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We discuss an implementation of Quantum Zeno Dynamics in a Cavity Quantum Electrodynamics
experiment. By performing repeated unitary operations on atoms coupled to the field, we restrict
the field evolution in chosen subspaces of the total Hilbert space. This procedure leads to promising
methods for tailoring non-classical states. We propose to realize ‘tweezers’ picking a coherent field at
a point in phase space and moving it towards an arbitrary final position without affecting other non-
overlapping coherent components. These effects could be observed with a state-of-the-art apparatus.

PACS numbers: 03.65.Xp, 42.50.Dv, 42.50.Pq

In the Quantum Zeno effect (QZE) [1], repeated pro-
jective measurements block the evolution of a system in
a non-degenerate eigenstate of the measured observable.
It has been observed on two-level systems [2] and on an
harmonic oscillator in a Cavity Quantum Electrodynam-
ics (CQED) experiment [3]. A Quantum Zeno dynamics
(QZD) [4] takes place when the system is not confined
to a single state, but rather evolves under the action of
its free hamiltonian H in a multidimensional subspace
of its Hilbert space. This can be achieved either by re-
peated measurements of an observable with degenerate
eigenvalues, or by repeated actions of a unitary kick UK

with multi-dimensional invariant subspaces, the two pro-
cedures being physically equivalent [5]. We focus here
on the latter case, related to the so-called ‘bang-bang’
control [6] and NMR manipulation techniques [7].
The system evolution is stroboscopic, alternating small

free evolution steps described by U(δt) = exp(−iHδt/~)
with UK kicks. The succession of N steps (fixed du-
ration t = Nδt) corresponds to the unitary UZ(N) =
[UKU(t/N)]N . It is, in the N → ∞ limit, the evolution
under an effective Hamiltonian HZ =

∑
µ PµHPµ where

the Pµ’s are the projectors on the invariant subspaces of
UK [4]. By choosing properly UK (or equivalently the
repeatedly measured observable), one can tailor the sys-
tem evolution, leading to decoherence control [5], state
purification [8] and quantum gates implementation [9].
QZD can also inhibit entanglement between subsystems,
making a quantum evolution semi-classical [10].
In this Letter, we propose a CQED implementation of

the bang-bang QZD control. We exploit the non-linearity
of the atom-cavity system [11] to implement a photon-
number-selective UK . The field dynamics in its Hilbert
space H is confined in two disconnected subsets H<s and
H>s, corresponding to photon numbers smaller or larger
than a preset value s. This leads to novel methods of
non-classical field states preparation and tailoring. We
propose a ‘phase space tweezer’ picking selectively a co-
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FIG. 1. (a) Proposed experimental scheme. A slow atomic
beam extracted from a 2D-Magneto Optical Trap (bottom)
forms an atomic fountain with atoms nearly at rest in the
center of the high-quality microwave Fabry-Perot cavity C

(only one mirror shown). Sources S and S′ address respec-
tively the dressed atomic levels and the cavity mode. Elec-
trodes around the cavity mirrors generate the electric fields
preparing the circular state shown in the center. (b) Scheme
of the dressed atomic levels. The arrow indicates the photon-
number selective transition addressed by S for s = 1.

herent state component of a quantum superposition and
moving it at will in phase space independently from the
other components.
Our proposal could be implemented in a microwave

CQED experiment with circular Rydberg atoms and a su-
perconducting millimeter-wave cavity [11]. The cavity C
[Fig. 1(a)] is crossed by a slow beam of Rubidium ground
state atoms, in an ‘atomic fountain’ arrangement. Close
to their turning point, atoms are nearly at rest. One of
them is promoted to the circular level h (principal quan-
tum number 49) using static and r.f. electric fields. This
operation does not change the state of C, tuned on reso-
nance with the 51.1 GHz transition between g and e (50
and 51 circular states). The analysis that follows pertains
to the dynamics of this single atom and the cavity.
The source S drives the h → g transition near
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FIG. 2. (a) QZD dynamics in H<6. Ten snapshots of the field Wigner function W (ξ) obtained after a number of steps indicated
above each frame. The cavity is initially in its vacuum state, s = 6 and β = 0.1. The EC is plotted as a blue dashed line. (b)
QZD dynamics in H>6. Same as (a) with an initial α = −5 amplitude. (c) Same as (b), with an initial amplitude α = −4+i

√
6.

In (b) and (c) the successive frames correspond to the same step numbers as in (a).

54.3 GHz. It does not couple directly to the off-resonant
cavity. It realizes UK by probing the eigenstates of the
atom/cavity system [Fig. 1(b)]. The energies of the |h, n〉
states (atom in h with n photons) do not depend on the
atom-cavity coupling, since C is far off-resonance from
the h → g transition. The source S couples |h, n〉 to the
dressed states |±, n〉 = (|e, n − 1〉 ± |g, n〉)/

√
2, which

are superpositions of the degenerate uncoupled states
|e, n − 1〉, |g, n〉. The splitting between dressed states
is Ω

√
n where Ω is the vacuum Rabi frequency. Hence,

the |h, n〉 → |+, n〉 transition frequency depends upon
n. We tune S to perform on the |h, s〉 → |+, s〉 tran-
sition a 2π Rabi pulse whose amplitude is weak enough
(and its duration correspondingly long enough) not to
appreciably affect |h, n〉 with n 6= s. It results in the
transformation |h, n〉 → (−1)δns |h, n〉. The atom always
ends up in h while the field experiences UK = Us with
Us = 11−2|s〉〈s|. Such a photon-number dependent Rabi
pulse [12] was used with s = 1 for a single-photon QND
detection [13] and for a CNOT gate in CQED [14].
The free cavity dynamics is produced by the source

S′, resonantly coupled with C and acting during time
intervals δt between two Us operations. Being not reso-
nant with the atom in h, S′ leaves it unaffected. The
free evolution is described by the Hamiltonian H =
−i(E∗a − Ea†), where E is the source amplitude and a
(a†) the photon annihilation (creation) operator. We use
an interaction representation eliminating the field phase
rotation at cavity frequency. The unitary U(δt) is the dis-
placement D(β) = exp(βa† − β∗a), with β = Eδt/~ ≪ 1.
After p repetitions of UsU(δt), the cavity state can be
reconstructed [15].
The eigenvalues of Us are −1 and +1. The former cor-

responds to the one-dimension eigenspace Hs, generated
by |s〉 (projector Ps). The latter is associated to the di-

rect sum of H<s (projector P<s), generated by the Fock
states |0〉, . . . , |s−1〉, and H>s (projector P>s) generated
by Fock states above |s〉. The projectors Pµ (µ = +,−)
are thus P− = Ps and P+ = P<s + P>s.
SinceH is a linear combination of a and a†, HZ reduces

to P<sHP<s + P>sHP>s. Under the QZD, field states
restricted to H<s and H>s remain confined in these sub-
spaces, |s〉 realizing a hard ‘wall’ between them. This wall
induces remarkable features in the evolution. If we start
from the vacuum in C with s = 1, the system remains
inside H<1 i.e. in |0〉. We recover the QZE [3].
We have simulated this QZD procedure [16]. Fig. 2(a)

presents 10 snapshots of the field Wigner function, W (ξ),
separated by intervals of 5 steps, for s = 6 and β = 0.1.
The field starts from |0〉 ∈ H<6. Its amplitude first in-
creases along the real axis (free dynamics). Between 15
and 20 steps, the amplitude reaches ≃ 2 and QZD comes
into play. The coherent state ‘collides’ on the Us-induced
‘wall’, materialized in phase space as an ‘Exclusion Cir-
cle’ (EC) of radius

√
6 (dashed line in Fig. 2). The field

amplitude stops growing and undergoes a progressive π
phase shift between steps 20 and 30. At step 25, the field
is in a ‘cat state’, quantum superposition of two compo-
nents with opposite phases. The fringing feature inside
the EC is the signature of the quantum coherence of this
superposition. This cat contains only odd photon num-
bers (probabilities for 5, 3 and 1 photons are 0.63, 0.31
and 0.03). At step 35, the field state is nearly coherent
with an amplitude close to -2. It then resumes its mo-
tion from left to right along the real axis, going through
|0〉 again (around step 45) and heading towards its next
‘collision’ with the EC.
Fig. 3 presents the long-term evolution of the field

energy. During the first few hundred steps, the oscil-
lations reveal the quasi-periodic motion of the field in-
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FIG. 3. Energy of the field as a function of the number of
steps for a QZD dynamics inside H<6. Conditions are the
same as for Fig. 2(a), which presents snapshots of the first
oscillation.

side the EC. State distortions, however, accumulate and
damp the oscillations, whose contrast nearly vanishes af-
ter 800 steps. Since there is only a finite set of frequencies
in P<6HP<6, we observe at longer times a quantum re-
vival [11]. The energy oscillations resume and the field
comes back to an oscillating coherent state periodically
colliding with the EC as described above.
Fig. 2(b) illustrates QZD in H>s with snapshots of the

field Wigner function for s = 6 and an initial coherent
state |α = −5〉. The field collides on the EC after 20
steps. It undergoes a QZD-induced π phase shift being,
after 25 steps, in a cat state. After 30 steps, the state is
again nearly coherent with a positive amplitude. It re-
sumes its motion along the real axis. After 45 steps, its
amplitude is slightly larger than 4.5. It would be −0.5 in
the case of free dynamics. The QZD-induced phase inver-
sion accelerates the ‘propagation’ in phase space. This
opens interesting possibilities when the initial amplitude
is such that the field state collides tangentially on the
EC. The parts of the Wigner function that come clos-
est to the EC propagate faster than others. The state is
distorted and ends up strongly squeezed [Fig. 2(c)].
QZD can be generalized to ECs centered at an arbi-

trary point γ in phase space by changing the kick op-
erator UK from Us to Us(γ) = D(γ)UsD(−γ) (these
displacements γ being also performed by S′). After
p steps, the global evolution operator is UZ(s, γ, p) =
[Us(γ)D(β)]p which can be expressed, using displace-
ment operator commutation relations, as UZ(s, γ, p) =
D(γ)UZ(s, 0, p)D(−γ) exp[2ipℑ(βγ∗)]. Up to a topologi-
cal phase, the state after p steps is equivalently obtained
by first displacing the field by −γ, performing p QZD
steps in an EC centered at origin and finally displacing
back the field by γ.
This leads to the concept of phase space tweezer. Ap-

plying this procedure with s = 1 to an initial cat state
|γ〉 + |α〉 (〈γ|α〉 ≈ 0), we can selectively block the evo-
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FIG. 4. (a)-(b) Initial and final Wigner functions W (ξ) for
a phase space tweezer operation. The first step ECs are de-
picted as solid lines in (a) and dotted lines in (b), the final
ECs as solid lines in (b). The arrows in (b) indicate the two
EC centers trajectories. (c) Cat created by a vacuum state
crush operation. Initial (dotted lines) and final (solid line)
ECs are plotted, with arrows indicating the motion of their
centers. (d) Four-component cat created by three successive
crushing operations.

lution of |γ〉 while leaving the other component free
to evolve. After N steps, we get the ‘stretched’ cat
|γ〉+D(Nβ)|α〉 = |γ〉+ exp[iNℑ(βα∗)]|α+Nβ〉.
In an interesting variant, the position γp of the tweezer

at step p is changed by a small amount at each step
(|γp+1 − γp| ≪ 1), while β is set to zero (no free evo-
lution). The sequence of {γp} defines a trajectory T in
phase space followed by the center of the EC. A coherent
state with the initial amplitude αi = γ1 follows adiabat-
ically this trajectory and becomes, after the p-th step, a
coherent state with amplitude αp = γp. We realize in this
way a tweezer which moves one selected coherent state,
while not affecting the evolution of all the coherent states
whose amplitude remains away from T .
A combination of tweezers can move all the com-

ponents of a superposition of non-overlapping coherent
states from arbitrary initial to final positions. An obvi-
ous method is to grasp them one by one, driving them
from their initial to their final position (taking care to
move them so that different components never overlap).
The tweezers can also be used in parallel by applying
incremental motions alternatively on each component.
Fig. 4 illustrates this procedure for a two-component

cat, initially |α〉 + | − α〉 with α = 2. It is turned in
100 steps (50 on each component) into |α′〉+ |−α′〉 with
α′ = 5i. Panels (a) and (b) present the initial and final
Wigner functions. The final fidelity is 98.8% with respect
to the expected cat. It remains greater than 68% if the
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operation is performed in 20 steps only, exhibiting the ro-
bustness of this adiabatic procedure, which is promising
for experimental implementations.
The initial cat state can be generated in various ways

using dispersive [17] or resonant [18] atoms. An adapted
tweezer procedure also prepares from |0〉 mesoscopic su-
perpositions which are approximations of these cat states.
We ‘crush’ the vacuum between two s = 1 ECs whose
centers, initially at ±2.5, move simultaneously towards
each other in 200 steps, until they reach the origin (the
wavefunction remaining outside both ECs). Fig. 4(c)
presents the final Wigner function. The state is a super-
position of two well-separated components (average en-
ergy 6.4 photons). Its fidelity with respect to a |α〉+|−α〉
cat with the same average energy is 42%. The final com-
ponents can be crushed again and so on, leading to a
superposition state with an arbitrary number of com-
ponents. Fig. 4(c) presents the Wigner function of a
four-component cat obtained by crushing again each of
the two components in Fig. 4(b) between ECs moving
towards each other along the imaginary axis direction.
QZD is also obtained when the interrogation pulse has

a Rabi angle θ different from 2π. The pulse performs
then a unitary kick acting on the atom/cavity system,
which mixes |h, s〉 with |+, s〉 and would create atom-
field entanglement if C contained s photons. This unitary
admits an invariant subspace, belonging to the eigenvalue
+1 spanned by the projection |h〉〈h| ⊗ (P<s + P>s), the
same as for a 2π pulse. Starting from an atom in |h〉 and
a field in H<s or H>s, we obtain a QZD leaving the atom
in |h〉 and the field in its initial subspace. Under perfect
QZD, the cavity never contains s photons and the atom
and field are never entangled by the interrogation pulse.
Obviously, QZD is not achieved if θ is very small, each
kick operation being too close to 11. We have checked
numerically that, for θ ≃ 1, we recover within a good
approximation all the results described above.
Numerical simulations can also take into account re-

alistic experimental imperfections. We have simulated a
typical microwave CQED experiment [15] with a cavity
damping time Tc = 0.13 s and an atom-field coupling
Ω/2π = 50 kHz. We have taken into account the limited
selectivity of the interrogation pulse, which must be at
the same time much shorter than Tc and much longer
than 1/Ω. We have carefully optimized the interroga-
tion pulse parameters [19] for a tweezer operation lead-
ing, in 10 steps, from an |α = −2〉 + |α = 2〉 cat to
|α = −3〉+ |α = 3〉. The total duration of the simulated
experiment is 3.4 ms and the final fidelity with respect
to the ideal cat is 76%.
Quantum Zeno dynamics applied to a field oscillator

leads to novel methods for tailoring non-classical fields.
Phase space tweezers are promising tools for generat-
ing and manipulating arbitrary superpositions of coher-
ent states (i.e. arbitrary states superpositions) [19] and

to study their evolution under the effect of decoher-
ence [17]. Experimental demonstrations of these effects
are within reach of a state-of-the-art microwave CQED
set-up. They could also be implemented in circuit QED,
a field in which high ΩTc quality factors are also real-
ized [20]. Manipulating at will the state of a quantum
oscillator in its phase space provides a new insight into
the physics of mesoscopic quantum superpositions and
the exploration of the quantum to classical boundary.
We acknowledge support by the EU and ERC (AQUTE

and DECLIC projects) and by the ANR (QUSCO-
INCA).
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