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Non linear dynamics of Mathieu resonators for resonant gyroscope applications

to study the stability of resonant MEM gyroscopes.

Introduction:

The resonant sensing technique [START_REF] Roessig | IntegratedMEMStuning fork oscillators for sensor applications[END_REF] is highly sensitive, has the potential for large dynamic range, good linearity, low noise and potentially low power. However, when scaling sensors down to NEMS, nonlinearities occur sooner [START_REF] Gui | and hysteresis of resonant strain gauges[END_REF] restricting the benefits of the resonant sensors. Moreover, for resonant gyroscopes, the frequency of the coriolis forces becomes closer to the resonator frequency. The idea is to investigate the dynamic behaviour of nonlinear Mathieu resonators [START_REF] Demartini | Chaos for a Microelectromechanical Oscillator Governed by the Nonlinear Mathieu Equation[END_REF] in order to find the optimum physical conditions for gyroscope designers to maximise the sensors performances.

Device and equations:

The resonant output gyroscope [START_REF] Seshia | An integrated microelectromechanical resonant output gyroscope[END_REF] shown in Figure [START_REF] Roessig | IntegratedMEMStuning fork oscillators for sensor applications[END_REF], as its name implies, utilizes resonant sensing as the basis for Coriolis force detection. In its simplest form, the device consists of three resonating elements, a proof mass and two resonating sense elements. The dynamics of the device can be described by a series of coupled differential equations. The proof mass dynamics can be described for most part by a classical spring-mass-damper equation [START_REF] Roessig | IntegratedMEMStuning fork oscillators for sensor applications[END_REF]. The dynamics of the resonators subjected to an axial time-varying Coriolis force is described by a nonlinear partial differential equation ( 2) with boundary conditions (3) as follows:
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Model:

The Galerkin discretization procedure was used in order to represent the solution of Equation 2 in terms of a linearly independent set of basis functions ( )

x n φ
where each basis function satisfies the boundary conditions described in Equation 3. This procedure permits transforming the nonlinear partial differential Equation 2 into a finite system of nonlinear Mathieu equations. Since we are interested in the response of the resonator at resonance when the first mode is dominant, we reduce the system of ordinary differential equations given by Galerkin discretization to a nonlinear Mathieu equation. A perturbation technique [START_REF] Nayfeh | Introduction to Perturbation Techniques[END_REF] was used in order to obtain two first order non-linear ordinary-differential equations which describe the amplitude and phase modulation of the response and permits the computation of its stability.

Results:

The effect of the Coriolis force frequency in the resonator frequency response at its primary resonance is shown in the Figure [START_REF] Gui | and hysteresis of resonant strain gauges[END_REF]. We observe the separation of the curve branches when the Coriolis frequency is closed to the resonator frequency. This particular case is treated in Figure (3) for different kinds of resonator behavior. It appears that the quality factor decreases when the angular rate of the microgyroscope increases. Figure [START_REF] Seshia | An integrated microelectromechanical resonant output gyroscope[END_REF] shows the effect of the parametric and the nonlinear terms in the periodicity of the resonator response and its amplitude.

Conclusions:

Another limitation for the full scale of a resonant microgyroscope is underlined: the frequency ratio between the proof mass actuation and the resonator sensing. It appears in Figure [START_REF] Nayfeh | Introduction to Perturbation Techniques[END_REF] that the symmetry can be broken between negative and positive Coriolis stress effect when the resonator lose the stability for high coriolis forces amplitude and frequency. The maximum of sensitivity is situated at 0.6 of frequency ratio. 
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 3 Fig.3: Predicted forced frequency responses for different angular rates of the resonant microgyrosope at a frequency equal to the resonator frequency with different kinds of behaviour. Wmax is the normalized displacement with respect to the gap. .

Fig. 3 .

 3 Fig.3.b: Mixed behaviour .
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 31 Fig.3.c: Hardening behaviour .Resonator design: length =100µm, width = 5µm, thickness = 2µm.Resonator design: length =50µm, width = 0.5µm, thickness = 2µm.
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 25 Fig.2: Predicted forced frequency responses including Coriolis force at different frequencies. Microgyroscope angular rate = 150 °/s.
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 4 Fig.4.a: Phase plane .

Fig. 4 :

 4 Fig.4: Long time integration Resonator design: length =50µm, width = 0.5µm, thickness = 2µm Microgyroscope angular rate = 1000 °/s