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On hitting times of the winding processes of planar Brownian motion and of Ornstein-Uhlenbeck processes, via Bougerol's identity
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Some identities in law in terms of planar complex valued Ornstein-Uhlenbeck processes (Z t = X t + iY t , t ≥ 0) including planar Brownian motion are established and shown to be equivalent to the well known Bougerol identity for linear Brownian motion (β t , t ≥ 0): for any fixed u > 0:

= β( u 0 ds exp(2βs)) , with ( βt , t ≥ 0) a Brownian motion, independent of β. These identities in law for 2-dimensional processes allow to study the distributions of hitting times T θ c ≡ inf{t :

and more specifically of T θ -c,c ≡ inf{t : θ t / ∈ (-c, c)}, (c > 0) of the continuous winding processes θ t = Im( t 0 dZs Zs ), t ≥ 0 of complex valued Ornstein-Uhlenbeck processes.

Introduction

The conformal invariance of planar Brownian motion has deep consequences as to the structure of its trajectories (see, e.g., Le Gall [START_REF] Gall | Some properties of planar Brownian motion[END_REF]). In particular, a number of articles have been devoted to the study of its continuous winding process (θ t , t ≥ 0): Spitzer [START_REF] Spitzer | Some theorems concerning two-dimensional Brownian Motion[END_REF], Williams [START_REF] Williams | A simple geometric proof of Spitzer's winding number formula for 2-dimensional Brownian motion[END_REF], Durrett [START_REF] Durrett | A new proof of Spitzer's result on the winding of 2-dimensional Brownian motion[END_REF], Messulam-Yor [START_REF] Messulam | On D. Williams' "pinching method" and some applications[END_REF], Pitman-Yor [START_REF] Pitman | Asymptotic Laws of planar Brownian Motion[END_REF], Le Gall-Yor [START_REF] Gall | Etude asymptotique des enlacements du mouvement brownien autour des droites de l'espace[END_REF], Bertoin-Werner [START_REF] Bertoin | Asymptotic windings of planar Brownian motion revisited via the Ornstein-Uhlenbeck process[END_REF], Yor [START_REF] Yor | Generalized meanders as limits of weighted Bessel processes, and an elementary proof of Spitzer's asymptotic result on Brownian windings[END_REF], Pap-Yor [START_REF] Pap | The accuracy of Cauchy approximation for the windings of planar Brownian motion[END_REF], Bentkus-Pap-Yor [START_REF] Bentkus | Optimal bounds for Cauchy approximations for the winding distribution of planar Brownian motion[END_REF]. In this paper, we take up again the study of the first hitting times:

T θ -d,c ≡ inf{t : θ t / ∈ (-d, c)}, (c, d > 0),
this time in relation with Bougerol's well-known identity (see Bougerol [START_REF] Ph | Exemples de théorèmes locaux sur les groupes résolubles[END_REF], Alili-Dufresne-Yor [START_REF] Alili | Sur l'identité de Bougerol pour les fonctionnelles exponentielles du mouvement Brownien avec drift. In Exponential Functionals and Principal Values related to Brownian Motion. A collection of research papers[END_REF] and Yor [START_REF] Yor | Exponential Functionals of Brownian Motion and Related Processes[END_REF]): for fixed u > 0:

sinh(β u ) (law) 
= β( u 0 ds exp(2βs)) ,

where ( βt , t ≥ 0) is a Brownian motion ‡ , independent of β.

In particular, it turns out that: for fixed c > 0:

θ T β c (law) = C a(c) , (⋆) 
where β is a BM ‡ independent of (θ u , u ≥ 0), T β c = inf{t : βt = c}, (C t , t ≥ 0) is a standard Cauchy process and a(c) = arg sinh(c) ≡ log c + √ 1 + c 2 , c ∈ R. The identity (⋆) yields yet another proof of the celebrated Spitzer theorem:

2 log t θ t (law) -→ t→∞ C 1 ,
with the help of Williams' "pinching method" (see Williams [START_REF] Williams | A simple geometric proof of Spitzer's winding number formula for 2-dimensional Brownian motion[END_REF] and Messulam-Yor [START_REF] Messulam | On D. Williams' "pinching method" and some applications[END_REF]). Moreover, we study the distributions of T θ -∞,c and T θ -c,c . In particular, we give explicit formulae for the density function of T θ -c,c and for the first moment of ln T θ -c,c .

The last section of the paper is devoted to developing similar results when planar Brownian motion is replaced by a complex valued Ornstein-Uhlenbeck process. We note that Bertoin-Werner [START_REF] Bertoin | Asymptotic windings of planar Brownian motion revisited via the Ornstein-Uhlenbeck process[END_REF] already made discussions of windings for planar Brownian motion using arguments related to Ornstein-Uhlenbeck processes.

Firstly, we obtain some analogue of (⋆) when T β c is replaced by T for λ large and for λ small.

The Brownian motion case 2.1 A reminder on planar Brownian motion

Let (Z t = X t +iY t , t ≥ 0) denote a standard planar Brownian motion, starting from x 0 + i0, x 0 > 0, where (X t , t ≥ 0) and (Y t , t ≥ 0) are two independent linear Brownian motions, starting respectively from x 0 and 0.

As is well known (see e.g. Itô-McKean [START_REF] Itô | Diffusion Processes and their Sample Paths[END_REF]), since x 0 = 0, (Z t , t ≥ 0) does not visit a.s. the point 0 but keeps winding around 0 infinitely often. In particular, the continuous winding process θ t = Im( t 0 dZs Zs ), t ≥ 0 is well defined.

Furthermore, there is the skew product representation:

log |Z t | + iθ t ≡ t 0 dZ s Z s = (β u + iγ u ) u=Ht= t 0 ds |Zs| 2 , (1) 
where (β u + iγ u , u ≥ 0) is another planar Brownian motion starting from log x 0 + i0. For a study of the Bessel clock H, see Yor [START_REF] Yor | Loi de l'indice du lacet Brownien et Distribution de Hartman-Watson[END_REF].

Rewriting (1) as:

log |Z t | = β Ht ; θ t = γ Ht , (2) 
we easily obtain that the total σ-fields σ{|Z t | , t ≥ 0} and σ{β u , u ≥ 0} are identical, whereas (γ u , u ≥ 0) is independent from (|Z t | , t ≥ 0). A number of studies of the properties of the first hitting time (see Figure 1

(b)) T θ -d,c ≡ inf{t : θ t / ∈ (-d, c)}, (c, d > 0),
have been developed, going back to Spitzer [START_REF] Spitzer | Some theorems concerning two-dimensional Brownian Motion[END_REF].

In particular, it is well known (Spitzer [START_REF] Spitzer | Some theorems concerning two-dimensional Brownian Motion[END_REF], Burkholder [START_REF] Burkholder | Exit times of Brownian Motion, Harmonic Majorization and Hardy Spaces[END_REF], Revuz-Yor [START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF] Ex. 2.21/page 196) that:

E (T θ -d,c ) p < ∞ if and only if p < π 2(c + d) . (3) 
Moreover, Spitzer's asymptotic theorem (see e.g. Spitzer [START_REF] Spitzer | Some theorems concerning two-dimensional Brownian Motion[END_REF]) states that:

2θ t log t (law) -→ t→∞ C 1 (law) = γ T β 1 , (4) 
where C 1 is a standard Cauchy variable.

On the Laplace transform of the distribution of the hitting time

T θ c ≡ T θ -∞,c
Now, we use the representation (2) to access the distribution of T θ c (see Figure 1(a)). We define T γ c ≡ inf{t : γ t / ∈ (-∞, c)} the hitting time associated to the Brownian motion (γ t , t ≥ 0). Note that, from ( 2):

H T θ c = T γ c , hence: T θ c = H -1 u u=T γ c
, where

H -1 u ≡ inf{t : H t > u} = u 0 ds exp(2β s ) := A u . (5) 
Thus, we have obtained:

T θ c = A T γ c , (6) 
where (A u , u ≥ 0) and T γ c are independent, since β and γ are independent. We can write:

β s = (log x 0 ) + β (0) s , with (β (0)
s , s ≥ 0) a standard onedimensional Brownian motion starting from 0. Then, we deduce from ( 6) that:

T θ c = x 2 0 T γ c 0 ds exp(2β (0) s ) . (7) 
From now on, for simplicity, we shall take x 0 = 1, but this is really no restriction, as the dependency in x 0 , which is exhibited in [START_REF] Billingsley | Probability and Measure[END_REF], is very simple. We shall also make use of Bougerol's identity [START_REF] Ph | Exemples de théorèmes locaux sur les groupes résolubles[END_REF][START_REF] Alili | Sur l'identité de Bougerol pour les fonctionnelles exponentielles du mouvement Brownien avec drift. In Exponential Functionals and Principal Values related to Brownian Motion. A collection of research papers[END_REF] and [START_REF] Yor | Exponential Functionals of Brownian Motion and Related Processes[END_REF] (p. 200), which is very useful to study the distribution of A u (e.g. [START_REF] Matsumoto | On Bougerol and Dufresne's identities for exponential Brownian functionals[END_REF][START_REF] Matsumoto | Exponential functionals of Brownian motion, I: Probability laws at fixed time[END_REF]). For any fixed u > 0:

sinh(β u ) (law) = βAu = β( u 0 ds exp(2βs)) , (8) 
where on the right hand side, ( βt , t ≥ 0) is a Brownian motion, independent of A u ≡ u 0 ds exp(2β s ). Thus, from ( 8) and ( 6), and as is well known [START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF], the law of β T γ c is the Cauchy law with parameter c, i.e., with density:

h c (y) = c π(c 2 + y 2 ) ,
we deduce that:

Proposition 2.1 For fixed c > 0, there is the following identity in law:

sinh(C c ) (law) = β(T θ c ) , (9) 
where, on the left hand side, (C c , c ≥ 0) denotes a standard Cauchy process and on the right hand side, ( βu , u ≥ 0) is a one-dimensional BM, independent from T θ c .

We may now identify the densities of the variables found on both sides of (9),i.e.: on the left hand side:

1 √ 1+x 2 h c (arg sinh x) = 1 √ 1+x 2 h c (a(x)) ; on the right hand side: E 1 √ 2πT θ c exp -x 2 2T θ c
, where a(x) = arg sinh(x). Thus, we have obtained the following:

Proposition 2.2
The distribution of T θ c may be characterized by:

E 1 2πT θ c exp - x 2T θ c = 1 √ 1 + x c π(c 2 + log 2 ( √ x + √ 1 + x)) , x ≥ 0. ( 10 
)
The proof of Proposition 2.2 follows from: a(y) = arg sinh(y) ≡ log(y + 1 + y 2 ) and by making the change of variable y 2 = x. Let us now define the probability:

Q c = πc 2 2T θ c • P .
The fact that Q c is a probability follows from [START_REF] Chaumont | Exercises in Probability: A Guided Tour from Measure Theory to Random Processes[END_REF] by taking x = 0. Thus we obtain that c E[ π/2T θ c ] = 1, and we may write:

E Qc exp - x 2T θ c = 1 √ 1 + x 1 1 + 1 c 2 log 2 ( √ x + √ 1 + x)
, ∀x ≥ 0, [START_REF] Comtet | [END_REF] which yields the Laplace transform of 1/T θ c under Q c . Let us now take a look at what happens if we make c → ∞. If we denote by T β 1 ≡ inf{t : β t = 1} the first hitting time of level 1 for a standard BM β and by N a standard Gaussian variable N (0, 1), from equation [START_REF] Comtet | [END_REF], we obtain:

lim c→∞ E Qc e -x/2T θ c = E e -xN 2 /2 = E e -x/2T β 1 , (12) 
which means that :

T θ c (law) -→ c→∞ T β 1 .
(At this point, one may wonder whether there is some kind of convergence in law involving (θ u , u ≥ 0), under Q c , as c → ∞, but, we shall not touch this point).

From Proposition 2.2 we deduce the following: Corollary 2.3 Let ϕ(x) denote the Laplace transform [START_REF] Comtet | [END_REF], that is the Laplace transform of 1/2T θ c under Q c . Then, the Laplace transform of 1/2T θ c under P is:

E exp - x 2T θ c = ∞ x dw √ w -x ϕ(w). ( 13 
)
Proof of Corollary 2.3 From Fubini's theorem, we deduce from [START_REF] Comtet | [END_REF] that:

E exp - x 2T θ c = ∞ 0 dy √ y E 1 2πT θ c exp - x + y 2T θ c = ∞ 0 dy √ y ϕ(x + y) y=xt = √ x ∞ 0 dt √ t ϕ(x(1 + t)) v=1+t = √ x ∞ 1 dv √ v -1 ϕ(xv) w=xv = ∞ x dw √ w -x ϕ(w),
which is formula (13). 

Some related identities in law

This subsection is strongly related to [START_REF] Dufresne | A two-dimensional extension of Bougerol's identity in law for the exponential functional of Brownian motion: the story so far[END_REF]. A slightly different look at the combination of Bougerol's identity [START_REF] Ph | Exemples de théorèmes locaux sur les groupes résolubles[END_REF] and the skew-product representation (1) lead to the following striking identities in law:

Proposition 2.4 Let (δ u , u ≥ 0) be a 1-dimensional Brownian motion independent of the planar Brownian motion (Z u , u ≥ 0), starting from 1 + i0.

Then, for any b ≥ 0, the following identities in law hold:

(i) H T δ b (law) = T β a(b) (ii) θ T δ b (law) = C a(b) (iii) θT δ b (law) = |C a(b) |,
where C A is a Cauchy variable with parameter A and θu = sup s≤u θ s .

Proof of Proposition 2.4 From the symmetry principle (see [START_REF] André | Solution directe du problème résolu par M. Bertrand[END_REF] for the original Note and [START_REF] Gallardo | Mouvement Brownien et calcul d[END_REF] for a detailed discussion), Bougerol's identity may be equivalently stated as: sinh( βu )

(law) = δAu(β) . (14) 
Consequently, the laws of the first hitting times of a fixed level b by the processes on each side of ( 14) are identical, that is:

T β a(b) (law) = H T δ b , which is (i).
(ii) follows from (i) since:

θ u (law)
= γ Hu , with (γ s , s ≥ 0) a Brownian motion independent of (H u , u ≥ 0) and (C u , u ≥ 0) may be represented as (γ T β u , u ≥ 0). (iii) follows from (ii), again with the help of the symmetry principle.
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Remark 2.5 Proposition 2.2 may also be derived from (iii) in Proposition 2.4. Indeed, for c > 0, starting from the LHS of (iii), and letting N ∼ N (0, 1) independent from T θ c :

P θT δ b < c = P T δ b < T θ c = P b < δT θ c = P b < T θ c |N| = P b T θ c < |N| = 2 π E ∞ b/ √ T θ c dy e -y 2 /2 , (15) 
while, on the RHS of (iii):

P |C a(b) | < c = 2 c 0 a(b) dy π(a 2 (b) + y 2 ) y=a(b)h = 2 π c/a(b) 0 dh 1 + h 2 . ( 16 
)
Taking derivatives in ( 15) and ( 16) with respect to b and changing the variables b = √ x, we obtain Proposition 2.2.

Recovering Spitzer's theorem

The identity (ii) in Proposition 2.4 is reminiscent of Williams' remark (see [START_REF] Williams | A simple geometric proof of Spitzer's winding number formula for 2-dimensional Brownian motion[END_REF][START_REF] Messulam | On D. Williams' "pinching method" and some applications[END_REF]), that:

H T R r (law) = T δ log r , (17) 
where here R starts from 1 and δ starts from 0 (in fact, this is a consequence of ( 2) ). For a number of variants of [START_REF] Gallardo | Mouvement Brownien et calcul d[END_REF], see [START_REF] Yor | Une décomposition asymptotique du nombre de tours du mouvement brownien complexe[END_REF][START_REF] Mansuy | Aspects of Brownian Motion[END_REF]. This was D. Williams' starting point for a non-computational proof of Spitzer's result (4). We note that in (ii), T δ b is independent of the process (θ u , u ≥ 0) while in ( 17) T R r depends on (θ u , u ≥ 0). Actually, we can mimic Williams' "pinching method" to derive Spitzer's theorem ( 4) from (ii) in Proposition 2.4.

Proposition 2.6 (A new proof of Spitzer's theorem) As t → ∞, θ T δ √ t
θ t converges in law, which implies that:

1 log t θ T δ √ t -θ t (P ) -→ t→∞ 0, (18) 
and, in turn, implies Spitzer's theorem (see formula ( 4) ):

2 log t θ t (law) -→ t→∞ C 1 .
Proof of Proposition 2.6 From equation (ii) of Proposition 2.4 we note:

1 log b θ T δ b (law) = C a(b) log b (law) -→ b→∞ C 1 .
So, for b = √ t we have:

2 log t θ T δ √ t (law) -→ b→∞ C 1 .
On the other hand, following Williams' "pinching method", we note that:

1 log t θ T δ √ t -θ t (law) -→ t→∞ 0, since Z u = x 0 + Z (0)
u and also, as we change variables u = tv and we use the scaling property, we obtain:

θ T δ √ t -θ t ≡ Im T δ √ t t dZ u Z u (law) -→ t→∞ Im T δ 1 1 dZ (0) v Z (0) v .
Here, the limit variable is -in our opinion-of no other interest than its existence which implies [START_REF] Gradshteyn | Table of Integrals, Series and Products[END_REF], hence (4). Proposition 2.7 The asymptotic equivalence:

(log t) P (T θ c > t) t→∞ -→ (4c)/π , (19) 
holds.

As a consequence, for

η > 0, E[(log T θ c ) η + ] < ∞ if and only if η < 1 (where (•) + denotes the positive part).
Proof of Proposition 2.7 a) We rely upon the asymptotic distribution of

H t ≡ t 0 ds |Zs| 2 which is given by [32]: 4H t (log t) 2 (law) -→ t→∞ T β 1 ≡ inf{t : β t = 1}, (20) 
or equivalently:

log t 2 √ H t (law) -→ t→∞ |N| , ( 21 
)
where N is a standard Gaussian variable N (0, 1). We note that, from the representation (2) of θ t , the result ( 20) is equivalent to Spitzer's theorem [START_REF] Spitzer | Some theorems concerning two-dimensional Brownian Motion[END_REF]:

2θ t log t (law) -→ t→∞ C 1 (law) = γ T β 1 , (22) 
where C 1 is a standard Cauchy variable. b) We shall now use this, in order to deduce Proposition 2.7. We denote S θ t ≡ sup s≤t θ s ≡ S γ Ht and we note that (from scaling):

P (T θ c ≥ t) = P (S γ Ht ≤ c) = P ( H t S γ 1 ≤ c), (23) 
since γ and H are independent. Thus, we have (since S γ 1 (law)

= |N| and by making the change of variable x = cy √ Ht ):

P (T θ c ≥ t) = 2 π E c/ √ Ht 0 dx e -x 2 2 = 2 π c E 1 0 dy √ H t exp - c 2 y 2 2H t . (24) 
Thus, we now deduce from ( 21) that:

log t 2 P (T θ c ≥ t) t→∞ -→ 2 π c E [|N|] = 2 π c. ( 25 
)
which is precisely [START_REF] Ishiyama | Methods for Evaluating Density Functions of Exponential Functionals Represented as Integrals of Geometric Brownian Motion[END_REF].

It is now elementary to deduce from (25) that: for η > 0:

E[(log T θ c ) η + ] < ∞ ⇔ 0 < η < 1, since (25) 
is equivalent to:

u P (log T θ c > u) u→∞ -→ 4c π . (26) 
Consequently, Fubini's theorem yields:

E (log T θ c ) η + = ∞ 0 du η u η-1 P (log T θ c > u),
and from [START_REF] Matsumoto | On Bougerol and Dufresne's identities for exponential Brownian functionals[END_REF] this is finite if and only if:

∞ • du u η-2 < ∞ ⇔ η < 1. So, E[(log T θ c ) η + ] < ∞ ⇔ 0 < η < 1. 2 
Now we give several examples of random times T : C(R + , R) → R + which may be studied quite similarly to T θ c . For such times T , it will always be true that:

H T (θ) = T (γ) is equivalent to T (θ) = A T (γ)
, defined with respect to Z, issued from x 0 = 0. Using Bougerol's identity, we obtain:

sinh(β T (γ) ) (law) = βA T (γ) = β(T(θ)) . ( 27 
)
where ( βu , u ≥ 0) is a 1-dimensional Brownian motion independent of (β, γ) (or equivalently, of Z). Consequently, denoting by h T the density of β T (γ) , we deduce from [START_REF] Matsumoto | Exponential functionals of Brownian motion, I: Probability laws at fixed time[END_REF] that:

E 1 2πT (θ) exp(- x 2 2T (θ) ) = 1 √ 1 + x 2 h T (log(x + √ 1 + x 2 )), (28) 
or equivalently, changing x in √ x, we obtain:

E 1 2πT (θ) exp(- x 2T (θ) ) = 1 √ 1 + x h T (log( √ x + √ 1 + x)). (29) 
In a number of cases, h T is known explicitly, for example: (i)

T (γ) = T γ -d,c ⇔ T (θ) = T γ -d,c 0 ds exp (2β s ) = T θ -d,c .
Thus:

E   1 2πT θ -d,c exp(- x 2T θ -d,c )   = 1 √ 1 + x h -d,c (log( √ x + √ 1 + x)), (30) 
where h -d,c is the density of the variable β T γ -d,c . The law of β T γ -d,c may be obtained from its characteristic function which is given by [START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF], page 73:

E exp(iλβ T γ -d,c ) = E exp(- λ 2 2 T γ -d,c ) = cosh( λ 2 (c -d)) cosh( λ 2 (c + d))
.

In particular, for c = d, we recover the very classical formula:

E exp(iλβ T γ -c,c ) = 1 cosh(λc)
.

It is well known that [START_REF] Dugué | 158 Random Functions: General Theory with Special Reference to Laplacian Random Functions by Paul Lévy[END_REF][START_REF] Biane | Valeurs principales associées aux temps locaux browniens[END_REF]:

E exp(iλβ T γ -c,c )) = 1 cosh(λc) = 1 cosh(πλ c π ) = ∞ -∞ e i( λc π )x 1 2π 1 cosh( x 2 ) dx y= cx π = ∞ -∞ e iλy 1 2π π c cosh( yπ 2c ) dy = ∞ -∞ e iλy 1 2c 1 cosh( yπ 2c ) dy. (31) 
Hence, the density of β T γ -c,c is:

h -c,c (x) = 1 2c 1 cosh( xπ 2c ) = 1 c 1 e xπ 2c + e -xπ 2c , and 
h -c,c log( √ x + √ 1 + x) = 1 c 1 ( √ x + √ 1 + x) ζ + ( √ x + √ 1 + x) -ζ ,
where ζ = π 2c . However using:

( √ x + √ 1 + x) -ζ = ( √ 1 + x - √ x) ζ , (32) 
we obtain:

h -c,c log( √ x + √ 1 + x) = 1 c 1 ( √ x + √ 1 + x) ζ + ( √ 1 + x - √ x) ζ . (33) 
So we deduce that (for c = d):

E   1 2πT θ -c,c exp(- x 2T θ -c,c )   = 1 c 1 √ 1 + x 1 ( √ x + √ 1 + x) ζ + ( √ 1 + x - √ x) ζ . ( 34 
)
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(ii) As a second example of a random time T , let us consider the time introduced in [START_REF] Vallois | Amplitude du mouvement Brownien et juxtaposition des excursions positives et ngatives[END_REF], [START_REF] Chaumont | Exercises in Probability: A Guided Tour from Measure Theory to Random Processes[END_REF], exercise 6.2, p. 178 (we use a slightly different notation). Let (β t , t ≥ 0) be a real valued Brownian motion and define, for c > 0:

T (θ) ≡ T θ c = inf t : sup s≤t θ s -inf s≤t θ s = c , T (γ) ≡ T γ c = inf t : sup s≤t γ s -inf s≤t γ s = c .
Thus, from the skew-product representation (1), θ u ≡ γ Hu , by replacing u = T θ c , we obtain:

H T θ c = T γ c ⇒ T θ c = T γ c 0 ds exp (2β s ) ≡ A T γ c .
Thus:

E   1 2πT θ c exp(- x 2T θ c )   = 1 √ 1 + x h c (log( √ x + √ 1 + x)), (35) 
where h c is the density of the variable β T γ c . The law of β T γ c may be obtained from its characteristic function which is given by [START_REF] Biane | Valeurs principales associées aux temps locaux browniens[END_REF][START_REF] Chaumont | Exercises in Probability: A Guided Tour from Measure Theory to Random Processes[END_REF]:

E exp(iλβ T γ c ) = E exp(- λ 2 2 T γ c ) = 1 (cosh(λ c 2 )) 2 = 1 cosh(πλ c 2π ) 2 = ∞ -∞ e i( λc 2π )x 1 2π x sinh( x 2 ) dx y= cx 2π = ∞ -∞ e iλy 1 2π 2πy c sinh( πy c ) 2π c dy = ∞ -∞ e iλy 2π c 2 y sinh( πy c ) dy. (36) 
So, the density of β T γ c is:

h c (y) = 2πy c 2 1 sinh( πy c ) = 4π c 2 y e πy c -e -πy c , and 
h c log( √ x + √ 1 + x) = 4π c 2 log( √ x + √ 1 + x) ( √ x + √ 1 + x) ζ -( √ x + √ 1 + x) - ζ ,
where ζ = π c . Thus:

E   1 2πT θ c exp(- x 2T θ c )   = 4π c 2 1 √ 1 + x log( √ x + √ 1 + x) ( √ x + √ 1 + x) ζ -( √ 1 + x - √ x) ζ . (37) 
We note that this study may be related to [START_REF] Pitman | Infinitely divisible laws associated with hyperbolic functions[END_REF]; and more precisely β T γ c and T γ c correspond to the variables C 2 and Ĉ2 respectively (see e.g. Table 6 in p. 312).
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Let us now return to the case of T θ -c,c (example (i)). More specifically, we shall obtain its density function f (t).

Proposition 2.8 The density function f of T θ -c,c is given by:

f (t) = 1 √ 2c ∞ k=0 (-1) k Γ(ν k ) Γ(2ν k ) 1 √ t e -1 4t M1 2 ,ν k ( 1 2t ), ( 38 
)
where M a,b (•) is the Whittaker function with parameters a, b. Equivalently:

f (t) = √ 2 c ∞ k=0 (-1) k 1 √ t e -1 2t 1 2t ν k + 1 2 ν k ∞ n=0 Γ(ν k + n) Γ(2ν k + n + 1) 1 n! 1 2t n , ( 39 
)
where ν k = π 4c (2k + 1). Proof of Proposition 2.8 The following calculation relies upon a private note by A. Comtet [START_REF] Comtet | [END_REF].We denote:

ϕ ζ (x) = ( √ x + √ 1 + x) ζ + ( √ 1 + x - √ x) ζ .
Noting:

√ 1 + x = cosh y 2 ⇐⇒ y = 2 arg cosh( √ 1 + x), (40) 
we get:

ϕ ζ (x) = (sinh y 2 + cosh y 2 ) ζ + (cosh y 2 -sinh y 2 ) ζ = 2 cosh yζ 2 .
Thus, from (34), we have:

II := E   1 2πT θ -c,c exp(- x 2T θ -c,c )   = 1 ψ 1 cosh y 2 1 cosh πy 2ψ , (41) 
where ψ = 2c. However, expanding cosh πy 2ψ , we get:

1 cosh πy 2ψ = 2 e -πy 2ψ 1 + e -πy ψ = 2 ∞ k=0 -e -πy ψ k e -πy 2ψ ,
and from (41), we deduce that:

II = ∞ k=0 2 ψ (-1) k cosh y 2 e -π 2ψ (2k+1)y = ∞ k=0 4(-1) k ψ √ 2 2 sinh y 2 cosh y 2 sinh y 2 cosh y 2 e -ν k y = ∞ k=0 4(-1) k ψ √ 2 2 sinh y 2 cosh y 2 tanh y 2 e -ν k y ,
where ν k = π 2ψ (2k + 1). From (40), we have 1 + x = cosh 2 y 2 ⇐⇒ x = sinh 2 y 2 , thus:

(tanh y 2 ) 1/2 = sinh y 2 cosh y 2 = √ x √ 1 + x 1/2 = x 1 + x 1/4
. Moreover, we know that (see [START_REF] Abramowitz | Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables[END_REF], equation 8.6.10, or [START_REF] Lebedev | Special Functions and their Applications[END_REF]):

i π 2 sinh y e -ν k y = Q 1/2 ν k -1/2 (cosh y),
where {Q a b (•)} is the family of Legendre functions and cosh y = 2x + 1. So, we deduce:

II = ∞ k=0 4(-i) ψ √ π (-1) k x 1 + x 1/4 Q 1/2 ν k -1/2 (2x + 1). ( 42 
)
By using formula 7.621.9, page 864 in [START_REF] Gradshteyn | Table of Integrals, Series and Products[END_REF]:

∞ 0 e -sw M l,ν k (w) dw w = 2Γ(1 + 2ν k ) e -iπl Γ( 1 2 + ν k + l) s -1 2 s + 1 2 l/2 Q l ν k -1/2 (2s), ( 43 
) with: l = 1 2 , ν k = π 2ψ (2k + 1), s = x + 1 2 and M •,• (•) denoting the Whittaker function, which is defined as: M a,b (w) = w b+ 1 2 e -1 2 w Γ(2b + 1) Γ( 1 2 + b -a) ∞ n=0 Γ( 1 2 + b -a + n) Γ(2b + 1 + n) w n n! .
we have:

-2i Γ(1 + 2ν k ) Γ(1 + ν k ) x 1 + x 1/4 Q 1/2 ν k -1/2 (2x + 1) = ∞ 0 e -sw M 1/2,ν k (w) dw w . (44) 
From (42) and by changing the variable w = 1 2t , we deduce:

II = ∞ k=0 2 ψ √ π (-1) k Γ(ν k + 1) Γ(2ν k + 1) ∞ 0 dw w exp -w(x + 1 2 ) M 1/2,ν k (w) = ∞ k=0 ∞ 0 dt t 2 ψ √ π (-1) k Γ(ν k + 1) Γ(2ν k + 1) exp - 1 4t - x 2t M 1/2,ν k ( 1 2t
).

(45)

By using the equations ( 41) and (45), we conclude:

E   1 2πT θ -c,c exp - x 2T θ -c,c   = ∞ k=0 ∞ 0 dt t 2 ψ √ π (-1) k Γ(ν k + 1) Γ(2ν k + 1) exp - 1 4t - x 2t M1 2 ,ν k ( 1 2t ) = ∞ k=0 ∞ 0 dt t 2 ψ √ π (-1) k Γ( π 4c (2k + 1) + 1) Γ(2 π 4c (2k + 1) + 1) exp - 1 4t - x 2t M1 2 , π 4c (2k+1) ( 1 2t 
).

(46)

Thus, the density function f of T θ -c,c is given by:

f (t) = 2 √ 2 ψ ∞ k=0 (-1) k Γ(ν k + 1) Γ(2ν k + 1) 1 √ t e -1 4t M1 2 ,ν k ( 1 2t ) (47) = √ 2 c ∞ k=0 (-1) k Γ( π 4a (2k + 1) + 1) Γ( π 2a (2k + 1) + 1) 1 √ t e -1 4t M1 2 , π 4a (2k+1) ( 1 2t ) (48) = √ 2 c ∞ k=0 (-1) k ν k Γ(ν k ) 2ν k Γ(2ν k ) 1 √ t e -1 4t M1 2 ,ν k ( 1 2t ), ( 49 
)
where the Whittaker function M1 2 ,ν k ( 1 2t ) is:

M1 2 , π 4c (2k+1) ( 1 2t ) = 1 2t π 4c (2k+1)+ 1 2 e -1 4t Γ( π 2c (2k + 1) + 1) Γ( π 4c (2k + 1)) ∞ n=0 Γ( π 4c (2k + 1) + n) Γ( π 2c (2k + 1) + 1 + n) 1 n! 1 2t n = 1 2t ν k + 1 2 e -1 4t Γ(2ν k + 1) Γ(ν k ) ∞ n=0 Γ(ν k + n) Γ(2ν k + 1 + n) 1 n! 1 2t n = 1 2t ν k + 1 2 e -1 4t (2ν k ) Γ(2ν k ) Γ(ν k ) ∞ n=0 Γ(ν k + n) (2ν k + n)Γ(2ν k + n) 1 n! 1 2t n . ( 50 
)
Thus, from (49) and (50), we deduce (39). 
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Next, we present the graphs of different approximations f K,N (t) of f (t), in [START_REF] Yor | Exponential Functionals of Brownian Motion and Related Processes[END_REF], where f K,N denotes the sum in the series in [START_REF] Yor | Exponential Functionals of Brownian Motion and Related Processes[END_REF] of the terms for k ≤ K, and n ≤ N. Remark 2.9

• Figure 2 represents the approximation of the density function f with respect to the time t (for K and N ≤ 9), with c = 2π, whereas Figure 3 represents the approximation of f with respect to the time t for several values of k and n, with c = 2π.

• From Figure 3, we may remark that the approximation K and N ≤ 9

is sufficiently good (comparing to the one for K and N ≤ 100).

• For the case K and N ≤ 9 it seems that locally, in a small area around 0, f (t) < 0 which is not right. This is due to the first negative (k = 1) term of the sum and due to the fact that we have omitted many terms. However, this is not a problem because it appears only locally. Similar irregularities have already been observed in previous articles [START_REF] Ishiyama | Methods for Evaluating Density Functions of Exponential Functionals Represented as Integrals of Geometric Brownian Motion[END_REF] p.275. 

On the first moment of ln T θ -c,c

This subsection is related to a result in [START_REF] Comtet | Exponential functionals of Brownian motion and disordered systems[END_REF].

Proposition 2.10 The first moment of ln T θ -c,c has the following integral representation:

E ln T θ -c,c = 2 ∞ 0 dz cosh πz 2 ln (sinh (cz)) + ln (2) + c E , (51) 
where c E = -Γ ′ (1) is the Euler-Mascheroni constant (also called Euler's constant).

Proof of Proposition 2.10 Let us return to equations ( 2) and ( 6). So, for t = T θ -c,c , we have:

θ T θ -c,c = γ H T θ -c,c ⇐⇒ H T θ -c,c = T γ -c,c ⇐⇒ T θ -c,c = A T γ -c,c . (52) 
Thus, for ε > 0:

E T θ -c,c ε = E A T γ -c,c ε .
Consider (δ u , u ≥ 0) a Brownian motion, independent of A t . Then, Bougerol's identity and the scaling property yield (G a denotes a gamma variable with parameter a, and N 2 (law) = 2G 1/2 ):

E (sinh (B t )) 2ε = E (δ At ) 2ε = E A ε t (δ 1 ) 2ε = E [A ε t ] E 2G 1/2 ε = E [A ε t ] (2 ε ) Γ 1 2 + ε Γ 1 2 , because E G 1/2 ε = ∞ 0 x ε+ 1 2 -1 e -x Γ 1 2 dx = Γ 1 2 + ε Γ 1 2 .
Thus, for t = T γ -c,c , we have:

E sinh B T γ -c,c 2ε = E A ε T γ -c,c (2 ε ) Γ 1 2 + ε Γ 1 2 . (53) 
Recall that [START_REF] Dugué | 158 Random Functions: General Theory with Special Reference to Laplacian Random Functions by Paul Lévy[END_REF][START_REF] Biane | Valeurs principales associées aux temps locaux browniens[END_REF]:

E exp(iλB T γ -c,c )) = E exp(- λ 2 2 T γ -c,c )) = 1 cosh(λc) ,
and the density of β T γ -c,c is:

h -c,c (y) = 1 2c 1 cosh( yπ 2c ) = 1 c 1 e yπ 2c + e -yπ 2c .
Thus, on the left hand side of (53), we have:

E sinh B T γ -c,c 2ε = ∞ -∞ dy 2c 1 cosh( πy 2c ) (sinh (y)) 2ε = ∞ 0 dy c 1 cosh( πy 2c ) (sinh y) 2ε = ∞ 0 dz 1 cosh( πz 2 ) (sinh(cz)) 2ε ,
where we have made the change of variable z = y c . Hence, from (53), by writing:

E A ε T γ -c,c = E T θ -c,c ε = E e ε ln(T θ -c,c ) ,
we deduce:

Γ 1 2 + ε Γ 1 2 E e ε ln(T θ -c,c ) = 1 2 ε ∞ 0 dz cosh( πz 2 ) (sinh(cz)) 2ε ,
and by removing 1 from both sides, we obtain:

Γ 1 2 + ε Γ 1 2 E e ε ln(T θ -c,c ) -1 = ∞ 0 dz cosh( πz 2 ) (sinh(cz)) 2ε 2 ε -1 . ( 54 
)
On the left hand side, we apply the trivial identity ab -

1 = a(b -1) + a -1 with a = Γ( 1 2 +ε) Γ( 1 2 ) and b = E e ε ln(T θ -c,c
) , we divide by ε and we take the limit for ε → 0. Thus:

a(b -1) ε = Γ 1 2 + ε Γ 1 2 E e ε ln(T θ -c,c ) -1 ε ε→0 -→ E ln T θ -c,c
, and:

a -1 ε = 1 ε Γ 1 2 + ε Γ 1 2 -1 = 1 Γ 1 2 Γ 1 2 + ε -Γ 1 2 ε ε→0 -→ 1 √ π Γ ′ 1 2 = 1 √ π - √ π (c E + 2 ln 2) = -(c E + 2 ln 2) .
On the right hand side of (54), we have:

1 ε (sinh(cz)) 2 2 ε -1 = 1 ε exp ε ln (sinh(cz)) 2 2 -1 , hence: 1 ε ∞ 0 dz cosh( πz 2 ) (sinh(cz)) 2ε 2 ε -1 ε→0 -→ ∞ 0 dz cosh( πz 2 ) ln (sinh(cz)) 2 2 = -ln (2) + 2 ∞ 0 dz cosh( πz 2 ) (ln (sinh(cz))) ,
which finishes the proof.
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Remark 2.11 a) We denote now:

F (c) ≡ ∞ 0 dz cosh πz 2 ln (sinh (cz)) . (55) 
Thus:

F (c) -ln(c) ≡ ∞ 0 dz cosh πz 2 ln sinh (cz) c c→0 -→ ∞ 0 dz ln(z) cosh πz 2 ≈ -0.7832. (56) 
b) More generally, we denote:

F (c, δ) ≡ ∞ 0 dz cosh (δz) ln (sinh (cz)) , (57) 
and, changing the variables: z = π 2δ u, we obtain:

F (c, δ) = π 2δ ∞ 0 du cosh π 2 u ln sinh c π 2δ u = π 2δ F c π 2δ . (58) 
3 The Ornstein-Uhlenbeck case 3.1 An identity in law for Ornstein-Uhlenbeck processes, which is connected to Bougerol's identity

Consider the complex valued Ornstein-Uhlenbeck (OU) process:

Z t = z 0 + Zt -λ t 0 Z s ds, (59) 
where Zt is a complex valued Brownian motion (BM), z 0 ∈ C and λ ≥ 0 and

T (λ) c ≡ T θ Z -c,c ≡ inf t ≥ 0 : θ Z t = c (θ Z t
is the continuous winding process associated to Z) denoting the first hitting time of the symmetric conic boundary of angle c for Z. It is well known that [START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF]:

Z t = e -λt z 0 + t 0 e λs d Zs = e -λt (B αt ) , (60) 
where, in the second equation, with the help of Dambis-Dubins-Schwarz Theorem, (B t , t ≥ 0) is a complex valued Brownian motion starting from z 0 and α t = t 0 e 2λs ds = e 2λt -1 2λ .

We are interested in the study of the continuous winding process θ Z t = Im( t 0 dZs Zs ), t ≥ 0. By applying Itô's formula to (60), we have: dZ s = e -λs (-λ)B αs ds + e -λs d (B αs ) .

We divide by Z s and we obtain:

dZ s Z s = -λ ds + dB αs B αs , hence: Im dZ s Z s = Im dB αs B αs ,
which means that:

θ Z t = θ B αt .
Thus, the following holds: Proposition 3.1 Using the previously introduced notation, we have:

θ Z t = θ B αt , (61) 
and:

T (λ) c = 1 2λ ln 1 + 2λT θ B -c,c , (62) 
where T θ B -c,c is the exit time from a cone of angle c for the complex valued BM B.

Proof of Proposition 3.1 We define

T (λ) c ≡ T θ Z -c,c ≡ inf t ≥ 0 : θ Z t = c = inf t ≥ 0 : θ B αt = c . (63) 
Thus, we deduce that α T (λ)

c = T θ B -c,c ≡ T θ -c,c
. However, T θ -c,c (the exit time from a cone for the BM) has already been studied in the previous chapter and we know the explicit formula of its density function (Proposition 2.8). Thus:

T (λ) c = α -1 T θ B -c,c = α -1 T θ -c,c , (64) 
where α -1 (t) = 1 2λ ln (1 + 2λt). Consequently:

T (λ) c = 1 2λ ln 1 + 2λT θ -c,c ,
and:

E T (λ) c = 1 2λ E ln 1 + 2λT θ -c,c , (65) 
which finishes the proof.
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From now on, for simplicity, we shall take z 0 = 1 (but this is really no restriction, as the dependency in z 0 , which is exhibited in [START_REF] Billingsley | Probability and Measure[END_REF], is very simple).

The following Proposition may be considered as an extension of the identity in law (ii) in Proposition 2.4, which results from Bougerol's identity.

Proposition 3.2 Consider (Z λ t , t ≥ 0) and (U λ t , t ≥ 0) two independent Ornstein-Uhlenbeck processes, the first one complex valued and the second one real valued, both starting from a point different from 0, and call

T (λ) b (U λ ) = inf t ≥ 0 : e λt U λ t = b .
Then, an Ornstein-Uhlenbeck extension of identity in law (ii) in Proposition 2.4 is the following:

θ Z λ T (λ) b (U λ ) (law) = C a(b) , (66) 
where a(x) = arg sinh(x).

Proof of Proposition 3.2 Let us consider a second Ornstein-Uhlenbeck process (U λ t , t ≥ 0) independent of the first one. Then, taking equation (60) for U λ t , we have:

e λt U λ t = δ ( e 2λt -1 2λ 
) ,

where (δ t , t ≥ 0) is a complex valued Brownian motion starting from z 0 = 1. Thus:

T (λ) b (U λ ) = 1 2λ ln 1 + 2λT δ b . (68) 
Equation (61) for t = 1 2λ ln 1 + 2λT δ b , equivalently: α(t) = T δ b becomes (we suppose that z 0 = 1): 

θ Z λ T (λ) b (U λ ) = θ Z λ 1 2λ ln(1+2λT δ b ) = θ B u=T δ b (law) = C a(b) .
T (λ) c ≡ T θ Z -c,c ≡ inf t ≥ 0 : θ Z t = c ,
and its first moment.

Proposition 3.3 Asymptotically for λ large, for z 0 = 1, we have:

2λ E T (λ) c -ln (2λ) λ→∞ -→ E ln T θ -c,c , (69) 
and:

E ln T θ -c,c = 2 ∞ 0 dz cosh πz 2 ln (sinh (cz)) + ln (2) + c E , (70) 
where c E is Euler's constant. For c < π 8 , we have the asymptotic equivalence:

1 λ E T (λ) c -E sinh B T γ -c,c 2 λ→0 
-→ -

1 3 E sinh B T γ -c,c 4 
.

Equivalently:

d dλ λ=0 E T (λ) c = lim λ→0 1 λ E T (λ) c -E T (0) c = - 1 3 E sinh B T γ -c,c 4 . (72) 
Moreover:

E sinh B T γ -c,c 4 = ∞ 0 dz cosh πz 2 (sinh (cz)) 4 . (73) 
More precisely, for c < π 8 :

E sinh B T γ -c,c 4 = 1 8 1 cos(4c) -4 1 cos(2c) + 3 , (74) 
and asymptotically:

E sinh B T γ -c,c 4 ≃ c→0 5c 4 . (75) 
Proof of Proposition 3.3 λ large Let us return to equation (65). For λ → ∞, we have:

E T (λ) c = 1 2λ E ln 1 + 2λT θ -c,c = 1 2λ E ln 2λ T θ -c,c + 1 2λ = ln (2λ) 2λ + 1 2λ E ln T θ -c,c + 1 2λ . 
Thus:

2λ E T (λ) c -ln (2λ) λ→∞ -→ E ln T θ -c,c
, which is precisely (69). Moreover, by the integral representation (51) for E ln T θ -c,c , we deduce (70). λ small We shall now study the case λ → 0. We have that:

T (λ) c = 1 2λ ln 1 + 2λT θ -c,c .
For c < π 8 , from Spitzer ( 3), (at least) the first two positive moments of

T θ -c,c are finite: E T θ -c,c
p < ∞, (p = 1, 2). We make the elementary computation:

1 λ ln (1 + 2λx) 2λ -x = 1 λ 1 2λ 1+2λx 1 dy y -x y=1+a = 1 2λ 2 2λx 0 1 1 + a -1 da a=2λb = -2 x 0 b db 1 + 2λb λ→0 -→ -x 2 .
Consequently, by replacing x = T θ -c,c , we have:

1 λ E T (λ) c -E T θ -c,c = E -2 T θ -c,c 0 b db 1 + 2λb
.

We may now use the dominated convergence theorem [START_REF] Billingsley | Probability and Measure[END_REF], since the (db) integral is majorized by (T θ -c,c ) 2 , which is integrable. Thus:

1 λ E T (λ) c -E T θ -c,c λ→0 -→ -E (T θ -c,c ) 2 .
Following the proof of Proposition 2.10, Bougerol's identity and the scaling property yield:

E (sinh (B t )) 2 = E (δ At ) 2 = E A t (δ 1 ) 2 = E [A t ] E (δ 1 ) 2 = E [A t ] .
Thus, for t = T γ -c,c , we have:

E A T γ -c,c = E sinh B T γ -c,c 2 
.

Similarly:

E (sinh (B t )) 4 = E (δ At ) 4 = E (A t ) 2 (δ 1 ) 4 = E (A t ) 2 E (δ 1 ) 4 = 3E (A t ) 2 .
Thus, for t = T γ -c,c , we have:

E A T γ -c,c 2 = 1 3 E sinh B T γ -c,c 4 . So, because A T γ -c,c = T θ -c,c
, we deduce (71). In order to prove (72), it suffices to remark that:

E T (0) c = E T θ -c,c = E A T γ -c,c = E sinh B T γ -c,c 2 
.

On the one hand, by using the density of B T γ -c,c : which is precisely (74) and this is finite if and only if c < π 8 . Moreover, asymptotically for c → 0, by using the scaling property, we have: 4 , since E T γ -1,1 2 = 5/3 (see [START_REF] Pitman | Infinitely divisible laws associated with hyperbolic functions[END_REF]; by using the notation of this paper, Table 3:

E sinh B T γ -c,c 4 = ∞ -∞ dy 
E sinh B T γ -c,c 4 = E sinh cB T γ -1,1 4 c→0 ≃ c 4 E B T γ -1,1 4 = c 4 3E T γ -1,1 2 = 5c
E [X 2 t ] = t(2+3t)
3 for X t = C 1 and t = 1). This asymptotics may also be obtained by (74) by developing cos(4c) and cos(2c) into series up to the second order term and keeping the terms of the order c 4 . We replace x = T θ -c,c , and by the dominated convergence theorem [START_REF] Billingsley | Probability and Measure[END_REF], for c < π 8 , we obtain:

1 λ E T (λ) c - z 2 0 2D E sinh B T γ -c,c 2 λ→0 
-→ -1 3

z 2 0 2D 2 E (T θ -c,c ) 2 = - 1 3 
z 2 0 2D 2 E sinh B T γ -c,c 4 
,

where E sinh B T γ -c,c 4 
is given by (73), (74) and asymptotically, for c → 0 by (75).

  c = inf{t : |θ Z t | = c}, the corresponding time for an Ornstein-Uhlenbeck process with parameter λ. Secondly, we identify the distribution of T (λ) c . More specifically, we derive the asymptotics of E T (λ) c

Figure 1 :

 1 Figure 1: Exit times for a planar BM. This figure presents the exit times (a) T θ c (t 1 doesn't matter because the angle is negative) and (b) T θ -d,c for a planar BM starting from x 0 + i0.

2

 2 

2 2. 5

 25 On the distributions of T θ c ≡ T θ -∞,c and T θ -c,c

Figure 2 :

 2 Figure 2: Graph of f 9,9 (t), with c = 2π.

Figure 3 :

 3 Figure 3: Graph of f K,N (t) for several values of K and N, with c = 2π.
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 22 On the distribution of T θ -c,c for an Ornstein-Uhlenbeck processNow we turn to the study of the density function of:
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 42241414 which is finite if and only if c < π 8 . In order to prove this, it suffices to use the standard expressions: sinh(x) = e x -e -x 2 and cosh(x) = e x +e -x On the other hand (note T ≡ T γ -c,c ), we remark that -B T(law)= B T and[START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF], ex.3.10,E e kB T = E e k T = 1 cos(kc) , for 0 ≤ k < π(2c) -1 , thus: E (sinh (B T )) 4 = 1 2 4 E e B Te -B T E e 4B T -4e 3B T -B T + 6e 2B T -2B T -4e B T -3B T + e -4B T = 2E e 4B T -8E e 2B T
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2 Remark 3 . 4 0 Z2D t 0 e 0 e 2 0

 2340002 If we slightly modify the above study for the Ornstein-Uhlenbeck process by inserting a diffusion coefficient D:Z t = z 0 + √ 2D Ztλ t s ds ,we obtain:Z t = e -λt z 0 + √ λs d Zs = e -λt (B αt ) ,(76)where in the second equation we used Dambis-Dubins-Schwarz Theorem withα t = 2D t 2λs ds = D e 2λt -(z 0 ) + E ln T θ (1) (cz)) + ln (2) + c E ,(78)where T θ (1) -c,c denotes the first hitting time of the symmetric conic boundary of angle c for a Brownian motion Z starting from 1. For λ small, we replace 2T θ -c,c by z D T θ -c,c in the proof of Proposition 3.3 (λ small case) and we have: By repeating the previous calculation, we make the elementary computation:

‡ When we simply write: Brownian motion, we always mean real-valued Brownian motion, starting from 0. For 2-dimensional Brownian motion, we indicate planar or complex BM.
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