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On hitting times of the winding processes of planar

Brownian motion and of Ornstein-Uhlenbeck processes,

via Bougerol’s identity.

S. VAKEROUDIS1 2

Abstract

We develop some identities in law in terms of planar complex valued Ornstein-
Uhlenbeck processes (Zt = Xt + iYt, t ≥ 0) including planar Brownian mo-
tion, which are equivalent to the well known Bougerol identity for linear
Brownian motion (βt, t ≥ 0): for any fixed u > 0:

sinh(βu)
(law)
= β̂(

∫ u
0 ds exp(2βs))

These identities in law for 2-dimensional processes allow us to study the
distribution of hitting times T θc ≡ inf{t : θt = c}, (c > 0), T θ−d,c ≡
inf{t : θt /∈ (−d, c)}, (c, d > 0) and more specifically of T θ−c,c ≡ inf{t : θt /∈
(−c, c)}, (c > 0) of the continuous winding processes θt = Im(

∫ t
0
dZs
Zs

), t ≥ 0
of complex Ornstein-Uhlenbeck processes.

Key words: Planar Brownian motion, Ornstein-Uhlenbeck process, wind-
ing process, Bougerol’s identity, exit time from a cone.

1 Introduction

The conformal invariance of planar Brownian motion has deep consequences
as to the structure of its trajectories (see, e.g., Le Gall [LeG90]). In par-
ticular, a number of articles have been devoted to the study of its continu-
ous winding process (θt, t ≥ 0): Spitzer [Spi58], Williams [Wil74], Durrett
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[Dur82], Messulam-Yor [MeY82], Pitman-Yor [PiY86], Le Gall-Yor [LeGY87],
Bertoin-Werner [BeW94], Yor [Yor97], Pap-Yor [PaY00], Bentkus-Pap-Yor
[BPY03]. In this paper, we take up again the study of the first hitting times:

T θ−d,c ≡ inf{t : θt /∈ (−d, c)}, (c, d > 0)

this time in relation with Bougerol’s well-known identity: for fixed u > 0:

sinh(βu)
(law)
= β̂(

∫ u
0 ds exp(2βs)) ,

where (β̂t, t ≥ 0) is a Brownian motion†, independent of β.
In particular, it turns out that: for fixed c > 0:

θ
T β̂c

(law)
= Ca(c) (⋆)

where β̂ is a BM† independent of (θu, u ≥ 0), T β̂c = inf{t : β̂t = c}, (Ct, t ≥ 0)

is a standard Cauchy process and a(c) = arg sinh(c) ≡ log
(

c+
√
1 + c2

)

, c ∈
R.
The identity (⋆) yields yet another proof of the celebrated Spitzer theorem:

2

log t
θt

(law)−→
t→∞

C1 ,

with the help of Williams’ ”pinching method” (see Williams [Wil74] and
Messulam-Yor [MeY82]).

Moreover, we study the distributions of T θ−∞,c and T
θ
−c,c. In particular,

we give an explicit formula for the density function of T θ−c,c and for the first

moment of ln
(
T θ−c,c

)
.

The last section of the paper is devoted to developing similar results
when planar Brownian motion is replaced by a complex valued Ornstein-
Uhlenbeck process. We note that Bertoin-Werner [BeW94] already made
discussions of windings for planar Brownian motion using arguments related
to Ornstein-Uhlenbeck processes.

Firstly, we obtain some analogue of (⋆) when T β̂c is replaced by T
(λ)
c =

T θc = inf{t : |θZt | = c}, the corresponding time for an Ornstein-Uhlenbeck

process with parameter λ. Secondly, we exhibit the distribution of T
(λ)
c .

More specifically, we derive the asymptotics of E
[

T
(λ)
c

]

for λ large and for

λ small.
†When we simply write: Brownian motion, we always mean real-valued Brownian mo-

tion, starting from 0. For 2-dimensional Brownian motion, we indicate planar or complex
BM.
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2 The Brownian motion case

2.1 A reminder on planar Brownian motion

Let (Zt = Xt + iYt, t ≥ 0) denote a standard planar Brownian motion,
starting from x0 + i0, x0 > 0, where (Xt, t ≥ 0) and (Yt, t ≥ 0) are two
independent linear Brownian motions, starting respectively from x0 and 0.

As is well known (see e.g. Itô-McKean [ItMK65]), since x0 6= 0, (Zt, t ≥
0) does not visit a.s. the point 0 but keeps winding around 0 infinitely often.
In particular, the continuous winding process θt = Im(

∫ t
0
dZs
Zs

), t ≥ 0 is well
defined.

Furthermore, there is the skew product representation:

log |Zt|+ iθt ≡
∫ t

0

dZs
Zs

= (βu + iγu)
∣
∣
∣
u=Ht=

∫ t
0

ds

|Zs|2
(1)

where (βu + iγu, u ≥ 0) is another planar Brownian motion starting from
log x0 + i0.

Rewriting (1) as:
log |Zt| = βHt ; θt = γHt (2)

we easily obtain that the σ-fields σ{|Zt| , t ≥ 0} and σ{βu, u ≥ 0} are iden-
tical, whereas (γu, u ≥ 0) is independent from (|Zt| , t ≥ 0).

A number of studies of the properties of the first hitting time (see Figure
2)

T θ−d,c ≡ inf{t : θt /∈ (−d, c)}, (c, d > 0)

have been developed, going back to Spitzer [Spi58].
In particular, it is well known (Spitzer [Spi58], Burkholder [Bur77], Revuz-
Yor [ReY99] Ex. 2.21/page 196) that:

E
[

(T θ−d,c)
p
]

<∞ if and only if p <
π

2(c + d)
. (3)

Moreover, Spitzer’s asymptotic theorem (see e.g. Spitzer [Spi58]) states
that:

2θt
log t

(law)−→
t→∞

C1
(law)
= γ

Tβ1
, (4)

where C1 is a standard Cauchy variable.
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2.2 On the Laplace transform of the distribution of the hit-

ting time T
θ
c ≡ T

θ
−∞,c

Now, we use the representation (2) to access the distribution of T θc (see
Figure 1). We define T γc ≡ inf{t : γt /∈ (−∞, c)} the hitting time associated
to the Brownian motion (γt, t ≥ 0). Note that:

from (2), HT θc
= T γc , hence T θc = H−1

u

∣
∣
∣
u=T γc

, where

H−1
u ≡ inf{t : Ht > u} =

∫ u

0
ds exp(2βs) := Au (5)

from (2). Thus, we have obtained:

T θc = AT γc (6)

where (Au, u ≥ 0) and T γc are independent, since β and γ are independent.

We can write: βs = (log x0) + β
(0)
s , with (β

(0)
s , s ≥ 0) a standard one-

dimensional Brownian motion starting from 0. Then, we deduce from (6)
that:

T θc = x20

(
∫ T γc

0
ds exp(2β(0)s )

)

. (7)

From now on, for simplicity, we shall take x0 = 1, but this is really no
restriction, as the dependency in x0, which is exhibited in (7), is very simple.
We shall also make use of Bougerol’s identity (Bougerol [Bou83], see also
Alili-Dufresne-Yor [ADY97] and Yor [Yor01], p. 200) which is very useful to
study the distribution of Au. For any fixed u > 0:

sinh(βu)
(law)
= β̂Au = β̂(

∫ u
0 ds exp(2βs)) (8)

where on the right hand side, (β̂t, t ≥ 0) is a Brownian motion, independent
of Au ≡

∫ u
0 ds exp(2βs).

Thus, from (8) and (6), and as it is well known (see e.g. Revuz-Yor
[ReY99]) that the law of βT γc is the Cauchy law with parameter c, i.e., with
density:

hc(y) =
c

π(c2 + y2)
.

we deduce that:

Proposition 2.1 For fixed c > 0, there is the following identity in law:

sinh(Cc)
(law)
= β̂(T θc ). (9)
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where, on the left hand side, (Cc, c ≥ 0) denotes a standard Cauchy process
and on the right hand side, (β̂u, u ≥ 0) is a one-dimensional BM, indepen-
dent from T θc .

We may now identify the densities of the variables found on both sides
of (9),i.e.:
on the left hand side: 1√

1+x2
hc(arg sinhx) =

1√
1+x2

hc(a(x)) ;

on the right hand side: E

[

1√
2πT θc

exp
(

− x2

2T θc

)]

where a(x) = arg sinh(x)

Thus, we have obtained the following:

Proposition 2.2 The distribution of T θc is characterized by:

E

[

1
√

2πT θc
exp

(

− x

2T θc

)]

=
1√
1 + x

c

π(c2 + log2(
√
x+

√
1 + x))

, x ≥ 0.

(10)

The proof of Proposition 2.2 follows from: a(y) = arg sinh(y) ≡ log(y +
√

1 + y2) and by making the change of variable y2 = x. Let us now define
the probability:

Qc =

√
π

2T θc
c · P

The fact that Qc is a probability follows from (10) by taking x = 0. Thus
we obtain that c E[

√

π/2T θc ] = 1, and we may write:

EQc

[

exp

(

− x2

2T θc

)]

=
1√

1 + x2
1

1 + 1
c2
log2(x+

√
1 + x2)

, ∀x ≥ 0 (11)

which yields the Laplace transform of 1/T θc under Qc.
Let us now take a look at what happens if we make c → ∞. If we denote
by T β1 ≡ inf{t : βt = 1} the first hitting time of level 1 for a standard BM
β and by N a standard Gaussian variable N (0, 1), from equation (11), we
obtain:

lim
c→∞

EQc

[

e−x/2T
θ
c

]

= E
(

e−xN
2/2
)

= E
(

e−x/2T
β
1

)

(12)

which means that : T θc
(law)−→
c→∞

T β1 . (At this point, one may wonder whether

there is some kind of convergence in law involving (θu, u ≥ 0), under Qc, as
c→ ∞, but, we shall not touch this point).

From Proposition 2.2 we deduce the following:
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Corollary 2.3 Let ϕ(x) denote the Laplace transform of Proposition 2.2
i.e. the expression on the right hand side of (10), which is the Laplace
transform of 1/2T θc under Qc. Then, the Laplace transform of 1/2T θc under
P is:

E

[

exp

(

− x

2T θc

)]

=

∫ ∞

x

dw√
w − x

ϕ(w) (13)

Proof of Corollary 2.3 From Fubini’s theorem, we deduce from (10) that:

E

[

exp

(

− x

2T θc

)]

=

∫ ∞

0

dy√
y
E

[

1
√

2πT θc
exp

(

−x+ y

2T θc

)]

=

∫ ∞

0

dy√
y
ϕ(x+ y), y = xt

=
√
x

∫ ∞

0

dt√
t
ϕ(x(1 + t)), v = 1 + t

=
√
x

∫ ∞

1

dv√
v − 1

ϕ(xv), xv = w

which finally yields formula (13).

�

2.3 Some related identities in law

This subsection is strongly related to Dufresne-Yor [DuY10].
A slightly different look at the combination of Bougerol’s identity (8) and
the skew-product representation (1) leads to the following striking identities
in law:

Proposition 2.4 Let (δu, u ≥ 0) be a 1-dimensional Brownian motion inde-
pendent of the planar Brownian motion (Zu, u ≥ 0), starting from 1. Then,
the following identities in law hold:

(i)HT δ
b

(law)
= T βa(b) (ii) θT δ

b

(law)
= Ca(b) (iii) θ̄T δ

b

(law)
= |Ca(b)|

where CA is a Cauchy variable with parameter A and θ̄u = sups≤u θs.

Proof of Proposition 2.4 From the symmetry principle (see the original
Note: André [And87] and e.g.: Gallardo [Gal08] for a detailed discussion),
Bougerol’s identity may be equivalently stated as:

sinh(β̄u)
(law)
= δ̄Au(β) (14)
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Consequently, the laws of the first hitting times of a fixed level b by the
processes on each side of (14) are identical, that is:

T βa(b)
(law)
= HT δb

which is (i).
(ii) follows from (i) since:

θu
(law)
= γHu

with (γs, s ≥ 0) a Brownian motion independent of (Hu, u ≥ 0) and (Cu, u ≥
0) may be represented as (γ

Tβu
, u ≥ 0).

(iii) follows from (ii), again with the help of the symmetry principle.

�

We now remark that Proposition 2.2 may be derived from (iii) in Propo-

sition 2.4. Indeed, for c > 0, we have from (iii) (let N ∼ N (0, 1) with N
independent from T θc ):

P
(

θ̄T δ
b
< c
)

= P
(

T δb < T θc

)

= P
(

b < δ̄T θc

)

= P

(

b <
√

T θc |N |
)

= P

(

b
√

T θc
< |N |

)

=

√

2

π
E






∫ ∞

b√
Tθc

dy e−y
2/2






and by changing variables : y2 = x/T θc , we obtain Proposition 2.2.

2.4 Recovering Spitzer’s theorem

The identity (ii) in Proposition 2.4 is reminiscent of Williams’ remark (see
Williams [Wil74] and Messulam-Yor [MeY82]), that:

HTRr

(law)
= T δlog r (15)

where here R starts from 1 and δ starts from 0 (in fact, this is a consequence
of (2) ). For a number of variants of (15), see Yor [Yor85] and Mansuy-Yor
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[MaY08]. This was D. Williams’ starting point for a non-computational
proof of Spitzer’s result (4). We note that in (ii), T δb is independent of the
process (θu, u ≥ 0) while in (15) TRr depends on (θu, u ≥ 0). Actually, we
can mimic Williams’ ”pinching method” to derive Spitzer’s theorem (4) from
(ii) in Proposition 2.4.

Proposition 2.5 (A new proof of Spitzer’s theorem)
As t→ ∞, θT δ√

t

− θt converges in law, which implies that:

1

log t

(

θT δ√
t

− θt

)
(P )−→
t→∞

0 (16)

which, in turn, implies Spitzer’s theorem (see formula (4) ):

2

log t
θt

(law)−→
t→∞

C1

Proof of Proposition 2.5 From equation (ii) of Proposition 2.4 we note:

1

log b
θT δ

b

(law)
=

Ca(b)

log b

(law)−→
b→∞

C1

So, for b =
√
t we have:

2

log t
θT δ√

t

(law)−→
b→∞

C1

On the other hand, following Williams’ ”pinching method”, we note that:

1

log t

(

θT δ√
t

− θt

)
(law)−→
t→∞

0

since Zu = x0+Z
(0)
u and also, as we change variables u = tv and we use the

scaling property we obtain:

θT δ√
t

− θt ≡ Im

(
∫ T δ√

t

t

dZu
Zu

)

(law)−→ Im

(
∫ T δ1

1

dZ
(0)
v

Z
(0)
v

)

Here, the limit variable is -in our opinion- of no other interest than its
existence which implies (16), hence (4).

�
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2.5 On the distributions of T θ
c ≡ T

θ
−∞,c and T

θ
−c,c

Proposition 2.6 The asymptotic equivalence:

(log t) P (T θc > t)
t→∞−→ (4c)/π (17)

holds.
As a consequence, for η > 0, E[(log T θc )

η
+] < ∞ if and only if η < 1 (where

(·)+ denotes the positive part).

Proof of Proposition 2.6 We shall rely upon the asymptotic distribution
of Ht ≡

∫ t
0

ds
|Zs|2

which is given by (see e.g. Revuz-Yor [ReY99]):

4Ht

(log t)2
(law)−→
t→∞

T β1 ≡ inf{t : βt = 1} (18)

or equivalently:
log t

2
√
Ht

(law)−→
t→∞

|N | (19)

where N is a standard Gaussian variable N (0, 1).
We note that, from representation (2) of θt, the result (18) is equivalent to
Spitzer’s theorem (see e.g. Spitzer [Spi58]):

2θt
log t

(law)−→
t→∞

C1
(law)
= γ

Tβ1
, (20)

where C1 is a standard Cauchy variable.
We shall now use this, in order to deduce Proposition 2.6. We denote Sθt ≡
sups≤t θs ≡ SγHt and we note that (from scaling):

P (T θc ≥ t) = P (SγHt ≤ c) = P (
√

HtS
γ
1 ≤ c) (21)

since γ and H are independent. Thus, we have (since Sγ1
(law)
= |N | and by

making the change of variable x = ay√
Ht

):

P (T θc ≥ t) =

√

2

π
E

[
∫ c/

√
Ht

0
dx e−

x2

2

]

=

√

2

π
c E

[∫ 1

0

dy√
Ht

exp

(

−c
2y2

2Ht

)]

. (22)
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Thus, we now deduce from (19) that:

log t

2
P (T θc ≥ t)

t→∞−→
√

2

π
c E [|N |] = 2

π
c. (23)

which is precisely (17).
It is now elementary to deduce from (23) that: for η > 0:

E[(log T θc )
η
+] <∞ ⇔ 0 < η < 1

since (23) is equivalent to:

u P (log T θc > u)
u→∞−→

(
4c

π

)

. (24)

Consequently, Fubini’s theorem yields:

E
[

(log T θc )
η
+

]

=

∫ ∞

0
du η uη−1 P (log T θc > u)

and from (24) this is finite if and only if:
∫ ∞

·
du uη−2 <∞ ⇔ η < 1

So, E[(log T θc )
η
+] <∞ ⇔ 0 < η < 1.

�

Now we give several examples of random times T which may be studied
quite similarly to T θc . We make the following hypothesis:
let us call T : C(R+,R) → R+ an intrinsic time if

T (fg(·)) = g−1(T (f)) (25)

for any f ∈ C(R+,R) and g : R+ → R+ continuous and strictly increasing.
Now, if T (·) is an intrinsic time, then it follows that: HT (θ) = T (γ), hence
T (θ) = AT (γ), defined with respect to the law of Z, issued from x0 6= 0.
Using Bougerol’s identity, we obtain:

sinh(βT (γ))
(law)
= β̂AT (γ)

= β̂(T (θ)). (26)

where (β̂u, u ≥ 0) is a 1-dimensional Brownian motion independent of (β, γ)
(or equivalently, of Z). Consequently, denoting by hT the density of βT (γ),
we deduce from (26) that:

E

[

1
√

2πT (θ)
exp(− x2

2T (θ)
)

]

=
1√

1 + x2
hT (log(x+

√

1 + x2)) (27)

11



or equivalently, changing x in
√
x, we obtain:

E

[

1
√

2πT (θ)
exp(− x

2T (θ)
)

]

=
1√
1 + x

hT (log(
√
x+

√
1 + x)). (28)

In a number of cases, hT is known explicitly, for example:
(i)

T (γ) = T γ−d,c ⇔ T (θ) =

∫ T γ−d,c

0
ds exp (2βs) = T θ−d,c

So:

E




1

√

2πT θ−d,c

exp(− x

2T θ−d,c
)



 =
1√
1 + x

h−d,c(log(
√
x+

√
1 + x)) (29)

where h−d,c is the density of the variable βT γ−d,c
. The law of βT γ−d,c

may be

obtained from its characteristic function which is given by (see Revuz-Yor
[ReY99], page 73):

E
[

exp(iλβT γ−d,c
)
]

= E

[

exp(−λ
2

2
T γ−d,c)

]

=
cosh(λ2 (c− d))

cosh(λ2 (c+ d))
.

In particular, for c = d, we recover the very classical formula:

E
[

exp(iλβT γ−c,c)
]

=
1

cosh(λc)
.

It is well known that (see e.g. Biane-Yor [BiY87], P. Lévy [Lev80]):

E
[

exp(iλβT γ−c,c))
]

=
1

cosh(λc)
=

1

cosh(πλ cπ )

=

∫ ∞

−∞
ei(

λc
π )x

1

2π

1

cosh(x2 )
dx

y= cx
π=

∫ ∞

−∞
eiλy

1

2π

π
c

cosh(yπ2c )
dy

=

∫ ∞

−∞
eiλy

1

2c

1

cosh(yπ2c )
dy. (30)

12



So, the density of βT γ−c,c is:

h−c,c(x) =

(
1

2c

)
1

cosh(xπ2c )
=

(
1

c

)
1

e
xπ
2c + e−

xπ
2c

and

h−c,c
(
log(

√
x+

√
1 + x)

)
=

(
1

c

)
1

(
√
x+

√
1 + x)ζ + (

√
x+

√
1 + x)−ζ

,

where ζ = π
2c . However using:

(
√
x+

√
1 + x)−ζ = (

√
1 + x−√

x)ζ (31)

we obtain:

h−c,c
(
log(

√
x+

√
1 + x)

)
=

(
1

c

)
1

(
√
x+

√
1 + x)ζ + (

√
1 + x−√

x)ζ
(32)

So we deduce that (for c = d):

E




1

√

2πT θ−c,c
exp(− x

2T θ−c,c
)





=

(
1

c

)(
1√
1 + x

)
1

(
√
x+

√
1 + x)ζ + (

√
1 + x−√

x)ζ
. (33)

�

(ii) As a second example of an intrinsic time, let us consider the time intro-
duced in exercise 6.2 in Chaumont-Yor [ChY03], p. 178 (we use a slightly
different notation). Let (βt, t ≥ 0) be a real valued Brownian motion and
define St = sup

s≤t
βs, It = inf

s≤t
βs. Let γ = ρ and θ = θ̂ in (1) and for c > 0:

T (γ) = T ρc = inf {t : St − It = c} .

Thus:

T (θ) =

∫ T ρc

0
ds exp (2βs) := T θ̂c .

So:

E




1

√

2πT θ̂c

exp(− x

2T θ̂c
)



 =
1√
1 + x

hc(log(
√
x+

√
1 + x)) (34)

13



where hc is the density of the variable βT ρc . The law of βT ρc may be obtained
from its characteristic function which is given by (see Biane-Yor [BiY87],
and Chaumont-Yor [ChY03]):

E
[
exp(iλβT ρc )

]
= E

[

exp(−λ
2

2
T ρc )

]

=
1

(cosh(λ c2))
2
=

1
(
cosh(πλ c

2π )
)2

=

∫ ∞

−∞
ei(

λc
2π )x

1

2π

x

sinh(x2 )
dx

y= cx
2π=

∫ ∞

−∞
eiλy

1

2π

2πy
c

sinh(πyc )

2π

c
dy

=

∫ ∞

−∞
eiλy

2π

c2
y

sinh(πyc )
dy. (35)

So, the density of βT ρc is:

hc(x) =

(
2πx

c2

)
1

sinh(πxc )
=

2π

c2
x

e
πx
c − e−

πx
c

and

hc
(
log(

√
x+

√
1 + x)

)
=

2π

c2
x

(
√
x+

√
1 + x)ζ̂ − (

√
x+

√
1 + x)−ζ̂

,

where ζ̂ = π
c . Thus:

E

[

1
√

2πT ρc
exp(− x

2T ρc
)

]

=
2π

c2
x√
1 + x

1

(
√
x+

√
1 + x)ζ̂ − (

√
1 + x−√

x)ζ̂
. (36)

We note that this study may be related to Pitman-Yor [PiY03]; and more
precisely βT ρc and T ρc correspond to the variables C2 and Ĉ2 respectively (see
e.g. Table 6 in p. 312).

�

Let us now return to the case of T θ−c,c (example (i)). More specifically, we
shall obtain its density function f(t).

Proposition 2.7 The density function f of T θ−c,c is given by:

f(t) =
1√
2c

∞∑

k=0

(−1)k
Γ(νk)

Γ(2νk)

1√
t
e−

1
4tM 1

2
,νk

(
1

2t
) (37)

14



where Ma,b(·) is the Whittaker function with parameters a, b. Equivalently:

f(t) =

√
2

c

∞∑

k=0

(−1)k
1√
t
e−

1
2t

(
1

2t

)νk+
1
2

νk

∞∑

n=0

Γ(νk + n)

Γ(2νk + n+ 1)

1

n!

(
1

2t

)n

(38)
where νk =

π
4c(2k + 1).

Proof of Proposition 2.7 The following calculation relies upon a private
note by A. Comtet [Com06].We denote:

ϕζ(x) = (
√
x+

√
1 + x)ζ + (

√
1 + x−√

x)ζ .

Noting: √
1 + x = cosh

y

2
⇐⇒ y = 2arg cosh(

√
1 + x). (39)

we get:

ϕζ(x) = (sinh
y

2
+ cosh

y

2
)ζ + (cosh

y

2
− sinh

y

2
)ζ

= 2cosh
yζ

2

So, from (33), we have:

II := E




1

√

2πT θ−c,c
exp(− x

2T θ−c,c
)



 =
1

ψ

1

cosh y
2

1

cosh πy
2ψ

(40)

where ψ = 2c. However, expanding cosh πy
2ψ , we get:

1

cosh πy
2ψ

= 2
e−

πy
2ψ

1 + e
−πy
ψ

= 2

∞∑

k=0

(

−e−
πy
ψ

)k
e
− πy

2ψ

and from (39), we deduce that:

II =
∞∑

k=0

2

ψ

(−1)k

cosh y
2

e−
π
2ψ

(2k+1)y

=

∞∑

k=0

4(−1)k

ψ
√
2
√

2 sinh y
2 cosh

y
2

√

sinh y
2

cosh y
2

e−νky

=

∞∑

k=0

4(−1)k

ψ
√
2
√

2 sinh y
2 cosh

y
2

√

tanh
y

2
e−νky,
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where νk =
π
2ψ (2k + 1).

From (33), we have 1 + x = cosh2 y2 ⇐⇒ x = sinh2 y2 , thus:

(tanh
y

2
)1/2 =

√

sinh y
2

cosh y
2

=

( √
x√

1 + x

)1/2

=

(
x

1 + x

)1/4

.

Moreover, we know that (see e.g. Abramowitz-Stegun [AbSt70], equation
8.6.10, or Lebedev [Leb63]):

i

√
π

2 sinh y
e−νky = Q

1/2
νk−1/2

(cosh y)

where {Qab (·)} is the family of Legendre functions and cosh y = 2x+ 1. So,
we deduce:

II =

∞∑

k=0

4(−i)
ψ
√
π
(−1)k

(
x

1 + x

)1/4

Q
1/2
νk−1/2(2x+ 1). (41)

By using formula (7.621.9, page 861) from Gradshteyn-Ryzhik [GrR65]:

∫ ∞

0
e−swMl,νk(w)

dw

w
=

2Γ(1 + 2νk)

Γ(12 + νk + l)

(

s− 1
2

s+ 1
2

)l/2

Qlνk−1/2(2s) (42)

with: l = 1
2 , νk =

π
2ψ (2k + 1), s = x+ 1

2 and M·,·(·) denoting the Whittaker
function, which is defined as:

Ma,b(w) = wb+
1
2 e−

1
2
w Γ(2b+ 1)

Γ(12 + b− a)

∞∑

n=0

Γ(12 + b− a+ n)

Γ(2b+ 1 + n)

wn

n!
.

we have:

−2i
Γ(1 + 2νk)

Γ(1 + νk)

(
x

1 + x

)1/4

Q
1/2
νk−1/2(2x+1) =

∫ ∞

0
e−swM1/2,νk(w)

dw

w
(43)

From (41) and by changing the variable w = 1
2t , we deduce:

II =

∞∑

k=0

2

ψ
√
π
(−1)k

Γ(νk + 1)

Γ(2νk + 1)

∫ ∞

0

dw

w
exp

(

−w(x+
1

2
)

)

M1/2,νk(w)

=

∞∑

k=0

∫ ∞

0

dt

t

2

ψ
√
π
(−1)k

Γ(νk + 1)

Γ(2νk + 1)
exp

(

− 1

4t
− x

2t

)

M1/2,νk(
1

2t
).

(44)
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By using the equations (40) and (44), we conclude:

E




1

√

2πT θ−c,c
exp

(

− x

2T θ−c,c

)



=
∞∑

k=0

∫ ∞

0

dt

t

2

ψ
√
π
(−1)k

Γ(νk + 1)

Γ(2νk + 1)
exp

(

− 1

4t
− x

2t

)

M 1
2
,νk

(
1

2t
)

=

∞∑

k=0

∫ ∞

0

dt

t

2

ψ
√
π
(−1)k

Γ( π4a(2k + 1) + 1)

Γ(2 π
4a(2k + 1) + 1)

exp

(

− 1

4t
− x

2t

)

M 1
2
, π
4a

(2k+1)(
1

2t
).

(45)
This is the Laplace transform of 1/2T θ−c,c, and so, the density function f of

T θ−c,c is given by:

f(t) =
2
√
2

ψ

∞∑

k=0

(−1)k
Γ(νk + 1)

Γ(2νk + 1)

1√
t
e−

1
4tM 1

2
,νk

(
1

2t
) (46)

=

√
2

c

∞∑

k=0

(−1)k
Γ( π4a(2k + 1) + 1)

Γ( π2a(2k + 1) + 1)

1√
t
e−

1
4tM 1

2
, π
4a

(2k+1)(
1

2t
) (47)

=

√
2

c

∞∑

k=0

(−1)k
νkΓ(νk)

2νkΓ(2νk)

1√
t
e−

1
4tM 1

2
,νk

(
1

2t
) (48)

where the Whittaker function M 1
2
,νk

( 1
2t) is:

M 1
2
, π
4c

(2k+1)(
1

2t
)

=

(
1

2t

) π
4c

(2k+1)+ 1
2

e−
1
4t
Γ( π2c(2k + 1) + 1)

Γ( π4c(2k + 1))

∞∑

n=0

Γ( π4c(2k + 1) + n)

Γ( π2c(2k + 1) + 1 + n)

1

n!

(
1

2t

)n

=

(
1

2t

)νk+
1
2

e−
1
4t
Γ(2νk + 1)

Γ(νk)

∞∑

n=0

Γ(νk + n)

Γ(2νk + 1 + n)

1

n!

(
1

2t

)n

=

(
1

2t

)νk+
1
2

e−
1
4t (2νk)

Γ(2νk)

Γ(νk)

∞∑

n=0

Γ(νk + n)

(2νk + n)Γ(2νk + n)

1

n!

(
1

2t

)n

. (49)

Thus, from (48) and (49), we deduce (38).

�
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Remark 2.8 • Figure 3 represents the approximation of the density
function f with respect to the time t (for k = n = 9) whereas fig-
ure 4 represents the approximation of f with respect to the time t for
several values of k and n.

• From Figure 4, we may remark that the approximation k = n = 9 is
sufficiently good (comparing to the one for k = n = 100).

• For the case k = n = 9 it seems that locally, in a small area around 0,
f(t) < 0 which is not right. This is due to the first negative (k = 1)
term of the sum and due to the fact that we have omitted many terms.
However, this is not a problem because it appears only locally. Similar
irregularities have already been observed in previous articles (see e.g.
Ishiyama p.275 [Ish05]).

2.6 On the first moment of ln
(
T
θ
−c,c
)

Proposition 2.9 The first moment of ln
(
T θ−c,c

)
has the following integral

representation:

E
[

ln
(

T θ−c,c
)]

= 2

∫ ∞

0

dz

cosh
(
πz
2

) ln (sinh (cz)) + ln (2) + CE (50)

where CE = −Γ′(1) is the Euler-Mascheroni constant (also called Euler’s
constant).

Proof of Proposition 2.9 Let us return to equations (2) and (6). So, for
t = T θ−c,c, we have:

θT θ−c,c
= γH

Tθ−c,c
⇐⇒ HT θ−c,c

= T γ−c,c ⇐⇒ T θ−c,c = AT γ−c,c (51)

Thus, for ε > 0:

E
[(

T θ−c,c
)ε]

= E
[(

AT γ−c,c

)ε]

Consider (δt, t ≥ 0) a Brownian motion, independent of At. Then, Bougerol’s
identity and the scaling property yield (Ga denotes a gamma variable with

parameter a, and N2 (law)
= 2G1/2).

E
[
| sinh (Bt) |2ε

]
= E

[
|δAt |2ε

]
= E

[
(Aεt) |δ1|2ε

]

= E [Aεt ] E
[(
2G1/2

)ε]

= E [Aεt ] (2
ε)

Γ
(
1
2 + ε

)

Γ
(
1
2

)
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Thus, for t = T γ−c,c, we have:

E
[

| sinh
(

BT γ−c,c

)

|2ε
]

= E
[

AεT γ−c,c

]

(2ε)
Γ
(
1
2 + ε

)

Γ
(
1
2

) (52)

Recall that (see e.g. Biane-Yor [BiY87], P. Lévy [Lev80]):

E
[

exp(iλBT γ−c,c))
]

= E

[

exp(−λ
2

2
T γ−c,c))

]

=
1

cosh(λc)

and the density of βT γ−c,c is:

h−c,c(y) =

(
1

2c

)
1

cosh(yπ2c )
=

(
1

c

)
1

e
yπ
2c + e−

yπ
2c

Thus, on the left hand side of (52), we have:

E
[

| sinh
(

BT γ−c,c

)

|2ε
]

=

∫ ∞

−∞

dy

2c

1

cosh(πy2c )
| sinh (y) |2ε

=

∫ ∞

0

dy

c

1

cosh(πy2c )
(sinh y)2ε

=

∫ ∞

0
dz

1

cosh(πz2 )
(sinh(cz))2ε .

where we have made the change of variable z = y
c . So, from (52), by writing:

E
[

AεT γ−c,c

]

= E
[(

T θ−c,c
)ε]

= E
[

eε ln(T θ−c,c)
]

we deduce:

Γ
(
1
2 + ε

)

Γ
(
1
2

) E
[

eε ln(T θ−c,c)
]

=
1

2ε

∫ ∞

0

dz

cosh(πz2 )
(sinh(cz))2ε

and by removing 1 from both sides, we obtain:

Γ
(
1
2 + ε

)

Γ
(
1
2

) E
[

eε ln(T θ−c,c)
]

− 1 =

∫ ∞

0

dz

cosh(πz2 )

(

(sinh(cz))2ε

2ε
− 1

)

(53)

On the left hand side, we apply the trivial identity ab− 1 = a(b− 1)+ a− 1

with a =
Γ( 1

2
+ε)

Γ( 1
2)

and b = E
[

eε ln(T θ−c,c)
]

, we divide by ε and we take the

limit for ε→ 0. Thus:

a(b− 1)

ε
=

Γ
(
1
2 + ε

)

Γ
(
1
2

)

E
[

eε ln(T θ−c,c)
]

− 1

ε

ε→0−→ E
[

ln
(

T θ−c,c
)]

20



and:

a− 1

ε
=

1

ε

(

Γ
(
1
2 + ε

)

Γ
(
1
2

) − 1

)

=
1

Γ
(
1
2

)

(

Γ
(
1
2 + ε

)
− Γ

(
1
2

)

ε

)

ε→0−→ 1√
π
Γ′
(
1

2

)

=
1√
π

(
−√

π
)
(CE + 2 ln 2) = − (CE + 2 ln 2)

On the right hand side of (53), we have:

1

ε

[(

(sinh(cz))2

2

)ε

− 1

]

=
1

ε

[

exp

(

ε ln

(

(sinh(cz))2

2

))

− 1

]

hence:
1

ε

∫ ∞

0

dz

cosh(πz2 )

(

(sinh(cz))2ε

2ε
− 1

)

ε→0−→
∫ ∞

0

dz

cosh(πz2 )
ln

(

(sinh(cz))2

2

)

= 2

∫ ∞

0

dz

cosh(πz2 )
(ln (sinh(cz)))− ln (2)

which finishes the proof.

�
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3 The Ornstein-Uhlenbeck case

3.1 An identity in law for Ornstein-Uhlenbeck processes,

which is connected to Bougerol’s identity

Consider the complex valued Ornstein-Uhlenbeck (OU) process:

Zt = z0 + Z̃t − λ

∫ t

0
Zsds (54)

where Z̃t is a complex valued Brownian motion (BM), z0 ∈ C and λ ≥
0 and T

(λ)
c ≡ T θ

Z

c ≡ inf
{
t ≥ 0 :

∣
∣θZt
∣
∣ = c

}
(θZt is the continuous winding

process associated to Z) denoting the first hitting time of the symmetric
conic boundary of angle c for Z. It is well known that (see e.g. Revuz-Yor
[ReY99]):

Zt = e−λt
(

z0 +

∫ t

0
eλsdZ̃s

)

= e−λt (Bαt) (55)

where, in the second equation, with the help of Dambis-Dubins-Schwarz
Theorem, (Bt, t ≥ 0) is a complex valued Brownian motion starting from z0
and

αt =

∫ t

0
e2λsds =

e2λt − 1

2λ
.

We are interested in the study of the continuous winding process θZt =
Im(

∫ t
0
dZs
Zs

), t ≥ 0. By applying Itô’s formula to (55), we have:

dZs = e−λs(−λ)Bαsds+ e−λsd (Bαs)

We divide by Zs and we obtain:

dZs
Zs

= (−λ)ds+ dBαs
Bαs

and so:

Im

(
dZs
Zs

)

= Im

(
dBαs
Bαs

)

which means that:
θZt = θBαt .

Thus, the following holds:
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Proposition 3.1 Using the notation which we introduced before, we have:

θZt = θBαt (56)

and:

T (λ)
c =

1

2λ
ln
(

1 + 2λT θ
B

−c,c
)

(57)

where T θ−c,c is the exit time from a cone of angle c for the complex valued
BM B.

Proof of Proposition 3.1 We define

T (λ)
c ≡ T θ

Z

c ≡ inf
{
t ≥ 0 :

∣
∣θZt
∣
∣ = c

}

= inf
{

t ≥ 0 :
∣
∣
∣θBαt

∣
∣
∣ = c

}

(58)

Thus, we deduce that α
T

(λ)
c

= T θ
B

c ≡ T θ−c,c. However, T θ−c,c (the exit time

from a cone for the BM) has already been studied in the previous chapter
and we know the explicit formula of its density function (Proposition 2.7).
So:

T (λ)
c = α−1

(

T θ
B

c

)

= α−1
(

T θ−c,c
)

(59)

where α−1(t) = 1
2λ ln (1 + 2λt). Consequently:

T (λ)
c =

1

2λ
ln
(

1 + 2λT θ−c,c
)

and

E
[

T (λ)
c

]

=
1

2λ
E
[

ln
(

1 + 2λT θ−c,c
)]

(60)

which finishes the proof.

�

From now on, for simplicity, we shall take z0 = 1 (but this is really no
restriction, as the dependency in z0, which is exhibited in (7), is very simple).
The following Proposition may be considered as an extension of the identity
in law (ii) in Proposition 2.4, which yields from Bougerol’s identity.

Proposition 3.2 Consider (Zλt , t ≥ 0) and (Uλt , t ≥ 0) two independent

Ornstein-Uhlenbeck processes and call T
(λ)
b (Uλ) = inf

{
t ≥ 0 : eλtUλt = b

}
.

Then, an Ornstein-Uhlenbeck extension of identity in law (ii) in Proposition
2.4 is the following:

θZ
λ

T
(λ)
b (Uλ)

(law)
= Ca(b) (61)

where a(x) = arg sinh(x).

23



Proof of Proposition 3.2 Let us consider a second Ornstein-Uhlenbeck
process (Uλt , t ≥ 0) independent of the first one. Then, taking equation (55)
for Uλt , we have:

eλtUλt = δ
( e

2λt−1
2λ

)
(62)

where (δt, t ≥ 0) is a complex valued Brownian motion starting from z0 = 1.
So:

T
(λ)
b (Uλ) =

1

2λ
ln
(

1 + 2λT δb

)

(63)

Equation (56) for t = 1
2λ ln

(
1 + 2λT δb

)
, equivalently: α(t) = T δb becomes

(we suppose that z0 = 1):

θZ
λ

T
(λ)
b

(Uλ)
= θZ

λ

1
2λ

ln(1+2λT δb )
= θB

u=T δ
b

(law)
= Ca(b)

�

3.2 On the distribution of T
θ
−c,c for an Ornstein-Uhlenbeck

process

Now we turn to the study of the density function of

T (λ)
c ≡ T θ

Z

c ≡ inf
{
t ≥ 0 :

∣
∣θZt
∣
∣ = c

}

and its first moment.

Proposition 3.3 Asymptotically for λ large, for z0 = 1, we have:

2λ E
[

T (λ)
c

]

− ln (2λ)
λ→∞−→ E

[

ln
(

T θ−c,c
)]

(64)

and:

E
[

ln
(

T θ−c,c
)]

= 2

∫ ∞

0

dz

cosh
(
πz
2

) ln (sinh (cz)) + ln (2) + CE (65)

where CE is Euler’s constant.
For c < π

8 , we have the asymptotic equivalence:

1

λ

(

E
[

T (λ)
c

]

− E
[

| sinh
(

BT γ−c,c

)

|2
])

λ→0−→ −1

3
E
[

| sinh
(

BT γ−c,c

)

|4
]

. (66)

Equivalently:

d

dλ

∣
∣
∣
λ=0

E
[

T (λ)
c

]

= lim
λ→0

[
1

λ

(

E
[

T (λ)
c

]

− E
[

T (0)
c

])]

= −1

3
E
[

| sinh
(

BT γ−c,c

)

|4
]

.

(67)
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Moreover:

E
[

| sinh
(

BT γ−c,c

)

|4
]

=

∫ ∞

0

dz

cosh
(
πz
2

) (sinh (cz))4 . (68)

More precisely, for c < π
8 :

E
[

| sinh
(

BT γ−c,c

)

|4
]

=
1

8

(
1

cos(4c)
− 4

1

cos(2c)
+ 3

)

(69)

and asymptotically:

E
[

| sinh
(

BT γ−c,c

)

|4
]

≃
c→0

5c4. (70)

Proof of Proposition 3.3
λ large
Let us return to equation (60). For λ→ ∞, we have:

E
[

T (λ)
c

]

=
1

2λ
E
[

ln
(

1 + 2λT θ−c,c
)]

=
1

2λ
E

[

ln

(

2λ

(

T θ−c,c +
1

2λ

))]

=
ln (2λ)

2λ
+

1

2λ
E

[

ln

(

T θ−c,c +
1

2λ

)]

Thus:
2λ E

[

T (λ)
c

]

− ln (2λ)
λ→∞−→ E

[

ln
(

T θ−c,c
)]

which is precisely (64). Moreover, by the integral representation (50) for
E
[
ln
(
T θ−c,c

)]
, we deduce (65).

λ small
For λ→ 0, we may approximate:

T (λ)
c =

1

2λ
ln
(

1 + 2λT θ−c,c
)

=
1

2λ

∞∑

n=1

(−1)n+1
(2λT θ−c,c)

n

n

= T θ−c,c − λ(T θ−c,c)
2 +O(λ2) + . . .

= AT γ−c,c − λ(AT γ−c,c)
2 +O(λ2) + . . .

because:
AT γ−c,c = T θ−c,c.
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For c < π
8 , all the positive moments of AT γ−c,c are finite: E

[(

AT γ−c,c

)p]

<∞
(p = 1, 2, . . .), thus:

E
[

T (λ)
c

]

= E
[

AT γ−c,c

]

− λE

[(

AT γ−c,c

)2
]

+O(λ2) + . . .

⇒ 1

λ

(

E
[

T (λ)
c

]

− E
[

AT γ−c,c

])

= −E
[(

AT γ−c,c

)2
]

+O(λ) + . . .

λ→0−→ −E
[(

AT γ−c,c

)2
]

Following the proof of Proposition 2.9, Bougerol’s identity and the scaling
property yield:

E
[

(sinh (Bt))
2
]

= E
[

(δAt)
2
]

= E
[

(At) (δ1)
2
]

= E [At] E
[

(δ1)
2
]

= E [At] .

Thus, for t = T γ−c,c, we have:

E
[

AT γ−c,c

]

= E
[

| sinh
(

BT γ−c,c

)

|2
]

Similarly:

E
[

(sinh (Bt))
4
]

= E
[

(δAt)
4
]

= E
[

(At)
2 (δ1)

4
]

= E
[

(At)
2
]

E
[

(δ1)
4
]

= 3E
[

(At)
2
]

.

Thus, for t = T γ−c,c, we have:

E

[(

AT γ−c,c

)2
]

=
1

3
E
[

| sinh
(

BT γ−c,c

)

|4
]

So, we deduce (66). In order to prove (67), it suffices to remark that:

E
[

T (0)
c

]

= E
[

T θ−c,c
]

= E
[

AT γ−c,c

]

= E
[

| sinh
(

BT γ−c,c

)

|2
]

.

On the one hand, by using the density of BT γ−c,c :

E
[

| sinh
(

BT γ−c,c

)

|4
]

=

∫ ∞

−∞

dy

2c

1

cosh(πy2c )
| sinh (y) |4

=

∫ ∞

0

dy

c

1

cosh(πy2c )
(sinh y)4

z= y
c=

∫ ∞

0
dz

1

cosh(πz2 )
(sinh(cz))4 .
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which is finite if and only if c < π
8 . In order to prove this, it suffices to use the

standard expressions: sinh(x) = ex−e−x
2 and cosh(x) = ex+e−x

2 . On the other

hand (note T ≡ T γ−c,c), we remark that −BT
(law)
= BT and (see e.g. Revuz-

Yor [ReY99], ex.3.10) E
[
ekBT

]
= E

[

e
k2

2
T

]

= 1
cos(kc) , for 0 ≤ k < π(2c)−1,

thus:

E
[
| sinh (BT ) |4

]
=

1

24
E
[(
eBT − e−BT

)4
]

=
1

24
E
[
e4BT − 4e3BT−BT + 6e2BT−2BT − 4eBT−3BT + e−4BT

]

=
1

24
(
2E
[
e4BT

]
− 8E

[
e2BT

]
+ 6
)

=
1

23

(
1

cos(4c)
− 4

1

cos(2c)
+ 3

)

which is precisely (69) and this is finite if and only if c < π
8 . Moreover,

asymptotically for c→ 0, by using the scaling property, we have:

E
[

| sinh
(

BT γ−c,c

)

|4
]

= E

[(

sinh
(

cBT γ−1,1

))4
]
c→0≃ c4E

[(

BT γ−1,1

)4
]

= c43E

[(

T γ−1,1

)2
]

︸ ︷︷ ︸

5/3

= 5c4

where E

[(

T γ−1,1

)2
]

= 5/3 comes from Pitman-Yor [PiY03] (by using the

notation of this paper, Table 3: E
[
X2
t

]
= t(2+3t)

3 for Xt = C1 and t = 1).
This asymptotics may also be obtained by (69) by developing cos(4c) and
cos(2c) into series up to the second order term and keeping the terms of the
order c4.

�

Remark 3.4 If we slightly modify the above study for the Ornstein-Uhlenbeck
process by inserting a diffusion coefficient D:

Zt = z0 +
√
2DZ̃t − λ

∫ t

0
Zsds ,

we obtain:

Zt = e−λt
(

z0 +
√
2D

∫ t

0
eλsdZ̃s

)

= e−λt (Bαt) (71)
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where in the second equation we used Dambis-Dubins-Schwarz Theorem with

αt = 2D

∫ t

0
e2λsds = D

e2λt − 1

λ

⇒ α−1
t =

1

2λ
ln

(

1 +
λ

D
t

)

So:

2λ E
[

T (λ)
c

]

− ln

(
λ

D

)

λ→∞−→ E
[

ln
(

T θ−c,c
)]

(72)

because:

E
[

T (λ)
c

]

=
1

2λ
E

[

ln

(

1 +
λ

D
T θ−c,c

)]

=
1

2λ
E

[

ln

(
λ

D

(

T θ−c,c +
D

λ

))]

=
ln
(
λ
D

)

2λ
+

1

2λ
E

[

ln

(

T θ−c,c +
D

λ

)]

.

Moreover:

E
[

ln
(

T θ−c,c
)]

= 2 ln(z0) + E
[

ln
(

T θ
(1)

−c,c
)]

= 2 ln(z0) +

∫ ∞

0

dz

cosh
(
πz
2

) ln (sinh (cz)) + ln (2) + CE.(73)

where T θ
(1)

−c,c denotes the first hitting time of the symmetric conic boundary
of angle c for a Brownian motion Z starting from 1.

For λ small, we replace 2T θ−c,c by
z20
D T

θ
−c,c in the proof of Proposition 3.3 (λ

small case) and we deduce:

T (λ)
c =

1

2λ
ln

(

1 + λ
z20
D
T θ−c,c

)

=
1

2λ

∞∑

n=1

(−1)n+1 (λ
z20
D T

θ
−c,c)

n

n

=
z20
2D

T θ−c,c − λ

(
z20
2D

)2

(T θ−c,c)
2 +O(λ2) + . . .

By repeating the previous calculation, for c < π
8 , we obtain:

1

λ

(

E
[

T (λ)
c

]

− z20
2D

E
[

| sinh
(

BT γ−c,c

)

|2
])

λ→0−→ −1

3

(
z20
2D

)2

E
[

| sinh
(

BT γ−c,c

)

|4
]
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and E
[

| sinh
(

BT γ−c,c

)

|4
]

is given by (68), (69) and asymptotically, for c→
0 by (70).
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