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Artefact-free color and contrast modification
Julien Rabin, Julie Delon and Yann Gousseau

Abstract—This work is concerned with the modification of the
gray level or color distribution of digital images. A common
drawback of classical methods aiming at such modifications is the
revealing of artefacts or the attenuation of details and textures.
In this work we propose a generic filtering method enabling,
given the original image and the radiometrically corrected one,
to suppress artefacts while preserving details. The approach
relies on the key observation that artefacts correspond to spatial
irregularity of the so-called transportation map, defined as the
difference between the original and the corrected image. The
proposed method draws on the non-local Yaroslavsky filter
to regularize the transportation map. The efficiency of the
method is shown on various radiometric modifications: contrast
equalization, midway histogram, color enhancement and color
transfer. A comparison with related approaches is also provided.

Index Terms—contrast modification, color transfer, contrast
adjustment, contrast equalization, histogram specification, opti-
mal transportation, image regularization, artefact-free.

I. INTRODUCTION

A
PPLYING contrast changes to digital images is one of

the most elementary tool for image enhancement. Such

changes may be obtained by applying a prescribed function to

the gray values of images, as in contrast stretching or Gamma

correction, or by prescribing the histogram of the resulting

image, as in histogram equalization or specification from an

example image [1]. Such operations are characterized by the

way they affect the histogram of an image and may be seen as

modifications of their gray level distribution. These techniques

extend to color images by considering a luminance channel,

as in Gamma correction, or by working on each color channel

separately. The prescription of the three-dimensional color

distribution is more satisfying because it avoids the creation

of false colors, but is also more involved. Actually, a nice

theoretical framework enabling to merge the gray level and

color cases is the one of optimal transportation, also known

as the Monge-Kantorovich problem [2], as we will briefly

recall in this paper. When the resulting color histogram is

prescribed by a target image, one speaks of color transfer.

Various approaches to this task are proposed in [3], [4], [5],

[6].

Applications of contrast or color changes are of course

extremely numerous. With the popularization of digital pho-

tography, these techniques have became immensely popular

through the use of various “curves” in image editing software.

Early uses of contrast equalization are the enhancement of
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medical images [7] and the normalization of texture for

analysis purposes [8]. In a related direction, the construction

of midway histograms [9], [10] is useful for the comparison

of two images of the same scene. More recently, extensive

campaigns of old movies digitization have claimed for the

development of contrast modification techniques to correct

flicker [11], [12]. Similar techniques are commonly used in the

post-production industry [13], [14]. Another field of increasing

industrial interest in which contrast changes play a central role

is the one of imaging in bad climatic conditions, see e.g. [15].

Color modification or transfer is also useful for a wide range

of applications: aquatic robot inspection [16], space image

colorization [17], enhancement of painting images, etc.

A common drawback of most methods aiming at modifying

the contrast or color content of images is their strong tendency

to create visual artefacts. Indeed, when increasing the contrast,

parasite structures that were barely visible become prominent.

Most noticeable is the enhancement of noise and compression

scheme patterns, such as “block effect” due to the JPEG

standard. In the other direction, contrast reduction or color

transfer may yield detail loss and texture washing. A last

artefact is particularly noticeable in the case of color transfer

and appears when the proportions of colors are very different

between images. The goal of this paper is to propose a generic

method for the correction of these artefacts.

Before proceeding, we now recall some of the approaches

that have been proposed in the literature to suppress artefacts

due to contrast or color modification. The simplest one is

proposed in [18] in the context of local histogram modi-

fications, and amounts to limit the modification depending

on gradient values. While improving the results in some

cases, this approach let most artefacts untouched. In [5], it

is proposed to correct color transfer artefacts by using a

variational regularization after the transfer. Still in a variational

framework, the authors of [10] propose a unified formulation

containing both color transfer and regularity constraints in a

single energy minimization. For the problem of color pro-

portion, a possible approach is to transfer color after having

identified some homogeneous regions, as proposed in [19],

[6]. A related class of works takes interest in the avoidance

of compression artefacts, usually using the properties of the

compression scheme, see e.g. [20].

In this paper, we propose to remove all the artefacts de-

scribed above by regularizing the transportation map, defined

as the image of the differences between the original image

and the one after contrast or color modification. Indeed,

we will show that all these artefacts may be interpreted as

spatial irregularities of this transportation map. In order to

regularize this map without introducing blur in the final image,

we take inspiration from non-local methods [21] that have

been proposed for image denoising and more precisely from
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the Yaroslavsky filter [22]. The transportation map is filtered

by averaging pixel values using weights that are computed

on the original image, therefore adapting to the geometry

of this initial image. It will be shown that artefacts are

progressively suppressed by iterating this filtering stage and

that the proposed filter generally provide better results than

the approaches described in the previous paragraph.

The paper is organized as follows. In Section II the general

setting for contrast and color modifications is introduced. The

generic approach proposed in this work is given in Section III

and experiments are displayed in Section IV. In the appen-

dices, useful facts and results about optimal transportation and

powers of stochastic matrices are given.

II. COLOR AND CONTRAST MODIFICATION

In this section, we recall how color and contrast modifi-

cations can be applied to images and why they are likely to

create visual artefacts.

A. Contrast or color distribution of an image

Let u : Ω 7→ ❘
n be a discrete image, with n = 1 for a

gray level image, n = 3 for a color image, and where Ω ⊂ Z
2

is the bounded image domain. Assume that u takes its values

in the set {y1, . . . , yP } ⊂ ❘
n, then the gray level or color

distribution of u is defined as

hu =

P∑

i=1

hiδyi
, (1)

where hi = 1
|Ω| | {x ∈ Ω; u(x) = yi} |. When n = 1, we

denote by Hu the cumulative distribution function of hu. The

distribution hu is also called the gray level or color histogram

of u and Hu is called its cumulative histogram.

B. Color and contrast modifications

It is usual to apply simple radiometric transformations to a

gray level image in order to improve its contrast and level of

details. Such transformations generally consist in an increasing

function T , in order to preserve gray level ordering. The

image u becomes T (u), and its gray level distribution becomes

hT (u) =
∑P

i=1 hiδT (yi). Particular cases of such transforma-

tions are histogram stretching (T (x) = ax + b) or histogram

clipping (T (x) = min(β,max(α, x))), used for instance to

improve visualization in satellite or medical imaging [7].

Another example is the function T (x) = log(1 + x), which is

particularly useful to visualize images of Fourier transforms,

or high dynamic range images [23]. Similar transformations

can also be applied to the luminance channel of a color image

(see an example of histogram clipping in Figure 1(j)).

In some cases, it is useful to assign to an image u a given

target distribution f . This amounts to find a mapping T (called

contrast or color transfer) such that the distribution of T (u) is

equal or at least close to f , i.e. such that

hT (u) ≃ f. (2)

Most of the time, the equality cannot be exactly satisfied. For

instance, if hu = δ 1

2

(u is a constant image) and f = 1
2 (δ0 +

δ1), there is no mapping T such that the distribution of T (u)
is exactly f . T is thus generally chosen so that hT (u) be close

to f in some sense.

For n = 1, Equation (2) can be satisfied in the sense that

the cumulative distribution functions HT (u) and F coincide

on the values taken by T (u). This is always possible if F is

continuous. If we add the constraint that T is increasing , the

solution is given by

T = F−1 ◦ Hu, (3)

where F−1 is defined as F−1(t) = inf{λ ∈ ❘; F (λ) ≥ t}.

If f is a constant distribution on the range of u, Equation (3)

yields the well known histogram equalization. More generally,

if f is the gray level distribution hv of another image v,

then T = H−1
v ◦ Hu is called histogram specification. These

transformations can also be applied to the luminance channel

of a color image (an example is displayed in Figure 1(b)).

Some variants of this framework have been proposed to apply

such equalization locally [18], [24] (see Figure 1(c) and 1(d)).

When n ≥ 2, the interpretation of Equation (2) is less

clear and the monotonic constraint cannot be used anymore

to find an optimal mapping T . A naive solution, proposed

in [3] in the case of color images, consists in applying an

affine transformation to the color distribution of u in order to

match the mean and variance of the color distribution f . If

this elementary solution can be satisfying for cases involving

images having similar and simple color distributions, it usually

fails in general cases. In order to find a satisfying mapping in

the general case, the problem must be seen in the framework of

optimal transport, as described in more details in Appendix A.

If n = 1, this framework leads to formulas similar to (3) for

histogram equalization and specification. If n ≥ 2, however, no

analytic formulation can be found for the optimal mapping T .

Such mappings can be estimated numerically, for instance by

using the simplex algorithm. Most of the time, this estimation

leads to expansive computations. In practice, a satisfying

approximation can be computed by estimating iteratively 1D

optimal mappings on random axes, as proposed in [5] and

studied in [25] (an illustration is proposed in Figure 1(m)). The

result is fast to compute, although not perfectly optimal in the

sense of the Monge-Kantorovich transport problem described

in Appendix B.

C. Visual artefacts

As it can be observed from the several examples provided in

Figure 1, four major visual artefacts can be caused by contrast

or color modifications:

⊲ Noise enhancement: this happens if the variance of the

noise in u increases after the application of T to u,

as illustrated for instance in Figures 1(b) and 2(d) for

histogram equalization.

⊲ Compression artefacts: these artefacts appear when the

original image u is the result of some compression

scheme (e.g. JPEG) and when pixels with similar colors

are mapped to different colors (see e.g. Figure 1(o)).

⊲ Detail loss: this results from a reduction of contrast

between u and T (u), and can be observed for instance

on the head of the bird in Figure 1(p).
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⊲ Color proportion inconsistencies: Ideally, the mapping T
should be defined in such a way that pixels having similar

colors in the original image are mapped to similar colors.

However, this is unfeasible if the proportions of colors are

very different in the original and the target distributions,

as illustrated by Figure 1(q) and 6(i).

Our approach to remove these artefacts relies on the ob-

servation that they are all due to spatial irregularities of the

transportation map of the image u, defined as T (u) − u.

III. A NEW REGULARIZATION APPROACH FOR

TRANSPORTATION MAPS

Following the observations of the previous section, we

propose to spatially filter the transportation map. The so-

lution we chose is inspired from non-local filters [21].

This concept has been introduced for image denoising by

Yaroslavsky [22]. Similar filters have been independently

defined, as SUSAN [26] or the Bilateral Filter [27]. More

recently, a somehow radical extension of this approach, the

so-called “Non-Local Mean” filter [21] has been shown to

outperform many approaches to image denoising. In what

follows, we will make use of a variant of the Yaroslavsky

filter to regularize transportation maps.

A. Transportation Map Regularization

Recall that T (u) is the image after color or contrast mod-

ification. In what follows, we write M(u) := T (u) − u for

the transportation map of image u. We propose to regularize

it thanks to the operator Yu, a weighted average with weights

depending on the similarity of pixels in the original image u.

The effect of this operator on an image v : Ω 7→ ❘
n with

n ≥ 1 is defined as

[Yu v] : x ∈ Ω 7→
1

C(x)

∫

y ∈N (x)

v(y) · wu(x, y) dy

with weights wu(x, y) = e−
‖u(x)−u(y)‖2

σ2 ,

(4)

where ‖.‖ stands for the Euclidean distance in ❘
n, where

N (x) = x+N (0) ⊂ Ω, with N (0) a spatial neighborhood of

0, where σ is a tuning parameter of the method and C(x) is

the normalization constant C(x) =
∫

y∈N (x)
wu(x, y)dy .

Observe that if we apply Yu to the image u, we obtain

the Yaroslavsky filter [22]. If the weights also decrease as

a function of the distance to x, Yu becomes similar to the

cross bilateral filter introduced in [28] for flash photographic

enhancement.

The regularization of the image T (u), referred to as

Transportation Map Regularization (TMR), is then defined

as TMRu(T (u)) := u + Yu M(u). Now, observe that this

formulation can be divided in two terms :

TMRu(T (u)) = Yu

(
T (u)

)

︸ ︷︷ ︸

filtering of image T (u)

+ u − Yu(u)
︸ ︷︷ ︸

image detail

. (5)

First, the image T (u) is filtered by a non-local operator

Yu, following the regularity of the image u. This operation

attenuates noise, compression and color proportion artefacts

but also the details of the image T (u). The second operation

performed by the TMR filter consists in adding the quantity

udetails = u − Yu(u), which can be considered as details of

the original image (e.g. texture and fine structures). We will

see in the experimental section that these two steps are very

important to obtain a natural rendering of the image.

B. Properties

The previously defined filter has two nice properties which

enable us to reduce the visual artefacts described in Sec-

tion II-C.

First, observe that this filter leaves all the images u + λ,

λ ∈ ❘n, unchanged. Moreover, if the application T consists

in a multiplication by a positive constant α, then TMRu(αu) =
αu + (1 − α) · udetails . If α > 1, the transfer T increases

the contrast. In that case, the TMR filter reduces the noise

contained in the image difference udetails. If α < 1 the transfer

T decreases the contrast and the TMR filter restore the lost

details contained in udetails.

C. Iteration of TMR and convergence study

In practice, more than one iteration of the TMR filter is

required to remove all the aforementioned artefacts. The image

T (u) after k iterations of the TMR filter can be written as

follows:

TMRk
u(T (u)) := Yk

u

(
T (u) − u

)
+ u ,

where Yk
u refers to the recursive use of the Yu filter. An

illustration for histogram equalization is given in Figures 5(b)

and 5(a), where the equalized image (Figure 1(b)) is regular-

ized using respectively one and several iterations of the TMR

filter.

The question is then how to choose the right number of

iterations k and one may wonder what happens for large values

of k. Studying the limit of Yk
u when k → ∞ boils down to

the study of the limit of the powers of a matrix. Indeed, let us

resize the discrete image u into a column vector v of size m.

In this setting, the linear filter Yu can be written as an m×m
matrix A , whose coefficients are

Ai,j =
wu(i, j) · ✶j∈N (i)

∑m

k=1 wu(i, k) · ✶k∈N (i)

, 1 ≤ i, j ≤ m. (6)

In this formulation, i is the index in the vector v of a pixel x
in u, and N (i) is the set of indexes in v corresponding to the

2D neighborhood N (x) in u. If we resize the map T (u) − u
into the vector w, then Yk

u(T (u)−u) corresponds to the vector

Akw. Now, observe that the matrix A is stochastic, i.e. that

Ai,j ≥ 0, ∀i, j and
∑m

j=1 Ai,j = 1, ∀i. If we assume that A
is primitive, i.e. that Ar is strictly positive for some r ∈ N

∗

(and this is clearly true if the neighborhoods N (x) are disks of

radius ρ > 1 in Equation (4)), the Perron-Frobenius theorem

permits to conclude that Ak tends toward a stochastic matrix

A∞ when k → +∞, and that all the lines of A∞ are equal (see

Appendix B). This means that the map Yk
u(T (u) − u) tends

toward a constant image Y∞
u (T (u) − u). In other words, the

limit image TMR∞
u (T (u)) is only a shift of the image u by a

constant color.
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(a) Original image (b) Histogram equalization (c) Spatial adaptive histogram
equalization [18]

(d) Shape preserving equaliza-
tion [24]

(e) Histogram clipping

(f) Top: Zoom of image (b).
Bottom: Effect of TMR filter

(g) Iterated TMR filter on im-
age (b)

(h) Iterated TMR filter on im-
age (c)

(i) Iterated TMR filter on im-
age (d)

(j) Iterated TMR filter on im-
age (e)

(k) Original image. (l) Target color distribution. (m) Raw color transfer. (n) Iterated TMR filter on image 1(m).

(o) Left: Details from image 1(m). Right: effect of
TMR on JPEG artefacts.

(p) Left: Details from image 1(m). Right: effect of
TMR on fine detail loss.

(q) Left: Details from image 1(m). Right: effect of
TMR on color proportion artefacts.

Fig. 1. Examples of visual artefacts produced by different image processing techniques and the corresponding regularizations. The first row exhibits
several images resulting from different contrast enhancement methods applied to the same original image (Figure 1(a)). The second row shows the corresponding
applications of the TMR filter proposed in this paper. The third row shows an example of color transfer (colors of Figure 1(l) are affected to Figure 1(k)).
Resulting artefacts are visible on Figure 1(m) and are shown to be removed by the TMR filtering in Figure 1(n). The fourth row shows corresponding details
illustrating the various artefacts and their removal.
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The Perron-Frobenius theorem also gives information on

the convergence rate of Ar towards A∞. More precisely, we

know that Ar − A∞ behaves as O(|λ|rrm(λ)−1), where λ
is the eigenvalue of A with the second largest modulus and

where m(λ) is the algebraic multiplicity of λ. In practice,

|λ| is generally close to 1 for a similarity matrix A, and the

resulting convergence rate is quite slow, as it will be confirmed

in the experimental section. The aim of the next section is to

propose a way to stop automatically the iterations of the filter

TMR.

D. Stopping criterion

In order to control the iterations of the TMR filter, we

compute at each iteration a convergence map, written C and

defined at each pixel as follows:

C(x) = ‖ Yk
u M

(
u(x)

)
− Yk−1

u M
(
u(x)

)
‖ ,

where ‖.‖ is the average Euclidean norm in ❘n. We then

consider that there is numerical convergence in pixel x when

C(x) < t, and the TMR filter is only applied to pixels for

which the convergence map is greater than the threshold t. In

all experiments, the convergence threshold has been set equal

to t = 1 (for n × 8-bit images).

In practice, if x is the first pixel to attain this numerical

convergence, this boils down to replace the line corresponding

to x in matrix A by the same line in the identity matrix.

The new matrix A1 is then iterated until a second pixel attain

numerical convergence, and A1 is then replaced by A2, etc.

Observe that each matrix Aj is stochastic and such that Ak
j

converges when k → +∞ (see Appendix C for a proof), which

implies that a new pixel attains numerical convergence after a

finite number kj of iterations. The whole process hence stops

once all pixels are in C(x). At the end, if v is the vector

corresponding to T (u) − u, we get

v∞ = A
kn−1

n−1 . . . Ak1

1 Ak0 · v . (7)

Observe that the proposed stopping criterion permits also to

save computation time since the iterations of the TMR filter

concern fewer and fewer pixels.

IV. EXPERIMENTAL STUDY

This section presents several applications of the TMR filter.

Observe that this filter relies on two different parameters.

The most important one is σ, which is used to compute the

weighting terms in the computation of the regularized map

(Formula (4)). In the following experiments, we have used

σ = 10 The second parameter is related to the size of the

neighborhood N (x). In experiments, we used disks of radius

ρ = 10.

A. Convergence study

This paragraph illustrates the interest of the stopping cri-

terion introduced in Section III-D. Consider the image u of

Figure 2(a). This image has a narrow dynamic range, as illus-

trated by its histogram (Figure 2(b)). Applying an histogram

equalization to u yields an image ueq with a more satisfying

dynamic range but also increases the noise level (Figure 2(d)).

Using the stopping criterion proposed in Section III-D, 23

iterations of the TMR filter are required to converge in the

sense of (7). This permits to reduce dramatically the noise level

while preserving the contrast and details of u (Figures 2(e)

and 2(m)).

The asymptotic behavior of the iterated TMR filter without

using this stopping criterion is illustrated by the Figures 2(e)

to 2(o). In accordance with the convergence study of Sec-

tion III-C, we observe that the map Yk
u

(
ueq − u) tends

toward a constant map Y∞
u

(
ueq − u) 1 when k increases.

The convergence rate is illustrated by Figure 2(c), which plots

the values of the norm ‖TMRk
u

(
ueq

)
− TMR∞

u

(
ueq

)
‖ when

k increases. As expected, this convergence rate is very slow.

This confirms that, while the threshold on the convergence is

important in practice, its precise setting is not crucial.

B. Contrast modification

In this section, we investigate different applications of

contrast modification to illustrate the interest of the proposed

approach. In this context, we propose in Section IV-B3 a

comparative study of our scheme with different regularization

approaches that have been proposed in the literature.

1) Histogram modification: The first lines of Figure 1

illustrate the interest of the TMR filter for several contrast

enhancement techniques, namely histogram equalization (Fig-

ures 1(b), 1(g)), spatial adaptive histogram equalization [18]

(Figures 1(c), 1(h)) shape preserving equalization [24] (Fig-

ures 1(d), 1(i)) and histogram clipping (Figures 1(e), 1(j)).

Notice how the artefacts described in Section II-C are present

in these examples, in particular the enhancement of both noise

and compression artefacts. In each case, the iterated TMR filter

permits to remove these artefacts while preserving contrast and

restoring details (see e.g. Figure 1(f)).

In Figure 3, a challenging example of contrast modification

using both histogram clipping and Gamma correction is given,

resulting in an increase of noise level. The result of the iterated

TMR filter is illustrated in Figure 3(d), using σ = 4. Observe

that our approach limits the noise enhancement and maintains

the desired contrast modification. It should be noticed that

using σ = 10 (see Figure 3(d)) on this example is not

satisfying due to the very poor dynamic of the original image

(Figure 3(a)). This illustrates that the practical choice of the

parameter σ may depend on the considered contrast or color

modification.

2) Flicker reduction: The proposed regularization scheme

can also benefit the restoration of old movies. Figure 4(a)

shows three images of a sequence suffering from a strong

local flicker (fast and unnatural intensity fluctuations from one

frame to the other). This sequence is restored by the local

method proposed in [29] and the three corresponding restored

frames are shown on Figure 4(b). The method manages to

harmonize the local contrast in the sequence. However, as we

can see, the flicker and film compression are so brutal that

several artefacts appear on some parts of the frames (see for

instance both heads in the second image and the jacket in

1The limit map can be computed explicitly in our case, see Appendix B.
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(a) Original image u.

0 50 100 150 200 250

(b) Histogram of u.

0 2000 4000 6000 8000 10000

10
1.4

10
1.6

10
1.8

iteration number k
(c) Average Euclidean norm of difference ||TMRk

uueq−TMR∞

u ueq || as a function of the the number of iterations
k.

(d) Equalization ueq . (e) TMR23
u ueq . (f) TMR10000

u ueq . (g) TMR∞

u ueq

(h) Transportation map ueq − u. (i) Transportation map Y23
u (ueq −u). (j) Map Y10000

u (ueq − u). (k) Constant map Y∞

u (ueq − u).

0 50 100 150 200 250

(l) Histogram of ueq .

0 50 100 150 200 250

(m) Histogram of TMR23
u ueq .

0 50 100 150 200 250

(n) Histogram of TMR10000
u ueq .

0 50 100 150 200 250

(o) Histogram of TMR∞

u ueq .

Fig. 2. Convergence study of the iterated TMR filter. (a) a low dynamic range image u and (b) its gray level histogram; (d) image ueq , obtained by
applying an histogram equalization to u, and (l) histogram of ueq ; (h) the corresponding transportation map M(u) = u − ueq ; (e) to (g) iterations of the
TMR filter, with (e) 23 iterations (corresponding to the automatic stopping criterion), (f) 10000 iterations and (g) convergence; (m) to (o) the corresponding
gray level histograms; (i) to (k) the corresponding transportation maps. Observe how the 23 iterations chosen by the stopping criterion permit to reduce the
noise level while preserving contrast and image details.

the third image in Figure 4(b)). Figure 4(c) shows how these

defects are corrected by the iterated TMR filter.

3) Comparison with other regularization approaches: In

the following paragraphs, we confront our method with other

approaches that have been proposed in the literature to reduce

irregularities created by contrast modifications.

Gradient control: The approach of [18], that has been

proposed to enhance the contrast of medical images, consists

in applying local histogram equalizations independently on

subparts of an image. We return to the images of Figure 1

to illustrate this point. Figure 1(c) shows an example where

the image has been divided into 8-by-8 overlapping tiles. To
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(a) Original image (b) Gamma correction (c) Iterated TMR filter with σ = 10 (d) Iterated TMR filter with σ = 4

Fig. 3. Application of the iterated TMR filter for Gamma correction. Figures 3(a) and 3(b): gray-level image and its contrast enhancement via histogram
clipping and Gamma correction (with γ set to 1

2
). Figure 3(c) and 3(d): result of the iterated TMR filter, respectively with σ = 10 and σ = 4.

prevent the noise level to skyrocket (in particular in constant

regions), the gradient of the transportation map is restricted

to a user-defined interval, which also limits the contrast

enhancement. In practice, one can observe that artefacts, if

still present, are less noticeable than in the classical histogram

equalization (Figure 1(b)). Figure 1(h) shows that the iterated

TMR filter enables to remove the remaining artefacts while

preserving the local contrast changes.

Two-scale decomposition technique: Figure 5(b) shows

the result of a single iteration of the TMR filter when the

mapping T is an histogram equalization (denoted here by

the operator EQ) applied to the image u of Figure 1(a).

Following (5), the resulting regularized image can be written

as TMRu(EQ(u)) = Yu ◦ EQ(u) + udetails, where udetails =
u − Yu(u) is the detail image. This formulation shares simi-

larity with the approach proposed in [23] in a different context

for tone mapping (contrast reduction for high dynamic range

images). In their framework, the image u is first decomposed

into a base layer using the bilateral filter (corresponding here

to Yu(u)) and a detail layer udetails = u−Yu(u). A contrast

reduction is then applied to the base layer, and udetails is added

to the result to obtain the final image. Figure 5(c) demonstrates

that this approach, well suited for dynamic reduction, is not

adapted to contrast enhancement, yielding discontinuities in

flat regions.

One can see on Figure 5(a) how using iterations of the

TMR filter until convergence yields even a better result. It is

noticeable that this framework shares some common features

with the two-scale decomposition approach introduced by

Durand and Dorsay [23] in the case of tone mapping (contrast

reduction for high dynamic range images).

Regraining: Another regularization scheme has been pro-

posed by Kokaram et al. [5] as a post-processing for color

transfer and can also be used for contrast modifications. This

scheme relies on a variational formulation combining two

fidelity terms: one depending on the gradient of images and the

other one on their gray levels. The result of our implementation

of their algorithm on the equalized image EQ(u) is shown on

Figure 5(d). Although the visual impact of artefacts is reduced,

this method fails to restore completely details, yielding a

blurred and “mottled” appearance.

C. Color transfer

This section presents the results of our regularization filter

on several color transfer examples (see Section II-B). In all

these experiments, the raw color transfer is computed thanks

to the algorithm proposed in [5], which is both fast and easy

to implement.

1) Four examples: We have already analyzed the color

transfer example displayed at the bottom of Figure 1, which

exhibits many artefacts (see details given in Figures 1(o), 1(p)

and 1(q)). Figure 1(n) shows the result of several iterations

of the TMR filter (until the stopping criterion is reached)

on this example. As it can be observed on the different

zooms, the regularization removes all compression artefacts

while restoring fine details in the image and reducing color

proportion problems.

Two additional examples of color transfer are proposed

in Figure 6. The first one (Figure 6(a) to 6(f)) illustrates

the two-terms decomposition of Equation (5). Let u denote

the original image (Figure 6(a)) and T (u) the same image

after color transfer (Figure 6(c)), using the color palette of

Figure 6(b). Then TMRu(T (u)) (Figure 6(f)) can be seen

as the sum of Yu(T (u)) (Figure 6(d)), the filtered version

of T (u), and u − Yu(u) (Figure 6(e)), which restores the

details of the original image u. In the second example, at the

bottom of Figure 6, the colors of Mahana no atua by Gauguin

are transferred to the painting Le Déjeuner des Canotiers, by

Auguste Renoir. The resulting raw transportation map is shown

on Figure 6(j), while Figure 6(k) and 6(l) show respectively

the transportation map and the result of the color transfer

after several iterations of TMR filter. Among other effects,

the annoying color proportions problems (see for instance the

blue spots on the white clothes) completely vanish, resulting

in a far more plausible image.

A last example is given in Figure 7 to illustrate the versa-

tility of the proposed approach for various color modification

techniques. In this example, the image shown in Figure 7(a)
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(a) Three consecutive frames from a movie [Be Kind Rewind, Michel Gondry, 2008], suffering from a strongly localized flicker.

(b) Same frames after local flicker reduction [29].

(c) Same frames after local flicker reduction and application of the TMR filter.

Fig. 4. Application of the iterated TMR filter to flicker stabilization. Figure 4(a): a sequence of three images corrupted by flicker (strong and fast local
contrast change). Figure 4(b): flicker stabilization results with the method of Delon and Desolneux [29]. Observe that the contrast is well harmonized over the
sequence, but some artefacts related to brutal and local contrast modifications appear. Figure 4(c): The iterated TMR filter permits to remove those artefacts.

(a) Iterated TMR filter on EQ(u) . (b) One iteration of TMR on EQ(u):
Yu ◦ EQ(u) + udetails .

(c) Alternative approach:
EQ ◦ Yu(u) + udetails.

(d) Regraining [5] on EQ(u).

Fig. 5. Comparison of the iterated TMR filter with other regularization techniques for contrast enhancement. We consider here the image u and its
equalization EQ(u) previously shown in Figures. 1(a) and 1(b)) respectively. In Figures 5(b) and 5(a), we show respectively one and several iterations of the
TMR filter. The image udetails = u − Yu(u) corresponds to the details extracted in u. One can compare results with a two-scale decomposition method
inspired from [23] (Figure 5(c)) and with the “regraining” approach of [5] (Figure 5(d)). See Section IV-B3 for details.
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(a) Original image. (b) Target color distribution. (c) Raw color transfer.

(d) Filtering of image (c).

+

(e) Details extraction of (a).

=

(f) Regularization of (c) with iterated TMR filter.

(g) Original image (Auguste Renoir, Le déjeuner

des Canotiers, 1881).
(h) Target color distribution (Paul Gauguin, Ma-

hana no atua – le jour de Dieu, 1894).
(i) Raw color transfer.

(j) Raw color transportation map. (k) Regularized color transportation map. (l) Iterated TMR filter.

Fig. 6. Illustration of color transfer regularization with iterated TMR filter. (see the electronic version of this paper). The first row displays (Figure 6(c))
the result of transferring the colors of Figure 6(b) to Figure 6(a). The second row illustrates that the corresponding regularization (Figure 6(f)) is obtained as
the addition of the filtering of the raw color transfer (Figure 6(d)) with the details extracted from the original image (Figure 6(e)) where the mean has been
changed for visualization purpose. The third row displays (Figure 8(a)) the result of transferring the colors of Figure 6(h) to Figure 6(g). The result of the
proposed iterated TMR regularization is displayed in Figure 6(l). One observes that in contrast with Figure 6(i), the artefacts due to different color proportions
are mostly removed. For illustration, the transportation maps before and after regularization are displayed in Figure 6(j) and 6(k) respectively.

is modified using an image editing software (The Gimp) to

separately increase both the contrast and the saturation of

colors. The result of this operation, along with some artefacts,

is visible in Figure 7(b). Again, the proposed method makes it

possible to attenuate color blotches and to restore lost details

(as can be seen e.g. on the patterns on the roofs in Figure 7(c)).

2) Comparison with other approaches: Two results of the

regraining approach [5], respectively on the Renoir/Gauguin

experiment and on a Lena/Barbara color transfer, are shown

respectively on Figures 8(a) and 8(g). While this variational
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(a) Original image. (b) Edited image. (c) Color correction with the proposed iterated
TMR filter.

Fig. 7. Illustration of image editing correction with iterated TMR filter. (see electronic version of this paper). In this example, an image 7(a) is edited
with an image editing software (The Gimp) for color enhancement (Figure 7(c)), using global contrast and saturation modification tools. Figure 7(c) displays
the result of the proposed approach.

approach tends to reduce irregularities in the transportation

map, it fails at removing severe compression artefacts or

inconsistencies in color proportions. As a comparison, the

result of the iterated TMR filter on both examples can be seen

on Figures 8(b) and 8(h).

Another variational approach has been proposed very

recently to transfer color between images without creat-

ing artefacts [10]. The result of this approach for the

Renoir/Gauguin experiment is displayed in Figure 8(c), and

for the Lena/Barbara color transfer in Figure 8(i). The method

achieves the transfer without producing unpleasant artefacts,

even if the color fidelity to the target distribution is not fully

respected (e.g. the feather on the hat is purple whereas this

color does not appear in Figure 8(e)).

D. Discussion

Patch-based regularization: Following the idea of the

NL-means filter [21], one could think of replacing the pixel-

wise comparisons in the TMR filter by patch comparisons.

Indeed, in [21], Buades et al. show that using small patches

instead of pixels increases the confidence level on the similar-

ity measure between pixels corrupted by noise. In our case, it

boils down to replace the weights in Formula (4) by

ŵu(x, y) = exp

(

−

∑

z∈W ‖u(x + z) − u(y + z)‖2

nσ2

)

,

where W is a centered square neighborhood defined on the

pixel grid, and where n is the size of W . Using patches in our

framework does not improve the results (see Figure 9(e) for

a comparison). On the contrary, using the same parameter σ,

some fine structures are more blurred (along edges or stokes)

with this approach, while some artefacts are less regularized

(see the compression artefacts around the book title). Indeed,

the use of patches tends to increase the similarity between

pixels across edges, so that even some contrasted structures

are blurred after several iterations. At the same time, the use

of patches tends to decrease the similarity of pixels of non-

repetitive structures (see [30] for details), which explains that

some artefacts remain. While Yaroslavsky filter is less robust

than the NL-means for denoising purposes, it is particularly

adapted in our case, where the image u is regular. It permits

a faster approach and a better preservation of edges.

Median-based regularization: In some cases, it could be

interesting to replace Yaroslavsky filter by a median filter.

Indeed, the median filter is parameter-less, it does not intro-

duce blur and it is able to remove small objects (for instance

salt and pepper noise). In the case of contrast modifications,

Formula (5) can be rewritten as

TMRu(T (u)) = Medu

(
T (u)

)
+ u − Medu(u) ,

where [Medu(v)](x) is the weighted median of the values

v(y) when y spans N (x), with weights
wu(x,y)

C(x) . Figure 9(d)

displays an example of the median based TMR filter. The result

presents typical characteristics of median filter approaches,

avoiding blurring effects that are inherent to averaging filters,

while providing some unsatisfactory piece-wise constant re-

gions.

V. CONCLUSION

In this paper, we have introduced a generic filtering pro-

cedure in order to remove the different kinds of artefacts

created by radiometric or color modifications. The ability of

the proposed TMR filter to deal these artefacts while restoring

the fine details of images has been demonstrated on various

examples.

Several extensions of this work are foreseen. First, notice

that the computation time of the TMR operator is similar to

those of the Bilateral filter [27] or Non-Local means [21].

As a consequence, it could directly benefit from several

accelerations techniques that have been proposed recently in

the literature for those type of filters, as for instance, multi-

scale approximations [31], the use of kd-tree structures for

fast computation of pixels comparison [32], or FFT-based

convolutions [33]. Second, the whole procedure would also

be strengthened by the automatic estimation of the parameters

σ and ρ (for instance, by considering the recent work of [30]),

even if most experiments gives satisfactory results running the

same parameter values. Last, we plan to increase the control

of color inconsistencies. Indeed, the approach presented here

permits to remove artefacts due to color proportions as long as

these are not too extreme. But it cannot completely modify the

proportions of colors in the final image. In the case of color

transfer, one possible option would be to transfer colors from a
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(a) Color transfer with regraining [5]. (b) Color transfer with our approach. (c) Color transfer with approach of [10].

(d) Original image. (e) Target color distribution. (f) Raw color transfer.

(g) Regraining [5]. (h) Iterated TMR filter. (i) Color transfer with approach of [10].

Fig. 8. Comparative color transfer regularization results with regraining approach of [5] (Figures 8(a) and 8(g)), iterated TMR filter (Figures 8(b)
and 8(h)) and variational histogram equalization of [10] (Figures 8(c) and 8(i)). Original images are shown respectively in Figures 6(g) and 8(d), with the
corresponding target color distribution displayed respectively in Figures 6(h) and 8(e).

pre-computed “color palette” [6], [34]. We also believe that the

scheme presented in this paper can benefit other applications

that color or contrast modifications. One possible framework

of application, for which the approach should of course be

adapted, is the one of the fusion of panchromatic and multi-

spectral images [35].
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APPENDIX A

LINK WITH OPTIMAL TRANSPORT

This section recalls why color ans contrast transfers can

be seen as optimal transportation problems. As described in

Section II-B, assigning a given distribution f to an image u
boils down to find a mapping T such that hT (u) = f . If such

mappings exist, one looks generally for one minimizing the

global cost ∫

❘n

‖T (x) − x‖2hu(dx) , (8)

http://sites.google.com/site/nicolaspapadakis/Home/histo
http://sites.google.com/site/nicolaspapadakis/Home/histo
http://hal.archives-ouvertes.fr/hal-00476064/en/
http://hal.archives-ouvertes.fr/hal-00476064/en/
http://hal.archives-ouvertes.fr/hal-00407796/en/
http://hal.archives-ouvertes.fr/hal-00468856/en/
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where ‖.‖ is the Euclidean norm. This problem, first stated

by Monge in [36], has generally no solution when hu is

discrete. Kantorovich proposed to relax the problem into a

more general one, where one looks for a probability distri-

bution π on ❘n × ❘
n, with marginals hu and f (we write

Π(hu, f) the set of these probability measures, which are

called transportation plans). Observe that π can be seen as

a multivalued function sending exactly hu onto f . Among all

transportation plans in Π(hu, f), one imposes that π minimizes

a global transportation cost

∫

❘n×❘n

‖x − y‖2π(dx × dy). (9)

In practice, a satisfying mapping T between hu and f can

then be chosen as one approximating the optimal plan π. If

we apply this framework to the case n = 1, we find formulas

similar to (3) for histogram equalization and specification.

APPENDIX B

POWERS OF STOCHASTIC MATRICES

In this section, we recall the Perron-Frobenius theorem as

it is stated in [37], [38]. Recall that a square matrix A is

said to be primitive if there exists q ∈ N
∗ such that Aq

is strictly positive, in the sense that all coefficients Aq
i,j are

strictly positive.

Theorem 1 (Perron-Frobenius, see [37], [38]): Let A be a

nonnegative primitive m × m matrix. There exists a real

eigenvalue λ1 with algebraic as well as geometric multiplicity

one such that λ1 > 0, and λ1 > |λj | for any other eigenvalue

λj . Moreover, the left eigenvector π1 and the right eigenvector

l1 associated with λ1 can be chosen positive and such that

πT
1 l1 = 1. Let λ2, λ3, . . . λm be the eigenvalues of A other

than λ1 ordered in such a way that λ1 > |λ2| ≥ · · · ≥ |λm|
and if |λ2| = |λj | for some j ≥ 3, then m2 ≥ mj , where mj

is the algebraic multiplicity of λj . Then,

Ar = λr
1l1π

T
1 + O(rm2−1|λ2|

r), (10)

where O(f(r)) represents a function of r such that there exists

α, β ∈ ❘, 0 < α ≤ β < ∞, such that αf(r) < O(f(r)) <
βf(r) for all r sufficiently large.

Proof : see [38].

Observe that the matrix A defined in Section III-C is

stochastic, which implies that λ1 = 1 and l1 = (1, 1, . . . , 1)T .

All the lines of A∞ are thus equal to the left eigenvector π1 for

the eigenvalue 1. Now, if the neighborhood N (0) is symmetric

(which implies that i ∈ N (j) if and only if j ∈ N (i)), this

left eigenvector is

π1(i) =





m∑

j=1

wu(i, j).✶j∈N (i)



 /





m∑

k,j=1

wu(k, j).✶j∈N (k)



 ,

where exponential weights wu are defined in Formula 4. The

limit matrix can thus be computed easily in this case.

APPENDIX C

STOCHASTIC MATRICES WITH STOPPING CRITERION

In the following, we show that if A is the matrix defined

in Section III-C, and if B is built by replacing some lines in

A by the same lines in the identity matrix, then the sequence

(Bk) still converges toward a limit matrix B∞. This property

is a consequence of classical results and the proof is provided

for the sake of completeness.

First, observe that there exists a permutation matrix Σ such

that B′ = ΣBΣ−1 can be written
(

Ir 0r×(m−r)

R Q

)

, (11)

where Ir is the identity matrix of size r, 0r×(m−r) is the

null matrix of size r × (m − r), R ∈ Mm−r,r(❘) and Q ∈
Mm−r(❘). Since Bk = Σ−1B′kΣ, the convergence of the

sequence (B′k) will imply the convergence of (Bk), so we

assume in the following that B is written as in (11). Now,

Bk =

(
Ir 0r×(m−r)

Rk Qk

)

, with Rk =





k−1∑

j=0

Qj



 R, (12)

and the study of the sequence (Bk) boils down to the study

of the sequence (Qk).
Now, observe that the sequence

∑m−r

j=1 (Qk)i,j =
∑m

j=r+1(B
k)i+r,j decreases with k, for all 1 ≤ i ≤ m − r.

Indeed, since B is stochastic, for all i,

m−r∑

j=1

(Qk+1)i,j =

m−r∑

j=1

m−r∑

l=1

(Qk)i,l Ql,j ≤
m−r∑

l=1

(Qk)i,l .

Moreover, for each line i ≤ m − r, there exists a rank k0

such that for all k ≥ k0,
∑m−r

j=1 (Qk)i,j < 1. Indeed, the set C
of points which have already converged is not isolated in the

image. Step by step, each point outside of C (indexes {r +
1, . . . m} in B) undergoes the influence of at least one point

of C (indexes {1, . . . r} in B) after a large enough number of

iterations, which implies that for all i ∈ {r + 1, . . . m}, there

exists k0 and j ∈ {1, . . . r} such that Rk(i, j) > 0 for k ≥ k0.

The index k0 can be chosen such that this property holds for

all i ∈ {1, . . . ,m− r}. Since these sequences are decreasing,

there exists γ in ]0, 1[ such that for all i and all k > k0,
∑m−r

j=1 (Qk)i,j < γ. Thus, for each p ∈ N
+∗,

m−r∑

j=1

(Qpk+k)i,j =

m−r∑

j=1

m−r∑

l=1

(Qpk)i,l (Q
k)l,j

≤ γ

m−r∑

l=1

(Qpk)i,l < γp+1 .

It follows that
∑m−r

j=1 (Qpk)i,j →
p→∞

0. This property also holds

for the whole sequence
∑m−r

j=1 (Qk)i,j since it is decreasing

with a subsequence converging to 0. Since all the coefficients

of these matrices are positive, we conclude that Qk →
k→∞

0.

Now, notice that Rk =
(
∑k−1

j=0 Qj
)

R = (I − Q)−1(I −

Qk)R (if I−Q was not invertible, then we would have x 6= 0
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such that Qx = x which is impossible since Qk →
k→∞

0). Thus

Rk →
k→∞

(I − Q)−1R. Finally,

Bk −→
k→∞

(
Ir 0r×(m−r)

(I − Q)−1R 0(m−r)×(m−r)

)

. (13)
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