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Abstract—Time-reversal techniques have been demonstrated
to be able to reverse the incoherence that usually characterizes
the field distribution within reverberation chambers. Its ability
of generating coherent pulsed fields has previously been applied
to communications as well as the generation of controlled wave-
fronts for immunity testing. Nevertheless, the issue of polarization
has not yet received due attention. We prove in this paper that
time-reversal techniques, when applied to reverberating media,
also allow controlling the polarization of the focused pulsed fields.
This result, although apparently paradoxical, relies on the very
incoherence properties of reverberation chambers. Remarkably,
this allows to generate fields with any polarization by usingone
single static excitation antenna, enabling a changing polarization
just by modifying the signal driving it. A theoretical model is
proposed for proving this feature, together with experimental
results validating it. Cross-polarization rejections much higher
than 20 dB are observed, making the quality of the generated
pulses comparable to those obtained in anechoic chambers.
Interestingly, the cross-polarization rejection is not expected to
depend on that of the transmission antenna as measured in a free-
space environment, but just on the properties of reverberation
chambers and the frequency bandwidth of the pulse.

I. I NTRODUCTION

Reverberation chambers (RCs) are today widely used for
testing how an equipment under test (EUT) reacts to an elec-
tromagnetic aggression that can be regarded as an incoherent
field, constituted of a multitude of plane waves propagat-
ing along random directions with random polarizations [1].
This way of using RCs is based on narrow-band excitations,
mainly in continuous-wave mode, and allows generating high-
intensity electric fields with a relatively low-power source.
This property also makes RCs an important tool when testing
non-linear responses, which may occur whenever electronic
devices are exposed to high-intensity fields, and could be par-
ticularly interesting for testing high-power microwaves (HPM)
effects [2]. Unfortunately in this case, it is not simply the
level of the field that counts, but also the time-evolution ofthe
aggression [3]; this is somewhat incompatible with the physics
of reverberation chambers as they are currently used. Indeed,
when applying pulse-like signals to the antenna exciting the
RC, the time-evolution of the field is strongly distorted, due
to the highly-reverberating environment that produces a long
tail of echoes following the originally intended pulse. This
is indeed a strong limitation of RCs for HPM testing when
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Fig. 1. An example of the ability of time-reversal techniques to generate
coherent pulses in a reverberating environment. The blue curve represents
the pulse received at a given location in a RC when applying time-reversal
techniques, as computed by means of an experimentally measured transfer
function. The green curve is the original pulse to be transmitted. The two
peak-normalized curves are indistinguishable around the peak region.

compared to facilities based on pulsed radiators [4].
Nevertheless, it has been shown in [5], [6] that this trend can

be reversed by means of time-reversal techniques. Pulsed fields
can be transmitted within the RC, focusing energy around a
spot, about the size of the average wavelength excited, and
with a time-dependency that is strongly coherent with the
original pulse: an example is given in Fig. 1, as obtained from
the experimental results presented in Section III. This feature
is interesting since it allows creating conditions somewhat
similar to those experienced in an anechoic environment, while
keeping the advantages of high power efficiency typical of
low-loss reverberating systems. This technique has recently
been used for generating extended coherent wavefronts in
RCs [7]. The main limitation of these studies is that none has
yet addressed how to control the polarization of the pulsed
field. This is indeed the motivation of this paper, where we
prove that the incoherence properties of RCs that are the very
source of its limitations in time-domain applications, canbe
exploited for generating coherently polarized fields thanks to
time-reversal techniques.

The interest of the results here shown is not just limited



to the ability of having a coherent polarization, but also that
it can be modified without any need of mechanically steering
the excitation antenna, nor to use a multitude of differently
polarized antennas. Indeed, we show that the decorrelation
of the field components existing in RCs, allows changing
the polarization of pulsed fields just by changing the signal
driving the antenna. Moreover, the cross-polarization rejection
of the field can attain levels much higher than those of the
same antenna used in a free-space environment. Therefore,
the proposed procedure does not rely on the use of expensive
antennas with a high cross-polarization rejection, but it rather
makes low-cost antennas capable of generating fields with a
low cross-polarization.

II. A SYMPTOTIC CROSS-POLARIZATION PROPERTIES

The setup investigated here is the same used in standard RC
applications, i.e., a transmitting antenna placed within the RC
in order to excite a field distribution. The vector electric field
E(f, r) measured at any pointr inside the RC can then be
related to the power-waveX(f) propagating toward the input
port of the excitation antenna by means of

E(f, r) = X(f)Φ(f, r) = X(f)





Φx

Φy

Φz



 (f, r) , (1)

whereΦ(f, r) is a vector transfer function. The three scalar
transfer functions related to each Cartesian polarizationcom-
ponent will be referred to asΦi(f, r) with i = 1, ..., 3 for,
respectively, thex, y andz components.

It is known that for an overmoded RC, theΦi(f, r) transfer
functions are submitted to the following orthogonality condi-
tion [1]:

E
[

Φi(f, r)Φ
⋆
j (f, r)

]

= Cδij , (2)

whereE[·] is the expected value operator andC is a normal-
ization constant. This condition is satisfied only when aver-
aging over the entire space of the random realizations of the
transfer functions, e.g., such as when applying mode-stirring
techniques. It is worthwhile noticing that this condition has
been demonstrated for an harmonic excitation. By recallingthe
modal theory underpinning the resonant phenomena occurring
in an RC, a generic scalar transfer function can be expressed
as

Φ(f) =
M
∑

i=1

γiψi(f) (3)

whereψi(f) is the frequency response of thei-th resonant
mode supported by the RC, centered around the frequencyfi,
while γi ∈ C is a modal weight modelling how it is excited
and received at the positionr. Equation (3) is defined over a
bandwidthBT , where the RC supportsM modes.

The average introduced in (2) thus applies to two distinct,
though related, phenomena, usually modelled as independent
processes, i.e., the modal weights{γi}, and the frequencies of
resonance{fi} of the modes. Let us now assume that these two
random processes are ergodic, i.e., that the average ensemble
operator can be approximated through the arithmetic mean as

applied to the different modes defining a transfer function,
since ergodicity would imply [8]

lim
M→∞
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∣
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∣
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> ǫ

)

= 0 . (4)

whereǫ ∈ R+. In other words, the arithmetic mean converges
in probability to the ensemble average.

Assuming that theψi(f) are frequency-shifted replica of the
same function, and thus that the quality factorQ grows linearly
over a bandwidthBT , it follows that, although improperly
stated,

lim
M→∞

∫

BT

Φ(f)df =ME [γi]

∫

BT

ψi(f)df , (5)

where the integrals are computed over a bandwidthBT

centered around the central frequencyf0. We have assumed,
as often done, that the{γi} are independent and identically
distributed random variables as well as the{fi}. Equation (5)
thus implies that the ensemble average can also be approxi-
mated through an integration over the frequency variable. As
long as the ergodicity assumption holds, the approach used
for deriving (5) can be applied to any function of the transfer
functions Φi(f). In this case, for a given realization, the
mean would be applied in frequency rather than in probability.
Recalling (2) and the ergodic assumption (4), the law of large
numbers would thus imply that

lim
M→∞

∫

BT

Φi(f)Φ
⋆
j (f)df =ME

[

Φi(f0)Φ
⋆
j (f0)

]

(6)

For a given configuration, the conditionM → ∞ can be
approached asBT → ∞, and/or asf0 → ∞, as predicted
by Weyl’s formula. Clearly, these two approaches have limits,
as the basic assumption is that of a constant∂Q/∂f . Other
limitations due to the losses are discussed in Section III.

Equation (6) is the cornerstone of the proposed method,
since it implies that the same performance that would be
obtained only by averaging over a large number of random
realizations, can be fairly approximated when using wide-band
signals in a single deterministic configuration, provided that
the RC be in an overmoded state. This feature is in particular
related to the self-averaging properties of time-reversal, as
investigated in [9].

Let us now consider an excitation signalXTR(f) defined
as

XTR(f) = G(f)

3
∑

i=1

piΦ
⋆
i (f, r) = G(f)ΦH

p , (7)

whereG(f) is the spectrum of the pulse to be received atr,
while p = (p1 p2 p3)

T. Applying this to (1) yields a received
field

ETR = GΦΦHp , (8)

having dropped the function arguments for the sake of sim-
plicity. Since we are rather interested in the time-domain field,



Rx energy Cross-polarizations 50/90 percentiles (dB)
f0 (GHz) Me E1 E2 E3 ρ12 ρ13 ρ23 |ρ12| |ρ13| |ρ23|

Sinc pulse
1.0 570 0.96 (0.12) 0.94 (0.12) 1.00 (0.12) 1.8 (5.2) 1.3 (4.4) -2.2 (6.3) 28/21 30/22 26/19
1.5 420 0.97 (0.12) 0.94 (0.11) 1.00 (0.13) 1.2 (5.5) 0.5 (5.3) -3.0 (6.4) 28/20 28/22 26/18
2.0 315 0.96 (0.11) 0.97 (0.11) 1.00 (0.12) 1.5 (6.8) 1.9 (6.3) -1.2 (7.0) 26/19 26/20 29/17

Gaussian pulse
1.0 0.94 (0.12) 0.92 (0.13) 1.00 (0.14) 2.5 (5.6) 1.4 (4.5) -2.1 (6.8) 28/20 29/23 26/19
1.5 0.96 (0.13) 0.94 (0.12) 1.00 (0.14) 0.3 (6.1) 0.4 (6.1) -2.4 (7.0) 28/19 26/21 27/17
2.0 0.96 (0.11) 0.97 (0.12) 1.00 (0.14) 1.3 (7.4) 1.8 (7.6) -1.2 (8.1) 25/18 24/18 26/17

TABLE I
STATISTICS OF THE PERFORMANCE IN PULSE TRANSMISSION AS OBTAINED FROM THE COLLECTED EXPERIMENTAL DATA. THE FIRST GROUP OF

RESULTS DEALS WITH THE ENERGY RECEIVED ALONG THE THREE POLARIZATION , ACCORDING TO THE TRANSFER FUNCTIONS OF THE PROPAGATION
CHANNEL. THE SECOND GROUP PRESENTS THE CROSS-POLARIZATION TERMS OF THE POLARIZATION MATRIXρ, WHEREAS IN THE THIRD ONE THE50

AND 90 PERCENTILES OF THE CROSS-POLARIZATION REJECTION ARE PRESENTED INDB UNITS. THE AVERAGE VALUES AND THE STANDARD

DEVIATIONS ARE GIVEN FOR THE FIRST TWO GROUPS, WITH THE LATTER IN PARENTHESIS. THE CROSS-POLARIZATION TERMS (SECOND GROUP) ARE TO

BE DIVIDED BY A FACTOR 100.

and especially over the peak of the pulse att = 0, we get

eTR(0) =

∫ +∞

−∞

GΦΦHp df =
√
Eρ

√
Ep , (9)

having introduced the energy matrixE = diag{E1, ..., E3},
with

Ei =
∫ +∞

−∞

G|Φi|2df = 2

∫

BT

Re {G} |Φi|2df (10)

and the polarization matrixρ, whose elements are defined as

ρij =

2

∫

BT

Re
{

GΦiΦ
⋆
j

}

df

√

EiEj
. (11)

By applying the ergodic condition (4), it can be proven that

lim
M→∞

ρ = E [ρ] = 1 , (12)

where 1 is the identity matrix. Recalling that in an over-
moded RC the field is statistically isotropic, i.e.,E

[

|Φi|2
]

=
E
[

|Φj |2
]

∀i, j, by applying (4) to this last equation too,
limM→∞ Ei = E0∀i. We can hence claim that

lim
M→∞

eTR(0) = E0p (13)

This result proves that without invoking any statistical averag-
ing process, i.e., no stirring, the pulsed field generated through
time-reversal converges, for a sufficiently overmoded RC, to
a coherently polarized field, directly controlled by the weight
vectorp, and this for any static configuration. In other words,
theΦi functions approximate an orthogonal basis. This result
has been derived as an asymptotic property, so that the actual
received field is expected to fulfill (13) on average, while
presenting a statistical dispersion inversely dependent on M .

III. E XPERIMENTAL RESULTS

In order to validate the previous analysis, some experimental
tests were carried out in SUPELEC’s RC, characterized by
physical dimensions3.08×1.84×2.44 m3. The setup consisted
of a log-periodic dipole antenna (LPDA), positioned near one
corner of the chamber, with the dipoles of the antenna aligned
along the vertical direction, i.e.,z, while the direction of max-
imum gain was aimed at the corner. Concerning the receiving
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Fig. 2. Empirical cumulative distribution function of the cross-polarization
rejections obtained from the experimental results, for a Gaussian pulse. The
50 and 90 percentiles are shown in Table I.

transducer, an all-optical E-field probe was used, manufactured
by Enprobe, model EFS-105. This phase-preserving probe is
linearly polarized, with a cross-polarization rejection of about
40 dB, thus allowing to test accurately the cross-polarization
in the transmitted pulse. The probe was mounted over a
styrofoam support, designed in order to ensure the rotation
of the probe and thus the measurement of the three Cartesian
components of the E field. A total of 50 positions were con-
sidered, scattered randomly over the lower half of the RC; for
each of these, the transfer functions between the LPDA and the
probe was measured along the three polarizations, by means of
a vector network analyzer. Three frequencies were considered
for f0, namely 1, 1.5 and 2 GHz, considering a bandwidth of
100 MHz around each frequency. The overmoded condition
can be considered as fulfilled for all of thesef0.

Two types of pulses were considered: 1) a cardinal sine and
2) a Gaussian pulse. The reason for this choice is to check how
ρ is affected by a non-flat spectrum. Indeed, the Gaussian
pulse, designed to have a−20 dB bandwidth of 100 MHz,
ensured a lower utilization of the ends of its spectrum, and
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Fig. 3. The field components obtained from experimental results measured at
one position, for a Gaussian pulse. Each plot corresponds toa weight vector
p with just one non-null element. Top to bottom, thex, y andz components
of the fields are ideally the only excited when the pulse attains its peak value.

thus was expected to have a higher statistical dispersion, since
exciting the mods unevenly.

The analysis methodology presented in Section II was ap-
plied to the transfer functions, computing, for each frequency
and position, the polarization matrixρ, as defined in (11). We
first checked the validity of the isotropy assumption, by com-
puting how the energy received along the three polarizations is
distributed. The first two statistical moments were computed,
and are shown in Table I, showing that this assumption makes
sense for the three frequencies we chose, with a maximum
error on the average energy of about 8 % and an average one
of 5 %. Nevertheless, the uncertainty due to randomness of
these quantities is of about 20 % across their average value,
thus affecting the precision of the copolarization terms.

A similar statistical analysis was carried out on the off-
diagonal elements ofρ: the results shown in Table I prove
that indeed the field components orthogonal to the originally
addressed one are on average very close to zero. The fact that
the average is not exactly null is due to positioning errors
of the probe: a tilt of its axis of about 1 degree leads to
a 0.02 cross-polarization, a value that closely matches the
actual averages shown in Table I. The tilt was indeed caused
by mechanical errors in the tracks of the styrofoam support
housing the probe. The cumulative distribution functions of
the cross-polarization projections are shown in Fig. 2, proving
that indeed the proposed procedure provides rejections that

are much higher than those the LPDA could enable in a
free-space environment, at best 20 dB. The median rejection
is to be found around 28 dB, and the 90 percentile around
20 dB, while even higher rejections can be found with non
negligible probability. In all these results, the Gaussianpulse
always underperforms with respect to the sinc one due to a
less efficient use of the bandwidthBT and thus a lowerM .

Concerning the standard deviation of the rejection, it is
directly related to the residual error when considering a finite
number of modes. Nevertheless, it does not change much
when doublingf0. This is due to the limited number of
degrees of freedom actually available whenQ < ∞: it was
indeed demonstrated in [10] that ofM modes available, a
maximum of aboutMe = BTQ/f0 actually participate. This
interpretation is supported by the inverse trends followedby
the standard deviation andMe, as shown in Table I.

IV. CONCLUSIONS

We have extended the use of time-reversal techniques for
generating pulsed fields within reverberation chambers. In
particular, we have proven that the polarization of the fieldcan
be controlled in a very precise way by simply operating on
the signal applied to the excitation antenna. Remarkably, the
proposed results are not based on the free-space polarization
performance of the excitation antenna, but entirely rely on
the decorrelation of the field components inside an RC.
Experimental results support this analysis, demonstrating that
actual applications can be defined, although further researches
are needed in order to be able to predict the statistics of the
performance of this technique.
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