays among the trains on a timetable can help decision-makers to
determine the critical trains and/or the blocking ressources. Obviously, other
delay propagation indicators could be generated with this model.

Future research will focus on developing a model for optimizing stability in-
stead of just evaluating it, or on integrating stability evaluation into a multi-
objective heuristic scheme as is done in Engelhardt-Funke and Kolonko (2004).
In addition to improving the timetable stability, this integration would also
allow the trade-off frontier between stability and the number of trains to be
studied.
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