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Nonlinear dynamics of Mathieu resonators for resonant gyroscope applications Dynamique non linéaire des résonateurs de Mathieu pour les applications de gyromètres résonants
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Operation at resonance is not only advantageous for micromechanical actuators but also for sensing.

The sensor is comprised of elements that operate at their characteristic resonance and the effect of the measurand is detected as a change in the resonant characteristics of these elements. Resonant sensing often involves the detection of an input measurand by means of a resonant frequency shift in the sensing device.

 restricting the benefits of the resonant sensors. Moreover, for resonant gyroscopes, the frequency of the Coriolis forces becomes closer to the resonator frequency. The idea is to investigate the dynamic behaviour of nonlinear Mathieu resonator [3] in order to find the optimal physical conditions for gyroscope designers to maximise the sensors performances.

RESUME

Travailler à la résonance n'est pas seulement avantageux en actuation micromécanique mais aussi en détection. Un capteur à détection fréquentielle comprend un élément sensible résonant qui oscille à sa fréquence propre. L'effet de la mesurande modifie cette fréquence de résonance, souvent avec une loi quasi linéaire qui s'étend sur une gamme de mesure identifiable. Le paramètre physique à mesurer est détecté sous forme d'un décalage fréquentiel.

Le mode de détection fréquentielle [START_REF] Roessig | IntegratedMEMStuning fork oscillators for sensor applications[END_REF] a pour avantages d'être extrêmement sensible, a le potentiel d'avoir une large gamme dynamique, peu sensible au bruit, une large gamme de linéarité et une faible consommation électrique. Cependant, en réduisant la taille des détecteurs vers les NEMS, les non-linéarités apparaissent rapidement [START_REF] Gui | Nonlinearity and hysteresis of resonant strain gauges[END_REF] limitant ainsi les avantages des capteurs fréquentiels. De plus, pour les gyromètres résonnants, la fréquence des forces de Coriolis devient comparable à la fréquence du résonateur. L'idée est d'examiner le comportement dynamique des résonateurs non linéaire de Mathieu [START_REF] Demartini | Chaos for a Microelectromechanical Oscillator Governed by the Nonlinear Mathieu Equation[END_REF] afin de trouver les conditions physiques optimales pour les concepteurs de gyroscope dans le but de maximiser les performances de ce type de capteur.
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Introduction

The permanent quest for cost cuts has led to the use of potential "In-IC" compatible thin SOI-based technologies, which imposes drastic size reduction of the sensors. Combined with the need for in-plane actuation for fabrication and design simplicity, this implies a large reduction in detectability. Moreover nonlinearities [START_REF] Kacem | From MEMS to NEMS : Modelling and characterization of the non linear dynamics of resonators, a way to enhance the dynamic range[END_REF] occur sooner for small structures which reduce their dynamic range.

In the context of a "small" z-axis resonant gyroscope (Figure 1) designed with high actuation frequency, the dynamic of the sensing part governed by a nonlinear Mathieu equation has been modelled.

The device consists of a proof mass suspended by flexures attached to a rigid frame. The proof mass is driven relative to the outer frame using embedded lateral comb drive actuators. If an external rotation θ is applied to the chip about the z-axis, the Coriolis force F c = 2M θV acting on the proof mass is transmitted to the outer frame and communicated axially onto two resonators.

The periodic compression and tension of the resonators by the Coriolis force at the proof mass drive frequency modulates the resonant frequency of these force sensors. Each resonator embedded in the feedback loop of an oscillator circuit. Thus, by demodulating the oscillation frequency, the rotation rate applied to the device can be estimated.

The Mathieu equation has been widely studied in the context of parametric resonance, but our study will be restricted to the primary resonance on the way of design optimisation for high drive frequencies in order to enhance the dynamic range of resonant micro-gyroscopes. 

Device and equations

The resonant output gyroscope [START_REF] Seshia | An integrated microelectromechanical resonant output gyroscope[END_REF] shown in figure [START_REF] Roessig | IntegratedMEMStuning fork oscillators for sensor applications[END_REF], as its name implies, utilizes resonant sensing as the basis for Coriolis force detection. In its simplest form, the device consists of three resonating elements, a proof mass and two resonating sense elements.

Equation of motion

The dynamics of the device can be described by series of coupled differential equations. The proof mass dynamics can be described for most part by a classical spring-mass-damper equation. The dynamics of the resonators subjected to an axial time-varying Coriolis force is described by a nonlinear partial differential equation. The respective equations can be written as :

d 2 X( t) d t2 + δ Q dX( t) d t + δ2 X( t) = F e M cos δt (1) 
EI ∂ 4 w(x, t) ∂ x4 + ρbh ∂ 2 w(x, t) ∂ t2 + c ∂ w(x, t) ∂ t = Ñ + Fc cos δt + Ebh 2l l 0 ∂ w(x, t) ∂ x 2 dx ∂ 2 w(x, t) ∂ x2 + 1 2 ε 0 bC n V dc + V ac cos( Ωt ) 2 (g -w(x, t)) 2 (2) 
w(0, t) = w(l, t) = ∂ w ∂ x (0, t) = ∂ w ∂ x (l, t) = 0 (3)
where X is the proof mass displacement along the drive axis, Q is the drive quality factor, δ and F e are the drive angular frequency and the electrostatic drive force applied to the proof mass M . x is the position along the microbeam length, E and I are the Young's modulus and moment of inertia of the cross section. Ñ is the applied tensile axial force due to the residual stress on the silicon or the effect of the measurand, t is the time, ρ is the material density, h is the microbeam thickness, g is the capacitor gap width, and ε 0 is the dielectric constant of the gap medium. The last term in equation ( 2) represents an approximation of the electric force assuming a complete overlap of the area of the microbeam and the stationary electrode including the edge effects by the coefficient C n .

Normalization

For convenience and equations simplicity , we introduce the nondimensional variables :

w = w g , x = x l , t = t τ (4) 
Where τ = 2l 2 h 3ρ E . Substituting equation ( 4) into equations ( 2) and (3), we obtain :

∂ 4 w ∂x 4 + ∂ 2 w ∂t 2 + c ∂w ∂t -α 2 [V dc + V ac cos(Ωt)] 2 (1 -w)) 2 = N + F c cos δt + α 1 1 0 ∂w ∂x 2 dx ∂ 2 w ∂x 2 w(0, t) = w(1, t) = ∂w ∂x (0, t) = ∂w ∂x (1, t) = 0 (5) 
The parameters appearing in equations ( 5) are :

c = cl 4 EIτ , N = Ñ l 2 EI , F c = Fc l 2 EI , δ = δτ α 1 = 6 g h 2 , α 2 = 6 ε 0 l 4 Eh 3 g 3 , Ω = Ωτ (6)

Resolution

A reduced-order model is generated by modal decomposition transforming equations ( 5) into a finitedegree-of-freedom system consisting of ordinary differential equations in time. We use the undamped linear mode shapes of the straight microbeam as basis functions in the Galerkin procedure. To this end, we express the deflection as :

w(x, t) = n k=1 a k (t)φ k (x) (7) 
Where a k (t) is the k th generalized coordinate and φ k (x) is the k th linear undamped mode shape of the straight microbeam, normalized such that 1 0 φ k φ j = 0 for k = p and governed by :

d 4 φ k (x) dx 4 = λ 2 k φ k (x) (8) φ k (0) = φ k (1) = φ k (0) = φ k (1) (9) 
Here, λ k is the k th natural frequency of the microbeam. We multiply equations ( 5) by φ k (x)(1 -w) 2 , substitute equations ( 7) into the resulting equation, use equations (8) to eliminate d 4 φ k (x) dx 4 , integrate the outcome from x = 0 to 1, and obtain :

äk + c k ȧk + λ 2 k a k -2 n j=1 λ 2 j a j 2 + c j a j ȧj + a j äj 1 0 φ k φ j 2 dx + n j=1 λ 2 j a j 3 + c j a j 2 ȧj + a j 2 äj 1 0 φ k φ j 3 dx - n j=1 (N + F c cos δt) a j + α 1 a j 3 1 0 φ j 2 dx 1 0 φ k φ j dx +2 n j=1 α 1 a j 4 1 0 φ j 2 dx + (N + F c cos δt) a j 2 1 0 φ k φ j φ j dx - n j=1 α 1 a j 5 1 0 φ j 2 dx + (N + F c cos δt) a j 3 1 0 φ k φ j 2 φ j dx = α 2 [V dc + V ac cos(Ωt)] 2 1 0 φ k dx (10) 
Noting that the first mode should be the dominant mode of the system and the other modes are neglected, so it is sufficient to consider the case n = 1. Equation (10) becomes :

ä1 + (500.564 + 12.3 (N + F c cos δt))a 1 + (1330.9 + 38.

3 (N + F c cos δt))a 1 2 + (927 + 28 (N + F c cos δt) + 151α 1 ) a 1 3 + 471α 1 a 1 4 + 347α 1 a 1 5 +c 1 ȧ1 + 2.66c 1 a 1 ȧ1 + 1.85c 1 a 1 2 ȧ1 + 2.66a 1 ä1 +1.85a 1 2 ä1 = - 8 3π α 2 [V dc + V ac cos(Ωt)] 2 (11) 
To analyse the equation of motion (11), it is convenient to invoke perturbation techniques [START_REF] Seshia | An integrated microelectromechanical resonant output gyroscope[END_REF] which work well with the assumptions of "small" excitation and damping, typically valid in MEMS resonators.

In order to facilitate the perturbation approach using the method of averaging, a standard constrained coordinate transformation is introduced, as given by :

                       a 1 = A(t) cos [Ωt + β(t)] ȧ1 = -A(t)Ω sin [Ωt + β(t)] ä1 = -A(t)Ω 2 cos [Ωt + β(t)] (12) 
In addition, since near-resonant behavior is the principal operating regime of the proposed system, a detuning parameter, σ is introduced, as given by :

Ω = ω n + εσ (13) 
Separating the resulting equations and averaging them over the period 2π Ω in the t-domain results in the system's averaged equations, in terms of amplitude and phase, which are given by :

Ȧ ε = - Ac 1 2 -0.23A 3 c 1 - 7A 3 cos[4β]F c 8π (δ -4ω n ) + 7A 3 cos 4β -2πδ ωn F c 8π (δ -4ω n ) - 0.76A 2 cos[3β]F c δ -3ω n + 0.76A 2 cos 3β -2πδ ωn F c δ -3ω n - 0.5Acos[2β]F c δ -2ω n + 7A 3 sin 2β -πδ ωn sin πδ ωn F c 2π (δ -2ω n ) + 0.5Acos 2β -2πδ ωn F c δ -2ω n - 0.76A 2 cos[β]F c δ -ω n + 0.76A 2 cos β + π 2 -2δ ωn F c δ -ω n + 8VacVdcsin[β]α 2 3πω n + 0.76A 2 cos[β]F c δ + ω n - 0.76A 2 cos β + 2π(δ+ωn) ωn F c δ + ω n + 0.5Acos[2β]F c δ + 2ω n + 7A 3 cos[2β]F c 4π (δ + 2ω n ) - 0.5Acos 2 β + π 2 + δ ωn F c δ + 2ω n - 7A 3 cos 2 β + π 2 + δ ωn F c 4π (δ + 2ω n ) + 0.76A 2 cos[3β]F c δ + 3ω n + 7A 3 cos[4β]F c 8π (δ + 4ω n ) - 7A 3 cos 4β + 2π 4 + δ ωn F c 8π (δ + 4ω n ) - 0.76A 2 cos 3β + 2π 3 + δ ωn F c δ + 3ω n (14) β ε = - 0.98sin 2πδ ωn F c δ + 0.7A 2 ω n + Aσ - 7A 2 sin[4β]F c 8π (δ -4ω n ) + 7A 2 sin 4β + π 8 -2δ ωn F c 8π (δ -4ω n ) + 0.76Asin 3β + π 6 -2δ ωn F c δ -3ω n - 9A 2 cos[β]sin[β]F c ω n δ 2 -4ω 2 n - 4.6Asin[3β]F c ω n δ 2 -9ω 2 n + 2.3Asin β + π 2 -2δ ωn F c δ -ω n - 347.6A 2 ω n - 10.5A 2 N ω n - 56.6A 2 α 1 ω n - 108.4A 4 α 1 ω n - 0.85VacVdccos[β]α 2 Aω n - 2.3Asin β + 2π(δ+ωn) ωn F c δ + ω n - 4.6Asin[β]F c ω n δ 2 -ω 2 n - 7A 2 sin 2 β + π 2 + δ ωn F c 2π (δ + 2ω n ) - 0.76Asin 3β + 2π 3 + δ ωn F c δ + 3ω n + 7A 2 sin[4β]F c 8π (δ + 4ω n ) - 7A 2 sin 4β + 2π 4 + δ ωn F c 8π (δ + 4ω n ) - 21A 2 sin 2πδ ωn F c 4πδ + 7A 2 sin 2β + π 4 -2δ ωn F c 2π (δ -2ω n ) - 4cos[β]sin[β]F c ω n δ 2 -4ω 2 n - 0.5sin 2 β + π 2 + δ ωn F c δ + 2ω n + 0.5sin 2β + π 4 -2δ ωn F c δ -2ω n (15) 
The steady-state motions occur when Ȧ = β = 0, which corresponds to the singular points of the equations system ( 14) and (15). Thus, the frequency-response equation can be writen in its parametric form as :

           σ = f [β, δ] A = f [β, δ] (16) 
3 Results

The effect of the Coriolis force frequency in the resonator frequency response at its primary resonance is shown in Figure [START_REF] Gui | Nonlinearity and hysteresis of resonant strain gauges[END_REF]. The ratio between the drive and the resonator frequency varies from 0.25 to 1 and the external rotation applied to the device about the z-axis is about 150˚/s. We observe the separation of the curve branches when the Coriolis frequency equals the resonator frequency. It appears also that the quality factor decreases when the external rotation applied to the microgyroscope increases. For detection stability, embedding the resonators in the feedback loop of an oscillator circuit [START_REF] Seshia | An integrated microelectromechanical resonant output gyroscope[END_REF] permits the conservation of a uniform sensitivity through a defined full scale limited by a critical amplitude.
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Resonator design: length =50µm, width = 0.5µm, thickness = 2µm. Figure [START_REF] Kacem | From MEMS to NEMS : Modelling and characterization of the non linear dynamics of resonators, a way to enhance the dynamic range[END_REF] shows the effect of the parametric and the nonlinear terms in the periodicity of the resonator response and its amplitude(length =50µm, width = 0.5µm, thickness = 2µm). Moreover, the transition to the quasi-periodicity is shown in the phase plane when the drive frequency equals the resonator frequency and for an external rotation θ = 1000˚/s. This phenomenon is due to the resonator frequency modulation by the parametric terms but it can be also a consequence of the energy transfer between the parametric terms in the Mathieu equation and the nonlinear Vander pool damping term [START_REF] Nayfeh | Introduction to Perturbation Techniques[END_REF]. The quasi-periodicity of the resonator response may lead to a chaotic [START_REF] Demartini | Chaos for a Microelectromechanical Oscillator Governed by the Nonlinear Mathieu Equation[END_REF] device. w max q = 250 ±ês q = 100 ±ês q = -100 ±ês q = -250 ±ês ifferent angular rates of the resonant microgyrosope at a frequency equal to the ior. Wmax is the normalized displacement with respect to the gap. width = 0.5µm, thickness = 2µm. In this paper, it proves that increasing the drive frequency of the proof mass for resonant microgyroscopes can be advantageous in order to increase the detectability of the device (the maximum is situated at 0.6 of frequency ratio between the drive part and the sense part). This improvement has a direct effect on the full scale of the microgyroscope which will be limited by the instability of the Mathieu resonator.
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4 ConclusionsA

 4 complete analytical model describing the nonlinear dynamics of Mathieu resonators applied to resonant MEM gyroscopes has been presented. The model is based on the Galerkin discretization coupled with a perturbation technique (the averaging method) enabling the study of the dynamic behaviour of the sensing parts of these devices. In addition, this model constitutes a quick and powerful tool on the way of understanding the different dynamics phenomena and the description of the dynamics transition from periodicity to quasi-periodicity.
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 545 Fig.5 Variation of Wmax with the frequency ratio between the coriolis force and the sensing resonance. θ is the angular rate of the microgyroscope.