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For the first time, a complete model describing the non linear dynamics of Mathieu resonators is presented in 

order to study the stability of resonant MEM gyroscopes.  

 

Introduction: 

The resonant sensing technique [1] is highly sensitive, has the potential for large dynamic range, good linearity, low 

noise and potentially low power. However, when scaling sensors down to NEMS, nonlinearities occur sooner [2] 

restricting the benefits of the resonant sensors. Moreover, for resonant gyroscopes, the frequency of the coriolis forces 

becomes closer to the resonator frequency. The idea is to investigate the dynamic behaviour of nonlinear Mathieu 

resonators [3] in order to find the optimum physical conditions for gyroscope designers to maximise the sensors 

performances. 

Device and equations: 

The resonant output gyroscope [4] shown in Figure (1), as its name implies, utilizes resonant sensing as the basis for 

Coriolis force detection. In its simplest form, the device consists of three resonating elements, a proof mass and two 

resonating sense elements. The dynamics of the device can be described by a series of coupled differential equations. 

The proof mass dynamics can be described for most part by a classical spring-mass-damper equation (1). The 

dynamics of the resonators subjected to an axial time-varying Coriolis force is described by a nonlinear partial 

differential equation (2) with boundary conditions (3) as follows: 
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Model: 

The Galerkin discretization procedure was used in order to represent the solution of Equation 2 in terms of a linearly 

independent set of basis functions ( )xnφ  where each basis function satisfies the boundary conditions described in 

Equation 3. This procedure permits transforming the nonlinear partial differential Equation 2 into a finite system of 

nonlinear Mathieu equations. 

Since we are interested in the response of the resonator at resonance when the first mode is dominant, we reduce the 

system of ordinary differential equations given by Galerkin discretization to a nonlinear Mathieu equation. 

A perturbation technique [5] was used in order to obtain two first order non-linear ordinary-differential equations 

which describe the amplitude and phase modulation of the response and permits the computation of its stability. 

Results: 

The effect of the Coriolis force frequency in the resonator frequency response at its primary resonance is shown in the 

Figure (2). We observe the separation of the curve branches when the Coriolis frequency is closed to the resonator 

frequency. This particular case is treated in Figure (3) for different kinds of resonator behavior. It appears that the 

quality factor decreases when the angular rate of the microgyroscope increases. Figure (4) shows the effect of the 

parametric and the nonlinear terms in the periodicity of the resonator response and its amplitude. 

Conclusions: 

Another limitation for the full scale of a resonant microgyroscope is underlined: the frequency ratio between the proof 

mass actuation and the resonator sensing. It appears in Figure (5) that the symmetry can be broken between negative 

and positive Coriolis stress effect when the resonator lose the stability for high coriolis forces amplitude and 

frequency. The maximum of sensitivity is situated at 0.6 of frequency ratio. 
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Fig.3: Predicted forced frequency responses for different angular rates of the resonant microgyrosope at a frequency equal to the 

resonator frequency with different kinds of behaviour. Wmax is the normalized displacement with respect to the gap. 
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� Black curve:  0 °/s 
 
� Blue curve:  250 °/s 
 

� Green curve:  500 °/s 
 

� Red curve:  1000 °/s 

� Black curve:  0 °/s 
 
� Blue curve:  100 °/s 
 

� Green curve:  200 °/s 
 

� Red curve:  500 °/s 

� Black curve:  0 °/s 
 

� Blue curve:  100 °/s 
 
� Green curve:  200 °/s 
 

� Red curve:  500 °/s 

Fig.3.a: Softening behaviour 
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Fig.3.b: Mixed behaviour 
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Fig.3.c: Hardening behaviour 
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Resonator design: length =100µm, width = 5µm, thickness = 2µm. 
Resonator design: length =50µm,  

width = 0.5µm, thickness = 2µm. 

Fig.1: Schema of the resonant microgyroscope. 
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Fig.2: Predicted forced frequency responses including Coriolis force 

at different frequencies. Microgyroscope angular rate = 150 °/s. 

� Black curve: 
Coriolis frequency = 0.25 resonator frequency 

� Blue curve:   
Coriolis frequency = 0.5 resonator frequency 
� Green curve:   
Coriolis frequency = 0.75 resonator frequency 

� Red curve:   
Coriolis frequency = resonator frequency 

�  

Resonator design:  

Length =50µm 

Width = 0.5µm 

Thickness = 2µm 

Fig.5 Variation of Wmax with the frequency ratio 

between the coriolis force and the sensing resonance. 

θ is the angular rate of the microgyroscope. 

Fig.4.a: Phase plane 
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Fig.4.b: Time history 
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Coriolis frequency = resonator frequency 

 

� Green curve :  
Coriolis frequency = 0.1 resonator frequency 

� Black curve : 
Coriolis frequency = resonator frequency 

 

Fig.4: Long time integration 

Resonator design: length =50µm,  

width = 0.5µm, thickness = 2µm 

Microgyroscope angular rate = 1000 °/s 
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