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ABSTRACT 

The need for traffic noise prediction models that take traffic dynamics into account has 

been recently shown for urban areas. Such models couple a dynamic representation of 

traffic with noise emission laws. The contribution of the paper is to test different traffic and 

noise source representations for LAeq and statistical levels estimation. Tests on four scenarios 

that reflect urban traffic conditions are carried on. They show that an individualized 

representation of vehicles with a macroscopic behavior rule is sufficient for noise 

descriptors estimation. Noise sources have to be aggregated on cells to reduce the 

calculation time of noise emission propagation. To this end a grid of line source 

representation appears to be more relevant than a grid of point source representation. 

Furthermore, large cells do not affect substantially the noise descriptors estimation. 
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INTRODUCTION 

Traffic noise prediction models are currently used to predict average noise descriptors 

(e.g. Lden), as required for example in noise mapping or in legislation [1]. Those models 

usually consider traffic flow as a steady noise source, whose level depends on flow rate and 

mean speed. Unfortunately, this static representation does not take urban traffic dynamics 

into account. An accurate description of average noise levels is bound to dynamic 

representation of traffic flows [2, 3]. 

To overcome this deficiency, recent works have coupled a dynamic traffic model with 

noise emission laws [4-8]. Traffic models are based on either a macroscopic representation 

(flow is seen as a fluid) [5], or a microscopic one (considering each vehicle singly) [6-8]. 

Outputs of traffic models (speed, acceleration, gear ratio) are calculated every time step 

(usually about 1s). They feed noise emission laws [9, 10] to give noise emitted by each 

vehicle on the network. A sound propagation calculation model is carried out to give noise 

level at a reception point every time step [11-13]. Acoustic descriptors are then calculated 

from those levels. Thus, acoustic descriptors reflecting traffic urban noise variation in time 

can be calculated [6, 14]. This offers a substantial breakthrough since [15, 16] have shown 

that noise dynamics dimension is important when evaluating physically and perceptively 

urban soundscapes.  

The contribution of this paper is: (i) to test the influence of traffic modeling hypothesis 

and representation on noise descriptors, (ii) to determine which noise source representation 

takes profit of traffic dynamics and is computational efficient.  
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The study is based on four scenarios representative of the urban traffic conditions. For 

comparison, we assume the same noise emission law for each vehicle [17]. Only geometric 

attenuation will be considered when calculating noise propagation. 

A general review on traffic modeling and noise source representation is given in 

section 2. Then, the influence of traffic modeling (respectively of noise source 

representation) on acoustic descriptors is assessed in section 3 (respectively in section 4). 

Results are discussed in section 5. 

 

BACKGROUND 

Traffic Modeling 

The aim of traffic models is to predict the evolution of the key variables of traffic, 

according to boundary conditions (state of the network at time t=0, disturbances, number of 

road users…). Those key variables can be the densities, the vehicles speed and acceleration, 

etc. Different kinds of models can be used according to the variables one want to predict 

and the level of detail desired. The main traffic models are microscopic and macroscopic 

ones [18,19].  

Microscopic car-following models (mCF models) use vehicles individual representation 

and aim at reproducing each vehicle behavior. Outputs of mCF models are position, speed 

and acceleration of each vehicle at each time step.  
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Macroscopic conservation law models (MCL models) consider on the contrary traffic as 

a continuum stream obeying global rules. Outputs are density, flow rate and flow speed 

evolution on the network.  

Some MCL models can also be formulated under an equivalent car-following rule 

(MCF models). Vehicles are then individually represented while obeying global rules. 

Outputs of MCF models are position and speed of each vehicle at each time step. 

These three classes are considered in this paper. Table 1 summarizes their 

characteristics. 

First order macroscopic conservation law model (MCL model) 

In Macroscopic models, interactions between vehicles are globally studied. Traffic is 

considered as a homogenous and continuous stream, similarly to fluid dynamics. Macroscopic 

models are classified into first order and second order models. Only first order MCL models 

are considered in this study as second order models do not improve urban traffic 

representation (They are indeed more dedicated to highway traffic representation) [20]. In 

MCL models, traffic is characterized by three variables: flow ( ),Q x t , density ( ),K x t , and 

flow speed ( ),V x t  [21, 22]. The three variables are linked by the following system:   

- The conservation equation : ( ) ( ), ,
0

Q x t K x t
x t

∂ ∂
+ =

∂ ∂
 ;  

- The flow definition equation : ( ) ( ) ( ), , ,Q x t K x t V x t=  ; 
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- An equilibrium relationship eQ , called fundamental diagram: ( ) ( )( ), ,eQ x t Q K x t= . 

The fundamental diagram represents all the equilibrium situations that the traffic 

could encounter depending on the road configuration. It is constructed from 

observations. Two regimes can be distinguished on such a diagram: the free flow and 

the congested ones; see Figure 1. In free flow, a road can absorb more vehicles 

(density increase) without saturation (flow increase). In congestion, a road cannot 

absorb more vehicles and a density increase will increase the saturation (flow 

decrease).  A triangular diagram has been shown to be an accurate representation of 

urban traffic while being computational [23]. Such diagram is defined by three 

parameters: the maximal speed xV  reached when traffic is free, the wave speed w  at 

which a starting wave downstream of a congestion climbs back the network, and the 

maximal density maxK  reached when all vehicles are stopped in a queue (then flow 

speed is null); see Figure 1. 
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Fig 1: Fundamental diagram for a single lane. xQ =1950veh/h: maximal flow; 

maxK =200veh/km: maximal density; cK =40veh/km: critical density; w =11.8km/h: wave 

speed; xV =50.4km/h maximal speed 

 

To solve the previous system of equation, each link of the network is discretized into cells, 

whose length is x∆ (see Figure 2). Cell length should satisfy the CFL (Courant-Friedichs-

Lewy) condition xx V t∆ = ∆ , to ensure the scheme stability and to minimize numerical 

diffusion. Let’s introduce the cumulative number of vehicles ( )txN ,  that have crossed 

location x from time origin to time t. N is by definition an increasing function and is related 

to the flow rate and the density respectively by tQ N= ∂  and xK N= −∂ . The solution of the 

system in N can be calculated every time step at each node of the network [24, 25] thanks to 

the equation (1) . 
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Fig 2: Discretization grid 

 ( ) ( ) max

demand term
supply term

, min , , , xVN x t N x x t t N x x t t K x
w

 
  = −∆ −∆ + ∆ − ∆ + ∆  

   
 

 (1) 

where w  is the wave speed, xV the maximal speed, maxK  the maximal density. 

The N value is equal to demand term of (1) when traffic is free. When a congestion comes 

back from downstream, the N value is given by the supply term. 

The flow tQ N= ∂ , the density xK N= −∂  and the speed QV K=  are deduced afterwards 

for each cell of the network at each time step. The main quality of MCL models is that they 

offer an accurate description of traffic while being very computational since a global rule is 

used. Moreover, they are easier to calibrate than microscopic models (only the fundamental 

diagram is required). On the other hand, singularities between vehicles cannot be easily 

reproduced by such models.  
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Macroscopic car following model (MCF model)  

Generally car-following models determine speed ( )iv t  of a vehicle i, according to the relative 

spacing ( )is t  and relative speed with the vehicle immediately in front (vehicle 1i − ), which is 

called the leader vehicle. The relative spacing is deduced from vehicle position by 

( ) ( ) ( )1i i is t x t x t−= − , where ( )ix t  is the position of vehicle i  at time t . The specificity of 

MCF model is that ( )iv t  only depends on relative spacing and is supposed to always 

correspond to an equilibrium state following the fundamental diagram [26, 27]. Thus MCF 

model offers an individualized representation of vehicles that still obey to a global mean 

behavior rule. Numerical developments lead to equation (2) to calculate the position of 

vehicle i at time t:  

 ( ) ( ) ( )1

demand term supply term

min ,i i x ix t x t t V t x t t w t−

 
 = − ∆ + ∆ −∆ − ∆
 
 

 (2) 

where t∆  should be equal to 
max

1
wK

(CFL condition), for ensuring the scheme stability and 

minimizing numerical diffusion. 

The position of vehicle i is equal to the demand term of (2) when traffic is free. This 

position corresponds to its previous position plus the distance run at Vx during the time step. 

When traffic is congested downstream, vehicle position cannot exceed the supply term. 

Thus outputs of the MCF model are speed and position for each vehicle on the network at 

each time step. The advantage of the MCF model is that it reproduces trajectory of each 
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vehicle while keeping the same traffic representation as MCL models. Furthermore, it is 

easy to introduce singularities between vehicles since the representation is microscopic. 

Microscopic car following model (mCF model)  

Contrary to macroscopic models, microscopic models aim at individualizing vehicle 

behavior and reproducing the driving task through the car-following rule [28, 29]. ( )iv t  is 

no longer associated to an equilibrium state but is derived from microscopic rules that bring 

into play characteristics of each vehicle. Thus individualized behaviors (nervous driving, 

slow acceleration…) can be reproduced. The characteristics of vehicle i  (desired speed, 

acceleration and spacing…) determine how its speed can adapt to his leader vehicle 

behavior. Large amount of efforts have been involved to calibrate and improve mCF models 

[19, 30]. The car-following rule used for this study is the AIMSUN microscopic one [31], 

that distinguishes two different speeds a vehicle can reach whether there is not (case a) or 

there is (case b) a leader vehicle: 

Case a) ( ) ( ) ( ) ( )
, * *2.5 1 0.025i i

i a i i
i i

v t T v t T
v t v t T T

v v
γ

 − −
= − + − + 

 
 (3) 

 

where *
i

v  is the desired speed for vehicle i ; iγ  is the maximal acceleration for vehicle i ; T is 

the reaction time: note that all the vehicles have the same reaction time. 
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Case b)

 

( ) ( ) ( ) ( )2
12 2

, 1
1

2
'

i
i b i i i i i i

i

v t T
v t T T s t T v t T Tδ δ δ λ

δ
−

−
−

 −
 = + − − − − − −      (4) 

  

where 1iλ −  is the effective length of vehicle 1i −  ; iδ  is the desired maximal deceleration for 

vehicle i ; 1'iδ −  is an estimation of vehicle 1i −  desired deceleration. The final speed for 

vehicle i during interval [t-T, t] is the minimum of those two previously defined speeds: 

 ( ) ( ) ( )( ), ,min ,i i a i bv t v t v t=  (5) 

The position of vehicle i  is then updated based on its speed:  

 ( ) ( ) ( )i i ix t x t T v t t= − + ∆  (6) 

The mCF model was calibrated in order to fit on average the fundamental diagram of 

the two previous models.  

Car-following models can account for stochasticity in traffic flows by using 

distribution functions to allocate traffic parameters for each generated vehicle [32] at the 

entries of the network. We chose a shifted exponential distribution for headways (arrival 

times between two vehicles) [33], and an exponential one for the desired speeds. Note that 

stochastic processes need several runs to cover the whole range of the possible traffic 

evolutions; hence there is an increase in the calculation times.  

Outputs of the mCF model are speed and position for each vehicle on the network at 

each time step. Their main advantage is the individualized description of vehicle behaviors. 

On the other hand, mCF models involve difficulties in calibration and high calculation costs 

because of the necessity for replications. 
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The following table summarizes the characteristics of the three traffic models from our 

study that can influence acoustic descriptor estimation: 

 

Table 1: Model characteristics 
 

Model MCL model MCF model mCF model 
Behavior rule Macroscopic Macroscopic Microscopic 

Traffic representation Macroscopic Microscopic Microscopic 
Unknown function ( )txN ,  ( )ix t  ( )ix t  

Distributed  
times of arrival no possible possible 

Distributed  
individual speeds  no no possible 

Need for replications no if distribution if distribution 
Associated acoustical 

representation aggregated aggregated or 
individual 

aggregated or 
individual 

Noise source representation 

Outputs of the traffic model are used to assess noise emissions every time step by 

mean of noise emission laws. Such laws give global or spectrum emitted noise for each 

vehicle or for an aggregated number of vehicles. Then a sound propagation calculation is 

carried out to give noise level LAeq at a reception point P every time step. Acoustic 

descriptors can then be calculated from those levels. 

Emission laws chosen for this study give power noise levels as a sum of a rolling 

noise wrL  and a propulsion noise wpL .  The rolling noise wrL  depends on speed and road 

specificities. The propulsion noise wpL  depends on speed and cruising mode: accelerating, 

cruising, or decelerating [17]; see Table 2. The cruising mode is defined by vehicle 
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acceleration deduced from differences in vehicle speed between two time steps. Note that 

we assume in this study that there is no slope on the road.  

 
Table 2: Propulsion noise Lwp for emission law used in the study 
 

V [km/h] [5-20] [20-100] Accelerating 

a>0.5m.s-2 
Lwp [dB(A] 111,3 + 24,1 log(V/90) 95,6 

V [km/h] [20-30] [30-110] Cruising 

-0.5m/s-2<a<0.5m.s-2 
Lwp [dB(A] 86,2 91,9 + 12,0 log(V/90) 

V [km/h] [5-10] [10-25] [25-80] Decelerating 

a<-0.5m.s-2 
Lwp [dB(A] 81,1 98,9 + 18,7 log(V/90) 91,6+ 5,5 log(V/90) 

 

Only a geometric attenuation is considered (propagation effects are neglected). This 

hypothesis simplifies calculations without affecting noise dynamics for receivers located 

close to the road. 

Different possibilities can be considered when aggregating emitted noise. This 

mapping influences the accuracy of the model and its computational efficiency. Four 

mappings are tested in this paper; see figure 3. 
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Fig 3: Noise source representations. (a): each vehicle forms a line source; (b): each vehicle 

forms a point source; (c): each cell forms a line source; (d): each cell forms a point source. 

 

In this section i  will refer to vehicles and j to cells, wL  will refer to power noise level of a 

vehicle, and WL will refer to power noise level of a cell, whose length is x∆ . 

Representation (a):  Vehicle i  forms a line source, whose angle ( ),i t tθ ∆  is defined by the 

positions of vehicle i  at t and at t t+ ∆ ; see figure 3a. Let’s ( )
,i twL t
∆

 be the power noise 

level of vehicle i  between t and t t+ ∆ . It is deduced from speed and acceleration of vehicle 

i  between t  and t t+ ∆ . Equivalent noise level ( )1, sAeq tL  at a reception point P is given by 

relation (7): 

 ( ) ( )
( ) ( )

( )
( )

,110 log 10 10 log 210,1,

L twi t
L t t di tsAeq x t T x ti i i

θ π

 ∆ 
= − ∑ ∆ + − 

 

 (7) 

where d is the distance between P and the road. 
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Representation (b): Vehicle i  forms a point source, taken at its position at time t; see figure 

3b. Let’s ( )
iwL t  be the power noise level of vehicle i  at t. It is deduced from speed and 

acceleration of vehicle i  at t . Equivalent noise level ( )1, sAeq tL  at a reception point P is given 

by relation (8):  

 ( )

( ) ( )
2

10log 2

10log 10 10,1

L t r tw ii

L tAeq s
i

π
  
 −      = ∑ 
 
 
 
 

 (8) 

where ( )ir t is the distance between P and the vehicle i  at time t . 

 

Representation (c): Vehicles are gathered on a grid of line sources; see figure 3c. Let’s 

( )
j

x
WL t∆  be the power noise level of cell j at t . It is deduced from power noise levels of vehicles 

on the cell.  Equivalent noise level ( ),1Aeq sL t  is given by relation(9): 

 ( ) ( )

( )

10 log 10 10,1

xL tW j
L t K tj jAeq s j

α

∆ 
 
 

= ∑ 
 
 
 

 (9) 

where ( )jK t  is the cell density at t ; jα is the angle of the cell j seen from P. 

 

Representation (d): Vehicles are gathered on a grid of point sources; see figure 3d. Let’s 

( )
j

c
WL t  be the power noise level at t  of a point jc  situated at the center of cell j . It is 
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deduced from power noise levels of vehicles on the cell. Equivalent noise level ( ),1Aeq sL t  is 

given by relation (10): 

 ( )

( )( ) ( ) ( )210log 10log 2

10log 10 10,1

cn t L t R jj W j
L tAeq s

j

π + − 
 

= ∑ 
 
 
 

 (10) 

where ( )jn t  is the number of vehicles on the cell; jR  is the distance between the center of 

cell j  and P. 

 

The choice of a noise source representation is very important when coupling with a 

propagation model. Vehicle representations (a) and (b) require a propagation calculation 

every time step, as vehicles are each time step at a different position. On the contrary, grid 

representations (c) and (d) require only one propagation calculation, as sources are at a 

fixed position: sound attenuation between every source and the reception point is stocked 

and applied every time step to the current emitted noise. Thus grid representations are more 

computational. Note that first works on dynamic traffic noise modeling have used emission 

lines or emission points representations [4, 6].  

Methodology 

In order to point out the influence of each hypothesis, traffic representation and noise 

source aggregation are singly tested. Simulations are carried out on a 700m length single 

lane road section. Four scenarios are tested to reflect urban traffic conditions: 
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- Scenario 1: no traffic signal. Flow rate Q = 900veh/h. Large spacing between 

vehicles. Low flow rate gives intensive dynamics on noise from motion of vehicles. 

-Scenario 2: no traffic signal. Flow rate Q = 1440veh/h. Small spacing between 

vehicles. High flow rate gives weak dynamics on noise from motion of vehicles. 

- Scenario 3: traffic signal (x = 350m, with a 40s green time and a 20s red time). 

Flow rate Q = 900veh/h. Queues vanish over traffic signal cycles. 

 - Scenario 4: traffic signal (x = 350m, with a 40s green time and a 20s red time). 

Flow rate Q = 1440veh/h. High flow rate prevents the queue from discharging during a 

signal cycle length (overflow rate). The queue spills back on the network. 

 

Received levels are calculated 15m from the section and at 2m height. In the following, 

other indications excepted, reception point P is located at xP = 350m. Acoustic descriptors 

are calculated over a 10 minute-period, once the traffic is well-established. Acoustic 

descriptors calculated are LAeq and statistical levels L5, L10, L50 and L90. Time step for traffic 

simulation and acoustic calculation is 1t s∆ = . 

 

INFLUENCE OF TRAFFIC REPRESENTATION 

Effects of traffic representation on noise descriptors are compared with the unbiased 

mapping of noise sources (b). Results for the four scenarios and every traffic representation 

are shown on table 2.  
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Table 2 

Averaged and statistical levels [dB(A)] simulated for every traffic model and scenario  

Vehicle generation 
Simulation results 

Case Traffic Model Speed 
Distribution? 

Headway 
Distribution? 

noise source 
representation Scenario

LAeq L5 L10 L50 L90 L10-L90

1 63,9 63,9 63,9 63,9 63,9 0,0 

2 65,9 65,9 65,9 65,9 65,9 0,0 

3 64,7 68,0 67,9 64,0 56,8 11,1 
i )  

MCL model No No 7m cell 

4 65,8 68,0 67,9 67,2 57,4 10,5 

1 63,9 65,5 65,5 63,4 62,2 3,3 

2 65,9 66,5 66,5 65,9 65,3 1,1 

3 64,8 68,4 68,2 63,8 56,2 11,9 
ii ) MCF model No No vehicle 

4 66,0 68,4 68,2 67,1 57,6 10,6 

1 63,8 66,2 66,0 63,8 58,7 7,3 

2 65,9 67,0 66,9 66,2 64,0 3,0 

3 64,7 68,3 68,1 63,7 55,9 12,1 
iii ) MCF model No Yes vehicle 

4 66,0 68,4 68,2 67,1 57,7 10,4 

1 63,8 65,8 65,6 64,2 58,8 6,8 

2 65,2 65,9 65,8 65,5 64,0 1,7 

3 64,5 68,9 68,6 63,2 55,9 12,7 
iv ) mCF model No Yes vehicle 

4 65,9 69,0 69,0 65,6 56,9 12,1 

1 62,9 65,9 65,5 62,8 57,0 8,5 

2 64,0 66,0 65,7 64,2 59,5 6,2 

3 63,9 68,7 68,3 62,0 55,4 12,9 
v ) mCF model Yes Yes vehicle 

4 65,0 68,8 68,6 64,4 56,8 11,9 

 

Influence of resolution when behavior rule is macroscopic: MCL model vs. MCF model 

MCL model and MCF model are based on the same macroscopic behavior rule (the 

fundamental diagram), and only differ on traffic representation, which is respectively 

macroscopic and microscopic. Let’s see its influence on noise descriptors estimation when 

there is no headway distribution (cases i and ii in Table 2). 

 When there is no traffic signal, MCL model coupled with 7m acoustic cells gives the 

same LAeq estimation than MCF model coupled with an individual representation of noise 



 

 

 

 18 Insert book title here 

 

 

sources. However, a small part of the dynamic linked with motion of vehicles is smoothed 

by macroscopic representation, as shown in Table 2 (with MCL, L10-L90 = 0 for scenarios 1 

and 2).  

For the scenarios with a traffic signal (scenarios 3 and 4), MCL model tends to 

underestimate high levels (0.4 dB(A) L5 undersestimation, compared to MCF estimation), 

because the aggregation on the cell smoothes peaks of noise. LAeq estimation is unbiased. 

Thus, with macroscopic behavior rule, traffic representation does not affect LAeq 

estimation but statistical descriptors estimation. Microscopic traffic representation is then 

more relevant.   

Influence of behavior rule: MCF model vs. mCF model 

MCF model and mCF model are both car-following models. They differ on behavior 

rules, which are respectively macroscopic and microscopic. Let’s see the influence of the 

behavior rule, by means of 10 runs with the same headway distributions (cases iii and iv in 

Table 2). 

 A more detailed estimation of acoustic descriptors is expected with mCF model, as it 

can take into account specific behavior of each driver. In fact, that can lead to a different 

pattern of noise every traffic light cycle, or accentuate the formation of platoons of vehicles 

formed by slowest ones. But Table 2 shows differences under 1dB(A) for both L10 and L90 

estimation for all scenarios, between mCF and MCF estimations. The difference is even 

under 0.2 dB(A) for LAeq estimation for scenarios with a traffic signal. 



 

 

Insert your chapter title on righthand pages  19 

 

 

It seems first that details pointed up by mCF model are smoothed by the aggregation of 

the acoustic descriptors calculation. Secondly, those details are not necessarily relevant: the 

dynamics of traffic outflow and its effects on noise are set by the network characteristics, 

especially when there is traffic signal (vehicle trajectories are then forced by the traffic 

signal despite their own characteristics). 

So an accurate macroscopic behavior rule seems sufficient to assess averaged and 

statistical noise levels, within hypothesis fixed in this study.  

   

Influence of distributions 

Headway distributions 

Headway distributions are used to consider variability in the traffic flows (formation of 

platoons, large headways without vehicles…). Its effects on noise estimation are tested 

through MCF model (cases ii and iii in Table 2). 

When there is no traffic signal, runs with headway distributions show more noise 

dynamics, especially when flow rate is small (L10-L90 scenario 1 estimation increased by 

4dB(A) for case iii compare to case ii). One can see that low levels are more influenced by 

distributions (L90 decreased by 3.5 dB(A) for scenario 1) than high levels (L10 increased by 

0.5 dB(A) for scenario 1). Low levels are indeed related to largest headways (i.e. headways 

between platoons of vehicles), which depend on distribution. On the contrary, high levels 

are related to smallest headways between vehicles (i.e. headways inside the platoons), 

whose are fixed by behavior rule parameters.  
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Headway distributions do not affect noise descriptors estimation when there is a traffic 

signal, as it smoothes arrivals of vehicles.  

Speed distributions 

Distributions can be performed with mCF model to individualize desired speeds. Table 

2 compares noise estimation for the same headway distribution with or without speed 

distribution (cases iv and v). One can see a slight decrease of noise levels with speed 

distribution when there is no traffic signal (for scenario 2, from case iv to case v: 1.2 dB(A) 

decrease for LAeq, no influence for L5 and L10, decrease up to 5.5 dB(A) for L90 estimation). 

This can be linked to a decrease in the flow speed, set by slowest vehicles (overtaking is not 

allowed in the model). Low levels are again more influenced by distributions, as they are 

linked to headways between platoons which are intensified by differences in speed. Note 

that this slight decrease of noise might be linked to our hypothesis: no overtaking and the 

same emission law for each vehicle. 

The decrease is less important when there is a traffic signal (e.g. -0.5 dB(A) for LAeq 

and L90 estimation from case iv to case v for scenario 3), as speed is set by the traffic signal. 

 

Headway and speed distributions influence on noise estimation are marked for low 

levels, but not for high levels, which seem to be set by the network. Note finally the slight 

decrease of noise levels when performing speed distributions.  
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Influence of replications 

As soon as stochastic processes are used (e.g. with distributions or microscopic 

behavior rule), replications are needed. Some say it fits reality, as it can take variations 

between runs into account (note that one has to know if variations between replications are 

relevant). Main defaults of replications are the difficulty to determine the number of 

replications needed [34] and computational problems.  

Influence of replications on noise estimation is tested through study of standard 

deviations between 10 runs; see Table 3. 

 

Table 3 

Standard deviations [dB(A)] from 10 replications for every scenario  

Vehicle generation Simulation results 
Case Traffic model 

Headway 
distribution? 

Speed 
distribution? 

scenario 
LAeq L5 L10 L50 L90 

1 0,2 0,3 0,2 0,3 1,4 

2 0,1 0,2 0,2 0,1 0,6 

3 0,3 0,1 0,1 0,9 0,3 
vi ) MCF model yes no 

4 0,0 0,0 0,0 0,0 0,0 

1 0,3 0,1 0,1 0,3 1,0 

2 0,1 0,3 0,3 0,1 0,4 

3 0,3 0,1 0,1 0,9 0,2 
vii ) mCF model yes no 

4 0,1 0,0 0,0 0,2 0,1 

1 0,2 0,2 0,2 0,3 0,5 

2 0,2 0,1 0,1 0,3 0,7 

3 0,2 0,1 0,2 0,5 0,1 
viii ) mCF model yes yes 

4 0,2 0,1 0,1 0,2 0,1 
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Standard deviations from replications are quite small, especially for LAeq, L5 and L10 

estimations, when aggregating on 10mn period; see Table 3. When there is no traffic signal, 

low levels estimation is a bit more sensible to replications (standard deviation up to 1.4 

dB(A) for L90 estimation of scenario 1 in case vi). Standard deviations are very small 

(always under 0.2 dB(A) for scenario 4) when there is a traffic signal. In fact, here, pattern 

of noise is not linked to traffic model parameters but to traffic signal dynamics. 

Finally, despite their effects on noise estimation shown above, speed distributions 

induce a small standard deviation. 

Considering those results, there is no need for replications for LAeq and high levels 

estimation calculated over 10mn. This period is sufficient to smooth differences between 

distributions. Replications might be required if L90 estimation is wanted. Note that this 

study is based on an averaged emission law. Individualized emission laws could enhance the 

need for replications; this point will be discussed later. 

INFLUENCE OF NOISE SOURCE REPRESENTATION  

 Noise source representation must be chosen according to the three next points: its 

ability to reveal traffic dynamics, its computational efficiency and its compatibility with 

propagation model. Its influence on noise descriptors estimation is tested with mCF model, 

whose was previously shown to be relevant with urban traffic dynamics. Results are 

gathered on Table 4-6; influence of noise source representation and cell length are 

presented.   
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Table 4  

Averaged and statistical levels [dB(A)] for each noise source representation for 

scenario1 (no traffic signal; Q = 900 veh/h) 

Simulation results Noise source representation Cell length Cell 
configuration LAeq L5 L10 L50 L90 L10-L90 

(a) vehicle = line source - - 63,9 65,3 65,3 63,1 62,4 2,9 

(b) vehicle = point source - - 63,9 65,5 65,5 63,5 62,2 3,3 

in phase 63,8 64,8 64,8 62,6 62,6 2,3 
7m 

opposed 63.8 65.3 65.3 63 62.3 3.0 
in phase 63,8 64,8 64,8 62,7 62,7 2,1 

28m 
opposed 63,9 63,8 63,8 63,8 63,8 0,0 

in phase 63,8 63,8 63,8 63,8 63,8 0,0 

(c) grid  
of line sources 

56m 
opposed 63,8 63,8 63,8 63,8 63,8 0,0 

in phase 63,9 65,5 65,5 63,5 62,2 3,3 
7m 

opposed 63.9 65.3 65.3 64.2 62.3 3.0 
in phase 64,2 65,5 65,5 65,5 62,2 3,3 

28m 
opposed 63,6 63,5 63,5 63,5 63,5 0,0 

in phase 65,6 65,6 65,6 65,6 65,6 0,0 

(d) grid  
of point sources 

56m 
opposed 62,2 62,2 62,2 62,2 62,2 0,0 

 

Selection of grid of line sources representation 

Differences between noise source representations are tested on the scenario 1 (scenario 

with no traffic signal and a low flow rate). 

Representations (a) and (b) need a propagation calculation every step, as noise sources 

are not aggregated on a grid but taken every time step at their position. Those 

representations are not computational efficient and must be avoided in practice. Thus they 

just serve as a reference in this study. Table 4 shows a similar noise estimation for these 

two representations for scenario 1 (only 0.2dB(A) difference between representation (a) and 
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representation (b) in L5 estimation). Only representation (b) will be considered in the 

following, as it is more computational. 

Representations (c) and (d) do not require a propagation calculation every time step as 

sources are aggregated on a fixed grid. Thus they are more computational. Selection 

between representations (c) and (d) is often based in practice on its compatibility with 

propagation calculation model. However their different characteristics influence noise 

descriptors estimation. Table 4 compares noise estimation for scenario 1 (no traffic signal 

and constant flow): dynamics of noise observed is linked to motion of vehicles. Both 

representations are tested with different sizes of cells and different alignments: either 

reception point is in front of the cell (i.e. in phase), or it is between two cells (i.e. opposed); 

see figure 4. 

P
opposed

P
phased

x
j
−∆x/2 x

j x
j
+∆x/2 x

Cell j Cell j+1

 

Figure 4: Different alignments for reception point 

 

Line source representation (c): LAeq estimation is accurate even with large cells, and is 

not sensible to problems of alignment (Tables 4 shows no mistake for LAeq estimation with 

56m cell). However, large cells tend to smooth dynamics from motion of vehicles in free 
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flowing. This dynamics is also affected by alignments issues (L10-L90 = 0 for a 28m line 

source with opposed configuration).  

Point source representation (d): Problems of alignments are more important with point 

sources. Even LAeq estimation is affected by alignment (3.4 dB(A) variations in LAeq 

estimation with representation (d) and 56m cells between phased and opposed 

configurations). This can be explained by the fact that line source smoothes emitted noise, 

whereas point source does not. Another study has shown the same alignment problem for 

LAeq estimation with a grid of point sources when cells become larger than 10meters [35].  

Thus grid of lines will be preferred, while it can be coupled with the propagation 

calculation model. Mind that dynamics of motion of vehicle can be altered by aggregation 

on the cell. 

 

 

Table 5  

Influence of cell length for averaged and statistical levels [dB(A)] estimation with a grid of 

line sources, for scenario 3 (traffic signal; Q = 900 veh/h). Noise levels given at x = 350m 

(right to the traffic signal). 

 

Simulation results 
Noise source representation Cell length 

LAeq L5 L10 L50 L90 L10-L90 

(b) vehicles at their position - 65,0 68,3 68,2 63,7 58,4 9,8 
7m 64,9 68,2 68,1 64,2 58,2 9,9 

14m 64,7 68,1 67,9 64,3 57,9 10,1 
28m 64,7 68,3 68,0 63,9 56,4 11,7 

(c) grid of  
line sources 

70m 64,4 67,6 67,0 63,4 60,5 6,5 
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Influence of the size of line sources for scenarios with traffic signal 

Traffic is very fluctuating near traffic signals. Thus poor noise descriptors estimation 

was expected with large cells. Actually, estimation of noise descriptors near the traffic 

signal is surprisingly unaffected by the representation of noise source (Table 5 shows e.g. a 

0.6 dB(A) underestimation of LAeq with 70m cells or a 0.2 dB(A) underestimation of L10 

with 28m cell). Estimation of acoustic descriptors which are aggregated on time seems not 

to be very affected even if noise pattern is distorted. Moreover, noise emitted by a cell 

corresponds to the equivalent mean emission of all the vehicles present on the cell. Thus 

only the localisation of the source is approximated. 

Table 6 shows noise estimation for scenario 4 140m upstream to the traffic signal: here 

flow rate is high, thus congestion spills back on the network. One could think that large 

cells are not suitable to capture dynamics of this traffic event. In fact, it seems that once 

again aggregation on large cells is sufficient, while traffic is precisely described (no 

mistake for LAeq or L10 estimation with 70m cells).  

Thus accurate estimation of statistical levels can be assessed near traffic signals even 

with large cells. Note that current works tend to use tights grids near intersections [35, 36]. 
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Table 6  

Influence of cell length for averaged and statistical levels [dB(A)] estimation with a grid of 

line sources, for scenario 4 (traffic signal; Q = 1440veh/h). The reception point is located 

140m upstream of the traffic signal. 

Simulation results 
Noise source representation Cell length 

LAeq L5 L10 L50 L90 L10-L90 

(b) vehicles at their position - 66,5 68,3 68,2 66,7 63,4 4,8 
7m 66,4 68,3 68,1 66,7 63,3 4,8 

14m 66,4 68,4 67,9 66,7 63,2 4,7 
28m 66,4 68,3 68,0 66,4 63,5 4,5 

(c) grid of line sources 

70m 66,4 68,1 68,0 66,3 64,1 3,9 

 

DISCUSSION 

The influence of traffic modeling hypothesis and noise source representation on noise 

descriptors for dynamic noise assessment has been tested. The study was based on LAeq and 

statistical levels estimation over a 10mn period for four scenarios representative of the 

urban traffic conditions.  

Macroscopic conservation law model seems sufficient for LAeq estimation in urban 

traffic conditions. High levels estimation is improved near traffic intersections with 

macroscopic car-following model, which represents trajectory of each vehicle.  

A microscopic behavior rule is not required for LAeq and high levels estimation, when 

urban traffic conditions homogenize vehicles behavior. Note that this result is obtained with 

the same emission law for each vehicle. Further investigations will show if introducing 
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more detailed emission laws (including gear ratio effect, several classes of vehicles…) 

implies the need for microscopic behavior rule to improve high levels estimation.  

If low levels estimation is required, traffic model that does not take headway 

distributions into account may not be sufficient. This point will need further investigations, 

to determine if headway distributions are suitable for low levels assessment. Note that low 

levels estimated by traffic noise prediction models are similar to background noise; hence 

improvement of low levels estimation is not necessarily required. 

If a model that involves stochastic processes (distributions, microscopic behavior rule) 

is chosen, there is no need for replications for dynamic traffic noise estimation for noise 

descriptors aggregated over a 10mn-period within the scenarios tested. Noise descriptors 

calculation smoothes indeed differences between replications; moreover a 10mn-period is 

sufficient for different traffic situations to occur (what would not be necessarily true with a 

shorter period).   

 

The recommended noise source representation is a grid of line source, as influence of 

alignment between cell and reception point is more important with a grid of points. LAeq 

estimation is accurate with large grid of lines (cells up to 56m) whether there is or not 

traffic signal, provided the dynamics of traffic is precisely assessed. Noise dynamics from 

traffic signal can be assessed with large cells. On the contrary, noise dynamics from motion 

of vehicles is lost if cells are large (it is lost with 28m cells for a reception point 15m from 

the road, within hypothesis of the study). But this dynamics may be neglected: the aim of 
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our research is to offer tools for traffic management, and traffic management is not 

concerned by this kind of dynamics. 

 Hence, a computational model that couples a macroscopic car-following model and 

28m grid of lines is sufficient to assess urban traffic dynamics effects on noise that can be 

revealed through LAeq and statistical levels. Note that those results stand for a traffic flow 

that contains no heavy vehicles. Further research has to be carried out to test the influence 

of heavy vehicles on dynamic noise estimation. Both emission laws and traffic flow models 

will have to be modified to take their effect into account. Note finally that conclusions of 

this paper may vary with other noise descriptors. A more accurate description of urban noise 

dynamics would involve more specific noise descriptors. Further investigation will have to 

be done on a selection of descriptors that reflect traffic noise variations in time.  
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