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A discrete model for the propagation of

discontinuities in a fluid-saturated medium

Julien Réthoré1, René de Borst12, and Marie-Angèle Abellan3

Summary. The first part of this manuscript discusses a finite element method that
captures arbitrary discontinuities in a two-phase medium by exploiting the partition-
of-unity property of finite element shape functions. The fluid flow away from the
discontinuity is modelled in a standard fashion using Darcy’s relation, and at the
discontinuity a discrete analogy of Darcy’s relation is used. Subsequently, dynamic
shear banding is studied numerically for a biaxial, plane-strain specimen. A Tresca-
like as well as a Coulomb criterion are used as nucleation criterion. Decohesion is
controlled by a mode-II fracture energy, while for the Coulomb criterion, frictional
forces are transmitted across the interface in addition to the cohesive shear tractions.
The effect of the different interface relations on the onset of cavitation is studied.

Key words: shear band, dynamic fracture, two-phase medium, partition-of-
unity method

1 Introduction

Broadly speaking, two approaches exist for the numerical analysis of the nucle-
ation and propagation of discontinuities in solids, such as cracks, shear bands
and faults. Within the classical theory of continuum mechanics, the approach
in which discontinuities are distributed over a finite volume, so that relative
displacements across the faces of a discontinuity are transformed into strains,
is perhaps the most natural. Also in an engineering sense, it offers advantages,
since there is no need to keep track of all individual microcracks that arise in a
solid. Indeed, for computations of large structures, any attempt to model each
individual crack would exceed even the currently available computing power.
However, from a theoretical point of view, the modelling of discontinuities
in a distributed or smeared sense has a limitation, namely that at a certain
level of accumulated damage, the set of governing equations locally changes

1



character, from elliptic to hyperbolic for quasi–static loadings, and from hy-
perbolic to elliptic for dynamic loadings. Unless a regularisation is applied,
the resulting initial/boundary value problem becomes ill–posed, resulting in
numerical solutions that depend severely on the discretisation [1].

Intuitively the most appealing approach is to model discontinuities in a dis-
crete manner, thus reflecting the change in topology that actually takes place
in the solid when a discontinuity propagates. Recently, such finite element
methods have been constructed that exploit the partition-of-unity property
of finite element shape functions [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. While pre-
serving the original discretisation, the addition of extra degrees-of-freedom
to nodes whose support is crossed by a discontinuity allows to construct two
continuous displacement fields that are separated by a Heaviside function at
the discontinuity. As a consequence, discontinuities can propagate, not biased
by the original discretisation.

Many problems in geomechanics involve the coupling of the set of equa-
tions that describe the stress evolution and those which describe diffusion-type
processes, e.g. water or ion transport. Indeed, hydro-mechanical interactions
have been recognised to play a crucial role in geotechnical, petroleum and
mining engineering since the pioneering works by Terzaghi [13] and Biot [14].
It is the purpose of this manuscript to formulate a numerical model that is
capable of describing dynamic shear band propagation in a porous medium,
with a solid skeleton and an interstitial fluid as the constituent phases, in a
discrete, mesh-independent manner. The model exploits the partition-of-unity
property of finite element shape functions, and can therefore be considered
to be an extension to earlier works on fracture for single-phase media. On
the other hand, the present methodology can be extended in a fairly straight-
forward manner to introduce discontinuities, including cracks, in initial value
problems where several diffusion-type problems play a role.

The manuscript starts with a concise derivation of the balance equations
for a fluid-saturated porous medium. Subsequently, the general methodology
and the assumptions regarding the introduction of a discontinuity in a finite
element model are discussed. The approach is specialised to a medium where
the (discrete) failure mode is caused by exhaustion of the shear stress capacity
on a critical plane. Next, studies are carried out for a plane-strain, biaxial
specimen. Two different nucleation criteria for shear band propagation are
investigated, and the role of localisation on cavitation in a fluid-saturated
porous medium is highlighted.

2 Balance equations

We consider a two-phase medium subject to the restriction of small displace-
ment gradients and small variations in the concentrations [15]. Furthermore,
the assumptions are made that there is no mass transfer between the con-
stituents and that the processes which we consider, occur isothermally. With
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these assumptions, the balances of linear momentum for the solid and the
fluid phases read:

∇ · σσσπ + p̂π + ρπg =
∂(ρπ vπ)

∂t
+ ∇ · (ρπvπ ⊗ vπ) (1)

with σσσπ the stress tensor, ρπ the apparent mass density, and vπ the absolute
velocity of constituent π. As in the remainder of this paper, π = s, f , with
s and f denoting the solid and fluid phases, respectively. Further, g is the
gravity acceleration and p̂π is the source of momentum for constituent π
from the other constituent, which takes into account the possible local drag
interaction between the solid and the fluid. Evidently, the latter source terms
must satisfy the momentum production constraint:

∑

π=s,f

p̂π = 0 (2)

We now neglect convective terms and the gravity acceleration, so that the
momentum balances reduce to:

∇ · σσσπ + p̂π = ρπ
∂vπ

∂t
(3)

Adding both momentum balances, and taking into account eq. (2), one obtains
the momentum balance for the mixture:

∇ ·σσσ − ρs
∂vs

∂t
− ρf

∂vf

∂t
= 0 (4)

where the stress is, as usual, composed of a solid and a fluid part,

σσσ = σσσs + σσσf (5)

For relatively slow dynamic loadings, the assumption is often made that the
accelerations of the solid and of the fluid are equal: ∂vs

∂t ≈ ∂vf

∂t . With the mass
density of the mixture, ρ = ρs + ρf , the balance of momentum (4) reduces to:

∇ · σσσ − ρ
∂vs

∂t
= 0 (6)

Numerical analyses are usually conducted with the latter equation as bal-
ance of momentum, cf [16], but the accuracy of this assumption is seldom
quantified.

In a similar fashion as for the balances of momentum, one can write the
balance of mass for each phase as:

∂ρπ

∂t
+ ∇ · (ρπvπ) = 0 (7)

Again neglecting convective terms, the mass balances can be simplified to
give:
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∂ρπ

∂t
+ ρπ∇ · vπ = 0 (8)

We multiply the mass balance for each constituent π by its volumetric ratio
nπ, add them and utilise the constraint

∑

π=s,f

nπ = 1 (9)

to give:

∇ · vs + nf∇ · (vf − vs) +
ns

ρs

∂ρs

∂t
+

nf

ρf

∂ρf

∂t
= 0 (10)

The change in the mass density of the solid material is related to its volume
change by:

∇ · vs = −
Ks

Kt

ns

ρs

∂ρs

∂t
(11)

with Ks the bulk modulus of the solid material and Kt the overall bulk
modulus of the porous medium. Using the definition of the Biot coefficient,
1 − α = Kt/Ks [16], this equation can be rewritten as

(α − 1)∇ · vs =
ns

ρs

∂ρs

∂t
(12)

For the fluid phase, a phenomenological relation is assumed between the in-
cremental changes of the apparent fluid mass density and of the fluid pressure
p [16]:

1

Q
dp =

nf

ρf
dρf (13)

with the overall compressibility, or Biot modulus

1

Q
=

α − nf

Ks
+

nf

Kf
(14)

where Kf is the bulk modulus of the fluid. Inserting relations (12) and (13)
into the balance of mass of the total medium, eq. (10), gives:

α∇ · vs + nf∇ · (vf − vs) +
1

Q

∂p

∂t
= 0 (15)

The field equations, i.e. the balance of momentum of the saturated
medium, eq. (4), and the balance of mass, eq. (15), are complemented by
the boundary conditions

nΓ · σσσ = tp , v = vp (16)

which hold on complementary parts of the boundary ∂Ωt and ∂Ωv, with
Γ = ∂Ω = ∂Ωt ∪ ∂Ωv, ∂Ωt ∩ ∂Ωv = ∅, tp being the prescribed external
traction and vp the prescribed velocity, and
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nf (vf − vs) · nΓ = qp , p = pp (17)

which hold on complementary parts of the boundary ∂Ωq and ∂Ωp, with
Γ = ∂Ω = ∂Ωq ∪ ∂Ωp and ∂Ωq ∩ ∂Ωp = ∅, qp and pp being the prescribed
outflow of pore fluid and the prescribed pressure, respectively. The initial
conditions which specify the displacements uπ, the velocities vπ, and the
pressure field at t = 0:

uπ(x, 0) = u0
π, vπ(x, 0) = v0

π, p(x, 0) = p0 (18)

close the initial value problem.

tp
Γt

up

Γu

nΓd

Γ = ∂Ω

Γd

Ω+

Ω−

Fig. 1. Body composed of continuous displacement fields at each side of the dis-
continuity Γd

3 Discontinuities in a two-phase medium

A finite element method that can accommodate the propagation of disconti-
nuities through elements was proposed by Belytschko and co-workers [3, 4],
exploiting the partition-of-unity property of finite element shape functions [2].
Since finite element shape functions ϕj form partitions of unity,

∑n
j=1

ϕj = 1
with n the number of nodal points, the components vi of a velocity field v

can be interpolated as

vi =

n
∑

j=1

ϕj

(

˙̄aj +

m
∑

k=1

ψk
˙̃ajk

)

(19)

with āj the ‘regular’ nodal degrees-of-freedom for the displacements, ψk the
enhanced basis terms, and ãjk the additional displacement degrees-of-freedom
at node j which represent the amplitude of the kth enhanced basis term ψk.
Next, we consider a domain Ω that is crossed by a single discontinuity at Γd

(see Figure 1). The velocity field v can be written as the sum of two continuous
velocity fields v̄ and ṽ:

v = v̄ + HΓd
ṽ (20)

where HΓd
is the Heaviside step function centred at the discontinuity. The de-

composition in eq. (20) has a structure similar to the interpolation in eq. (19),
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e.g. [17]. Accordingly, the partition-of-unity property of finite element shape
functions enables the direct incorporation of discontinuities, including cracks
and shear bands, in finite element models such that the discontinuous char-
acter of cracks and shear bands is preserved. With the standard small-strain
assumption that the strain-rate field of the solid, ǫǫǫs, is derived from the sym-
metric part of the gradient of the velocity field, we obtain:

ǫ̇ǫǫs = ∇sv̄s + HΓd
∇sṽs + δΓd

(ṽs ⊗ nΓd
)s (21)

with the superscript s denoting the symmetric part of the gradient operator.
With respect to the pore fluid, we consider the case that a diaphragm

with a permeability kd is placed at the discontinuity in the displacement. As
a consequence, the fluid pressure can be discontinuous across Γd and, similar
to eq. (20), we have:

p = p̄ + HΓd
p̃ (22)

It is noted that this assumption is different from that of Armero and Callari [18],
who adopt a smooth pressure field (and therefore p = p̄) and is also different
from that of Larsson and Larsson [19], who assume that a regularised Dirac
distribution is added to the continuous pressure field at the location of the
discontinuity in the displacement field. For the fluid flow, gradients of the
pressure need to be computed. Differentiating eq. (22), we obtain:

∇p = ∇p̄ + HΓd
∇p̃ + δΓd

p̃ nΓd
(23)

τ

δ t

G
c

Fig. 2. Relation between relative sliding at the discontinuity and shear tractions

4 Constitutive equations

4.1 Models for the bulk

The effective stress increment in the solid skeleton, dσσσ′
s is related to the strain

increment dǫǫǫs by an incrementally linear stress-strain relation for the solid
skeleton,
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dσσσ′
s = D̄tan : dǫǫǫs (24)

where D̄tan is the fourth–order tangent stiffness tensor of the solid material
and the d - symbol denotes a small increment. Since the effective stress in the
solid skeleton is related to the partial stress by σσσ′

s = σσσs/ns, the above relation
can be replaced by

dσσσs = Dtan : dǫǫǫs (25)

where the notation Dtan = nsD̄
tan has been used. In the examples, a linear-

elastic behaviour of the bulk material has been assumed, and we have set
Dtan = D, the linear-elastic stiffness tensor.

For the flow of the pore fluid, Darcy’s relation for isotropic media is as-
sumed to hold,

nf (vf − vs) = −kf∇p (26)

with kf the permeability coefficient of the porous medium. For loading situ-
ations in which high strain rates play a significant role, Darcy’s relation can
be extended with a so-called dynamic seepage term [16, 20], which results in:

nf (vf − vs) = −kf

(

∇p + ρf
∂vf

∂t

)

(27)

In line with the earlier assumption to neglect the gravity acceleration, this
term has also been omitted here. In practical situations, following the as-
sumption ∂vs

∂t ≈
∂vf

∂t for relatively slow dynamic loadings, eq. (27) is often
approximated by

nf (vf − vs) = −kf

(

∇p + ρf
∂vs

∂t

)

(28)

4.2 Interface behaviour

At the discontinuity Γd a discrete relation holds between the interface tractions
td and the relative displacements δδδ:

td = td(δδδ, κ) (29)

with κ a history parameter. After linearisation, necessary to use a tangential
stiffness matrix in an incremental-iterative solution procedure, one obtains:

ṫd = Tδ̇δδ (30)

with T the material tangent stiffness matrix of the discrete traction-separation
law:

T =
∂td

∂δδδ
+

∂td

∂κ

∂κ

∂δδδ
(31)

A first possibility that has been used in the example calculations for shear
band initiation is the use of a maximum shear stress criterion in the spirit
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of Tresca. With the resolved shear stress τ , a shear-band like discontinuity
is created when the criterion equals the critical value τc: τ = τc. The ori-
entation of the interface is such that it maximises the shear stress. In this
orientation, the shear stress τ = |σ1−σ2|

2
, σ1, σ2 being the principal stresses. A

maximum shear stress nucleation criterion is primarily applicable when com-
pressive stress states around the discontinuity prevail, such as in rocks and
soils. Then, the failure mode will only involve sliding at the discontinuity, but
no crack opening. For this reason, in the example calculations only degrees-of-
freedom that describe this sliding mode have been added to the finite element
model, which is different from earlier shear-band simulations (for single-phase
media) [5, 6, 12] that have exploited the partition-of-unity property of finite
element shape functions, but is similar to [9]. Dilatancy in the shear band
can be incorporated when, in addition to the tangential degrees-of-freedom,
during propagation extra degrees-of-freedom are activated which are normal
to the shear band.

A key element is the presence of a mode-II fracture energy, GII
c , which

governs the shear band evolution and enters the interface constitutive rela-
tion (29) in addition to the shear strength τc. It is defined as the work needed
to create a unit area of fully developed shear band, e.g. [21]:

GII
c =

∫ ∞

δt=0

τdδt (32)

with τ the shear stress across the shear band, and δt the relative sliding
between both faces of the shear band. GII

c equals the area under the decohesion
curves shown in Figure 2.

tan φ
µ

δ

µ

δ

c

c

Fig. 3. Relation between relative sliding at the discontinuity and friction coefficient

Alternatively, a Coulomb criterion for local inception of the shear band has
been used in the examples at the end of this paper. In this criterion nucleation
starts when

τ = τcoh + τfr (33)

with
τcoh = c0

the cohesive contribution and c0 the cohesion. Decohesion is governed by the
fracture energy GII

c , similar to the Tresca-like criterion, cf. eq. (32). τfr is the
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frictional contribution, which is defined as a function of the traction normal
to the discontinuity and the effective friction coefficient μ:

τfr = μnΓd
· σσσ · nΓd

The effective friction coefficient has a virgin value μ = tanφ, with φ the
friction angle. The vector nΓd

is such that it is normal to the critical plane
where Coulomb’s criterion for incipient shear failure is satisfied. A frictional
softening relation models the microstructure evolution of the solid grains in
the interface. The particular relation used in the example calculations is shown
in Figure 3. In it, μc is the threshold value and δc the relative sliding at this
value. It is assumed that δc = 2GII

c /c0, which equals the value defined by the
cohesive softening relation.

As with the Tresca-like criterion, it is assumed that the failure mode only
involves sliding. Possible dilatancy effects are not included in the kinematics
of the discontinuity. For this reason, one can also now suffice by adding only
degrees-of-freedom to the finite element model that describe the discrete slid-
ing mode. It is interesting to note that, unlike in non-associated plasticity, the
resulting stiffness matrix remains symmetric.

A discrete equivalent of Darcy’s relation is now defined for the fluid flow
qd at the discontinuity as:

nΓd
· qd = −kd(p

+ − p−) = −kd p̃ |x∈Γd
(34)

where kd is the permeability of the diaphragm that has been assumed to coin-
cide with the displacement discontinuity Γd and p+ and p− are the pressures
in the Ω+ and Ω− domains, respectively. For an impervious boundary, kd = 0,
which implies that nΓd

· qd = 0 according to eq. (34). Conversely, ideal per-
meability requires that kd → ∞, so that nΓd

· qd can only be bounded if
p+ − p− = 0, which implies that no discontinuity can exist in the pressure
field and the formulation of Armero and Callari [18] is retrieved.

5 Numerical elaboration

5.1 Weak forms

To arrive at the weak form of the balance equations, we multiply the momen-
tum balance (4) and the mass balance (15) by test functions for the velocities
of the skeleton and for the pressures. In the spirit of a standard Bubnov-
Galerkin approach, they are assumed to be of the following format:

ηηη = η̄ηη + HΓd
η̃ηη (35)

for the velocities, and
ζ = ζ̄ + HΓd

ζ̃ (36)
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for the pressures. Substitution into eqs (4) and (15), and integrating over the
domain Ω leads to the corresponding weak forms:

∫

Ω

(η̄ηη + HΓd
η̃ηη) ·

(

∇ · σσσ − ρ
∂vs

∂t

)

dΩ = 0 (37)

and
∫

Ω

(ζ̄ + HΓd
ζ̃)

(

α∇ · vs + nf∇ · (vf − vs) +
1

Q

∂p

∂t

)

dΩ = 0 (38)

Using the standard procedure of applying the divergence theorem, using the
external boundary conditions (16) and (17), eliminating the Heaviside func-
tions by changing the integration domain from Ω to Ω+, eliminating the Dirac
delta functions by transforming the volume integral into a surface integral, and
introducing the shorter notation of a superimposed dot for ∂/∂t, the balance
equations take the form:

∫

Ω

ρη̄ηη · v̇sdΩ +

∫

Ω+

ρη̃ηη · v̇sdΩ+

∫

Ω

(∇ · η̄ηη) · σσσdΩ +

∫

Ω+

(∇ · η̃ηη) · σσσdΩ+

∫

Γd

η̃ηη · tddΩ =

∫

Γ

(η̄ηη + HΓd
η̃ηη) · tp dΩ

(39)

and

−

∫

Ω

kfρf∇ζ̄ · v̇sdΩ −

∫

Ω+

kfρf∇ζ̃ · v̇sdΩ

−

∫

Ω

αζ̄∇ · vsdΩ −

∫

Ω+

αζ̃∇ · vsdΩ

−

∫

Ω

kf∇ζ̄ · ∇pdΩ −

∫

Ω+

kf∇ζ̃ · ∇pdΩ −

∫

Γd

ζ̃nΓd
· qd dΓ

−

∫

Ω

ζ̄Q−1ṗ dΩ −

∫

Ω+

ζ̃Q−1ṗ dΩ =

∫

Γ

(ζ̄ + HΓd
ζ̃)qp dΓ

(40)

where for the derivation of the latter equation also Darcy’s relation (28) has
been employed.

5.2 Discretisations

We now switch to matrix-vector notation and discretise the trial functions vs

and p and the test functions ηηη and ζ as:

vs = N( ˙̄a + HΓd
˙̃a)

p = H(p̄ + HΓd
p̃)

ηηη = N(w̄ + HΓd
w̃)

ζ = H(z̄ + HΓd
z̃)

(41)
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Eqs (41) can be inserted into eqs (39) and (40) to obtain the semi-discrete
form under the requirement that the result holds for all admissible w̄, z̄, w̃

and z̃.
The semi-discrete initial value problem is second order in time with respect

to the displacement variables and first order for the fluid pore pressure. Yet,
the same integration scheme will be used for both variables, in particular the
Newmark method commonly used in structural dynamics. Let y denote an
array which is a function of time. At the discrete time instant tn its value is
yn. Under the assumption of time continuity, the updating equations of the
Newmark method are:

yn+1 = yn + Δtẏn + (
1

2
− β)Δt2ÿn + βΔt2ÿn+1 (42)

ẏn+1 = ẏn + (1 − γ)Δtÿn + γΔtÿn+1 (43)

with β, γ the parameters of the time integration scheme. The equations can
be recast as:

ÿn+1 = α0(yn+1 − yn) − α2ẏn − α4ÿn

ẏn+1 = α1(yn+1 − yn) − α3ẏn − α5ÿn

(44)

with

α0 =
1

βΔt2
, α2 =

1

βΔt
, α4 =

1

2β
− 1

α1 =
γ

βΔt
, α3 =

γ

β
− 1 , α5 = (

γ

2β
− 1)Δt

For future use we also list the expressions for the variations that can be derived
from expressions (44):

δÿn+1 = α0δyn+1 , δẏn+1 = α1δyn+1 (45)

Application of the time integration scheme (44) to semi-discrete balance
equations results in a set of coupled, discrete equations, which is nonlinear.
Therefore, an iterative solution procedure has to be applied within each time
step Δt. When using the Newton-Raphson method, as has been done in the
ensuing examples, and exploiting the variations defined in eqs (45), one obtains
a sequence of linearised problems, which for implementation purposes are
conveniently be cast in a matrix-vector format:

⎡

⎢

⎢

⎣

α0Māā + Kāā α0Māã + Kāã Kāp̄ Kāp̃

α0Mãā + Kãā α0Mãã + Kãã Kãp̄ Kãp̃

α0Mp̄ā + α1K
T
āp̄ α0Mp̄ã + α1K

T
ãp̄ α1Mp̄p̄ + Kp̄p̄ α1Mp̄p̃ + Kp̄p̃

α0Mp̃ā + α1K
T
āp̃ α0Mp̃ã + α1K

T
ãp̃ α1Mp̃p̄ + Kp̃p̄ α1Mp̃p̃ + Kp̃p̃

⎤

⎥

⎥

⎦

⎛

⎜

⎜

⎝

dā
dã
dp̄
dp̃

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

f∗ā
f∗ã
f∗p̄
f∗p̃

⎞

⎟

⎟

⎠

(46)

with the external force vectors:
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fext
ā =

∫

Γ

NTtpdΓ , fext
ã =

∫

Γ

HΓd
NTtpdΓ

fext
p̄ =

∫

Γ

HTqpdΓ , fext
p̃ =

∫

Γ

HΓd
HTqpdΓ

the internal force vectors:

f int
ā =

∫

Ω

BTσσσdΩ

f int
ã =

∫

Ω+

BTσσσdΩ +

∫

Γd

NTtddΓ

with B = ∇N and, for two dimensions, m = [1, 1, 0]. The mass matrices:

Māā =

∫

Ω

ρNTNdΩ , Mãā = Māã = Mãã =

∫

Ω+

ρNTNdΩ

Mp̄ā = −

∫

Ω

kfρf∇HTNdΩ , Mp̃ā = Mp̄ã = Mp̃ã = −

∫

Ω+

kfρf∇HTNdΩ

Mp̄p̄ = −

∫

Ω

Q−1HTHdΩ , Mp̃p̄ = Mp̄p̃ = Mp̃p̃ = −

∫

Ω+

Q−1HTHdΩ

the stiffness matrices:

Kāp̄ = −

∫

Ω

αBTmHdΩ , Kãp̄ = Kāp̃ = Kãp̃ = −

∫

Ω+

αBTmHdΩ

Kp̄p̄ = −

∫

Ω

kf∇HT∇HdΩ , Kp̃p̄ = Kp̄p̃ = −

∫

Ω+

kf∇HT∇HdΩ

Kp̃p̃ = −

∫

Ω+

kf∇HT∇HdΩ −

∫

Γd

kdH
THdΓ

Kāā =

∫

Ω

BTDBdΩ , Kãā = Kāã =

∫

Ω+

BTDBdΩ

Kãã =

∫

Ω+

BTDBdΩ +

∫

Γd

NTTNdΓ

and the arrays at the right-hand side:

f∗ā = fext
ā − (f int

ā )i − α0Māā¨̄ai
n+1 − α0Māã

¨̃ai
n+1

f∗ã = fext
ã − (f int

ã )i − α0Mãā¨̄ai
n+1 − α0Mãã

¨̃ai
n+1

f∗p̄ = fext
p̄ − α0Mp̄ā¨̄ai

n+1 − α0Mp̄ã
¨̃ai

n+1 − α1Mp̄p̄ ˙̄pi
n+1 − α1Mp̄p̃

˙̃pi
n+1

−α1K
T
āp̄

˙̄ai
n+1 − α1K

T
ãp̄

˙̃ai
n+1

f∗p̃ = fext
p̃ + −α0Mp̃ā¨̄ai

n+1 − α0Mp̃ã
˙̃ai
n+1 − α1Mp̃p̄ ˙̄pi

n+1 − α1Mp̃p̃
˙̃pi

n+1

−α1K
T
āp̃

˙̄ai
n+1 − α1K

T
ãp̃

˙̃ai
n+1

where the superscript signifies that the corresponding quantity has to be evalu-
ated at iteration i. The quantities ¨̄ai

n+1, ¨̃a
i
n+1, ˙̄ai

n+1, ˙̃ai
n+1, ˙̄pi

n+1, ˙̃pi
n+1 are eval-

uated using eqs (44).
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The stiffness matrix of eq. (46) is not symmetric. Symmetry can be re-
stored by multiplying the third and the fourth row of submatrices by α−1

1 and
omitting the contributions in the tangent stiffness matrix that are due to the
dynamic seepage term – the submatrices Mp̄ā, Mp̄ã, Mp̃ā and Mp̃ã. Since the
corresponding terms are retained in the right-hand side, the results are not
affected, only the convergence speed of the iterative procedure.

5.3 Stress computation at the tip

The nucleation criterion requires the determination of the stresses at the tip
of the discontinuity. Unfortunately, the stresses vary strongly in the vicinity of
the tip and an accurate estimate of them is difficult to obtain. In the present
case, the stress in the bulk of the specimen is almost homogeneous except
for a small area around the tip, which exacerbates the problem. Following
Wells [5] and Jirasek [23] we use a smoothing of the stresses around the tip
and compute the stress at the tip by the following nonlocal-like procedure:

σσσtip =

∫

Ω
wσσσ dΩ

∫

Ω w dΩ
(47)

where w is a Gaussian weight function:

w = e−r2/2l2

with r the distance to the tip, and l a characteristic length which defines the
size of region of influence of the stress. Because of the nearly homogeneous
stress state in the specimen, a small value of l is desired, preferably in the same
order of magnitude as the characteristic element length. This is accomplished
in the following manner. By virtue of the linear behaviour of the solid phase in
the bulk, a separate, independent integration domain can be defined, which
follows the tip during propagation. This domain contains integration cells
smaller than those of the mesh used in the discretisation – typically their
length is in the order of 15-20% of the element size. Moreover, a higher-order
Gaussian quadrature is used over this domain, which results in a very accurate
determination of the tip stress.

6 Example calculations

All results of the computations are based for the same two-dimensional spec-
imen with a width w = 0.04 m and a height H = 0.1 m, see also Fig-
ure 4, which is loaded under plane-strain conditions. The sides are traction
free and the external loading is applied via an imposed constant velocity
V0 = −10−3 m/s. Undrained conditions have been imposed on the entire
boundary of the specimen, because fast transient phenomena have been con-
sidered. The solid constituent is assumed to behave in a linear elastic manner

13



initial defect

V0

Fig. 4. Geometry and boundary conditions

with a Young’s modulus E = 20 GPa and a Poisson’s ratio ν = 0.35. The
absolute mass densities are ρ′s = ρs/ns = 2000 kg/m3 for the solid phase
and ρ′f = ρf/nf = 1000 kg/m3 for the fluid phase, while the fluid fraction
nf = 0.3. The Biot coefficient α has been set equal to 1, the Biot modulus has
been assigned a value Q = 5.0 GPa, while the bulk material was assumed to
have a permeability kf = 10−14 m3/Ns. The permeability of the diaphragm
was assigned a value kd = 0.5 · 10−14 m2/Ns. Shear-band formation was trig-
gered by a small imperfection, see Figure 4.

A structured mesh has been used and consists of 5841 four-noded elements
with equal (bilinear) interpolations for the displacements and the pressure.
The simulation is started using a time step of 0.4 s, which is small enough to
accurately follow the pressure evolution and the near quasi-static behavior of
the solid skeleton before the onset of the shear band. When the shear band
starts to propagate, the phenomenon becomes dynamic and the time step size
is reduced severely in order to properly capture the propagation of the stress
wave. The parameters of the Newmark scheme are γ = 0.5 and β = 0.25.

6.1 Tresca-like initation criterion

The simulation for the Tresca-like nucleation criterion from which most of
the results derive, has been obtained with the following parameters: the time
step size during the shear-band formation equals 0.2 μs, nucleation traction
τc = 50 MPa and mode-II fracture energy GII

c = 750 J/m2. The dynamic
seepage term has not been taken into account in the analysis.

The evolution of the pore pressure field following the time t0 at which the
shear band starts to propagate, is shown in Figure 5. The scale has been chosen
such that the white regions on the picture have a pore pressure below the
cavitation pressure (here: −10+5Pa). One observes that, initially, cavitation
occurs only in the close vicinity of the discontinuity. When the shear band tip
reaches the centre of the specimen, the level of the pore pressure above the

14



t = t0 + 4.0 µs t = t0 + 8.0 µs t = t0 + 12.0 µs t = t0 + 16.0 µs

Pore pressure (Pa)

Fig. 5. Evolution of the pressure field for the Tresca criterion

Fig. 6. Pressure field near the process zone and tractions at the discontinuity. The
scale of the pressures is equal to that in Figure 5. The magnitudes of the tractions
are proportional to the lengths of the bars
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discontinuity increases and pore pressures that exceed the cavitation pressure
develop over a larger region below the interface. Subsequently, this region
follows the tip of the shear band, and when it reaches the right boundary of the
specimen, the cavitation phenomena extend over the entire specimen. Because
of the limitations of the model – a gas phase has not been modelled separately
– the physical interpretation of the numerical results at this advanced stage
of shear band propagation becomes questionable.

As illustrated by Figure 6, it seems that in the present simulations that
utilise the Tresca-like criterion, cavitation is a consequence of local elastic un-
loading behind the process zone, where cohesive softening takes place. Indeed,
Figure 6 shows the pressure field as well as the values of the shear tractions in
the cohesive interface (with bars orthogonal to the discontinuity). The cavita-
tion front appears to coincide with the transition zone between the damaged
and the intact parts of the interface.

t = t0 + 5.0 µs t = t0 + 10.0 µs t = t0 + 15.0 µs t = t0 + 20.0 µs

Pore pressure (Pa)

Fig. 7. Evolution of the pressure field for the Coulomb criterion with δc

∆Uini
= 0.024

6.2 Coulomb initiation criterion

For the Coulomb criterion, the following model parameters have been used:
cohesion c0 = 10.0 MPa, friction angle φ = 30o. The threshold value in the
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t = t0 + 5.0 µs t = t0 + 10.0 µs t = t0 + 15.0 µs t = t0 + 20.0 µs

Pore pressure (Pa)

Fig. 8. Evolution of the pressure field for the Coulomb criterion with δc

∆Uini
= 0.16

frictional softening law is μc = 0.2 tan φ. A parametric study has been car-
ried out with respect to the influence of δc

∆Uini
, where δc is the tangential

displacement jump when the cohesive part of the traction has vanished, and
ΔUini the value of the prescribed displacement at the top of the specimen
at shear-band initiation. The simulations have been carried out using a time
step size of 0.25 μs.

A first simulation has been carried obtained for a fracture energy GII
c =

15 J/m2. In this case δc

∆Uini
equals 0.024. The evolution of the pressure field

is shown in Figure 7. The results are quite similar to those obtained with the
Tresca criterion since the values of δc

∆Uini
are close. Figure 10 shows that for

this case the process zone, i.e. where the tractions do not vanish, is rather
small. As a consequence, local unloadings are obtained behind this process
zone and cavitation occurs only in a small zone behind the shear-band tip.

Increasing the value of δc

∆Uini
to 0.16, the length of the process zone be-

comes approximately equal to that of the shear band, see Figure 10. Now,
local unloadings are not observed, but a global unloading occurs that can be
associated with the strain localisation inside the shear band and the softening
of the interface at the end of propagation. As a consequence, the pressure
evolution on Figure 8 has no local cavitation zone. Indeed, cavitation is first
obtained around the initiation locus and, subsequently, in the entire specimen.
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t = t0 + 5.0 µs t = t0 + 10.0 µs t = t0 + 15.0 µs t = t0 + 20.0 µs

Pore pressure (Pa)

Fig. 9. Evolution of the pressure field for the Coulomb criterion with δc

∆Uini
= 0.24

Instability patterns are observed on the last two figures that plot the pressure
distribution.

Such instabilities, which are due to friction, are observed at a larger scale
when δc

∆Uini
is increased further up to 0.24. Now, the shear band propagates

because the stress is higher than the material strength, but the mechanical
energy is not sufficient to damage the interface. Consequently, no localisation
is obtained, but only frictional instabilities are observed. No cavitation is
induced because of the absence of strain localisation.

7 Concluding remarks

In this contribution a numerical model has been elaborated which can cap-
ture discontinuities, e.g. cracks or shear bands, in a fluid-saturated medium.
The representation of the discontinuity is truly discrete and unbiased by the
discretisation. Moreover, the constitutive relations for the bulk and for the
discontinuity can be specified independently, for the solid phase as well as for
the fluid phase. Example calculations of dynamic shear band propagation have
been presented with a Tresca-like and a Coulomb criterion for shear band ini-
tiation. The results show that the propagation of the shear band is strongly
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δc

∆Uini
= 0.024 δc

∆Uini
= 0.16 δc

∆Uini
= 0.24

Shear traction (Pa)

Fig. 10. Shear traction distribution at the end of the shear–band propagation for
different values of δc

∆Uini

influenced by the constitutive assumptions in the discontinuity. Indeed, as
highlighted by the results of the calculations, the cavitation phenomenon is
triggered by unloading of the solid skeleton, which is a direct consequence
of strain localisation and strongly depends on the constitutive model for the
discontinuity.
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