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Abstract

Road traffic incidents analysis has shown that 52% of them are caused by a collision between two vehicles or

between a vehicle and an obstacle. In this paper, the RESCUE (that stands for REduce Speed of Collision Under

Emergency) collision mitigation system (version 1.0) is presented and evaluated towards various typical road situations.

The aim of the RESCUE system is to decrease the kinetic energy dissipated during a collision through automatic

emergency braking that occurs 1 second before the collision. This emergency braking is triggered by an alarm coming

from a decision unit taking into consideration the results of a generic obstacles detection system -based on fusion

between stereovision and laser scanner- and a warning area in front of the vehicle. The different sub-systems are

presented. Then, the behavior of the RESCUE collision mitigation system towards various typical dangerous road

situations is assessed through systematic tests. These quantitative tests are completed by qualitative ones carried out

on 737 km of open roads (freeways, highways, rural roads, downtown) so as to provide a more precise idea about

the false alarm rate. The experiments show the system is promising in terms of reliability, genericity and efficiency.

Keywords: Collision Mitigation, Experimental Assessment, Sensors Fusion.
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I. INTRODUCTION

In Europe, more than 52% of road accidents are caused by a collision between two vehicles or between a

vehicle and an obstacle [1]. Moreover, research has shown that 90% − 95% of road accidents are partly caused

by human errors [2]. For instance, before a collision, many drivers do not activate a braking pressure appropriate

to the situation or completely release the brake: 39% of the drivers do not brake at all. Thus, in the context of

active safety and Advanced Driving Assistance Systems, a collision mitigation system aiming at reducing the kinetic

energy dissipated during a collision or stopping the vehicle before the collision -if its velocity is low- could decrease

the number and the damage of road accidents. Moreover, 74% of the total number of accidents occur in the urban

area. Consequently, a collision mitigation system should be efficient not only on freeways or highways but also in

urban and downtown areas.

Collision mitigation systems have been subject to investigation for several years [3][4][5]. In the framework of

the PREDIT1 French program in the context of the ARCOS2 project [6], a system called RESCUE (that stands for

REduce Speed of Collision Under Emergency) has been developed. It was designed taking into consideration it had

to be efficient in any kind of road situations, including urban areas. This requires the system to be very reactive in

order to handle obstacles appearing suddenly (such as pedestrians) and typical urban situations such as crossroads.

In the early stages of development, various operating modes were introduced for this system.

The less intrusive mode is the instrumented mode, that only informs the driver of the distance and Time To

Collision (TTC) of the nearest obstacle. Clearly, the risk of collision increases when the TTC decreases. Thus, in

order to avoid any risk of collision, the driver should keep the TTC above 2 seconds, for instance.

In order to assist the driver, more advanced modes have been developed. All are based on a risk indicator, computed

from the measured TTC -the risk becomes higher when the TTC of the nearest obstacle decreases.

Thus, the warning mode sends a warning (for example acoustic or haptic warning) to the driver when the risk

indicator is above a first threshold. This mode is intended to alert the driver in advance for starting a manoeuver

-for example, a braking manoeuver; the warning lights should also be turned on to warn the surrounding vehicles.

The next mode, the so-called limit mode is the first active mode: it prevents the risk indicator to become too high,

through the use of activators in the vehicle. Thus, in the case of the RESCUE system, the limit mode launches an

automatic braking when the TTC of the nearest obstacle drops under a second threshold.

The most intrusive mode is the regulated mode that keeps the risk indicator at a constant level, through the use of

activators -the throttle and the brake. In other words, the regulated mode can be seen as a full automated mode,

that keeps the TTC at a value of 2 seconds, for instance.

The first three modes (instrumented, warning and limit) have been implemented in a prototype vehicle. Yet, a

collision mitigation system is usually described as a last resort system, aimed at launching an automatic emergency

1National Transport Research Program

2Research Action for Secure Driving
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braking to reduce the kinetic energy of a collision. Thus, the operating mode that best corresponds to this definition

is the limit mode we focus on in this paper.

A crucial point for the efficiency and the acceptability of driving assistance systems is the adjustment of the

launch thresholds. Thus, the emergency braking should intervene in situations where the driver has physically no

chance to avoid a collision by himself. Assessing wether a driver has such a chance is a difficult task depending on

the driver state, experience and behavior and on the road and driving contexts. In this paper, we assume the driver

is a common driver whose average reaction time is about 1 second, and we consider that he has no chance to avoid

a collision by himself if he has not reacted when the TTC is below its average reaction time. Thus, we consider

that the emergency braking should be launched when the TTC of the nearest obstacle drops under 1 second.

In order to be efficient on any road, including urban roads, the system must be reactive and must handle situations

where the road is narrow or presents tight curves or longitudinal curvature. It must also be able to cope with a

large number of obstacles at the same time.

Thus, the system we focus on in this paper is made of three sub-systems designed to meet these requirements.

The first one is a generic obstacles detection system designed to be reactive and to cope with all types of road

geometry, including non planar surfaces. The second one is a warning area generator, aimed at predicting the path

of the equipped vehicle in order to avoid taking into consideration obstacles that will not collide it, and to handle

narrow roads and tight curves. The third sub-system is the very automatic braking system which is used to dissipate

the kinetic energy of the vehicle before a collision.

Concerning the first sub-system, it is clear in literature that obstacles detection has been subject to many

investigation for years. Sensors like vision [7], laser scanner [8] or radar [9] are usually used to this purpose.

In order to obtain a reliable, reactive and accurate system, performing data fusion between various sensors is

also proposed frequently for the development of Advance Driver Assistance Systems [4][5][10][11][12][13]. For

instance, using two complementary sensors such as stereovision and laser scanner can be an efficient solution [14].

Indeed laser scanner is accurate and fast, but this sensor cannot be used alone because of false alarms occurring

when the laser points collide with the road surface (because of road geometry and vehicle pitching). On the other

hand, stereovision allows to model the road geometry and extract obstacles in a robust manner [15]; yet it is not

accurate enough to compute precise velocities and TTC (because of the size of the back-projected area in the road

scene corresponding to a pixel in the image). However accuracy of the TTCs estimation is a crucial point in any

collision mitigation system. Thus, a fusion strategy between these two sensors is proposed in this paper.

Concerning the warning area generator, a process using some vehicle ego parameters is proposed.

Eventually, to be as efficient as possible, the automatic braking system is based on an additional brake circuit.

These three subsystems are detailed in section II.

In order to assess the efficiency and the safety of the RESCUE system, quantitative and qualitative experiments

have been carried out. In section III, various typical scenarios (mainly urban scenarios) are introduced and systematic
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tests are carried out: 16 scenarios are introduced, and 10 tests are carried out for each one. Additional tests in

countryside, highways, freeways and downtown are also presented to provide a more precise idea about the false

alarm rate in real driving situations.

We discuss the remaining issues and give some ideas to tackle them in section IV.

II. THE RESCUE COLLISION MITIGATION SYSTEM

The RESCUE collision mitigation system can be divided into three sub-systems and a decision unit that inter-

connects these sub-systems. An overview of the whole system is presented on Figure 1. The first sub-system is a

generic obstacles detection system, performing data fusion between stereovision and laser scanner.

The second sub-system is the so-called warning area generation system that uses an odometer and an inertial sensor.

The decision unit checks wether an obstacle is located in the warning area, and wether its TTC is under 1 second;

if so, a warning message is sent to the third sub-system.

The third sub-system is the automatic braking system, based on an additional brake circuit activated when a warning

message is received.

[Figure 1 about here.]

[Figure 2 about here.]

A. Obstacles detection system

The obstacles detection system is based on fusion between stereovision and laser scanner. This system began

to be designed in [14]. We give here an overview of the algorithm and propose improvements. A synoptic of the

algorithm is presented on Figure 2.

1) Stereovision based detection: The stereovision algorithm uses the ”v-disparity” transform to perform robust

and generic obstacles detection [15].

This algorithm assumes the road scene is composed of set of planes: obstacles are modelized as vertical planes,

whereas the road is supposed to be an horizontal plane (when it is planar), or a set of oblique planes (when it is not

planar). The algorithm performs a robust extraction of these planes from which it deduces many useful information

about the obstacles located on the road: for instance, their distances, lateral positions, contact lines with the road,

bounding boxes. Figure 3 illustrates the outline of the process. From the two stereo images (a) and (b), a disparity

map I∆ (c) is computed (Sum of Square Differences -SSD- criteria is used to this purpose along edges). The

disparity values are represented by a grey level according to the corresponding scale given on the left. Then an

accumulative projection of this disparity map is performed to build the ”v-disparity” image Iv∆ (d). For the image

line i, the abscissa uM of a point M in Iv∆ corresponds to the disparity ∆M and its grey level iM to the number

of points with the same disparity ∆M on the line i : iM =
∑

P∈I∆
δvP ,iδ∆P,∆M

where δi,j denotes the Kronecker

delta. From this ”v-disparity” image, a robust extraction of straight lines is performed through a Hough transform
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(e). This extraction of straight lines (f) is equivalent to the extraction of the planes of interest taken into account

in the modelization of the road scene. Simple geometric considerations allow to deduce the useful features needed

for the next stages of the obstacles detection process (g) : distances to obstacles, lateral position, width.

Experimental evaluations of this algorithm has shown it is suitable for the road obstacles detection task since it is

fast, generic, robust to adverse illumination and meteorological conditions [16].

[Figure 3 about here.]

2) Laser scanner based detection: Concerning the laser scanner raw processing, an autonomous clustering is

performed from the laser points using Mahalanobis-like distance. An ellipsoid is build around each set of clustered

laser points and is characterized by its gravity center, its orientation and the length of its two axis. Each ellipsoid is

then considered as a target. The width of the target is computed as the distance along the X-axis between the two

extreme laser points belonging to it. More details about this autonomous clustering can be found in [14]. Figure 4

gives an example of result of this process.

[Figure 4 about here.]

3) Tracking and association over time: The next stage of the algorithm consists in performing tracking of the

detected targets for each sensor over time. A first order Kalman filtering is used to generate tracks from targets and

to predict their state (position, width and orientation if available) at the next step of time. The remaining problem

is to perform association between the set of targets and the set of existing tracks. This task must also manage

the appearance of new targets, the periods of disappearance of tracks, and the re-association of targets with tracks

(when targets have disappeared during a short time). The matching between the set of existing tracks and the set

of perceived objects is performed using cartesian distance, width and orientation as chief criteria.

More precisely, the behavior of the tracking and association task is as follows :

• a target is matched to a track if both overlap. The potential overlap is checked thanks to the width and position

of both track and target. If available (for the laser scanner), the matching is confirmed if the orientation of the

target and of the track are close to each other, either no matching is performed,

• if a target can not be matched with any existing track, a new track is created at the position of the target,

• if a track has not been matched for 3 steps of time, it is destroyed.

This association task is performed through an algorithm implementing belief theory introduced by Dempster and

Shafer [17]. This algorithm is designed to avoid the high computational cost usually observed. For more details,

see [18]. Figure 5 gives an example of result of tracking of multi-objects over time. The objects are located on the

X-Y plane. The vertical axis on the figure represents time. The successive positions of the objects are represented

as little circles and the grey levels of these circles indicate the tracks the objects are associated to. On this figure,

the appearance, disappearance and re-association stages can be observed.
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[Figure 5 about here.]

In the former versions of the obstacles detection algorithm [14], tracking was performed in the ”top-view”

coordinate system (O,X, Y ) shown on Figure 7 for targets coming from both laser scanner and stereovision sensors.

This method presented some drawbacks concerning targets detected by stereovision, because the stereovision process

is not accurate enough. Indeed, the back-projection from the image coordinate system to the ”top-view” coordinate

system is inaccurate, all the more when the targets detected by stereovision get further. This is due to the size of

the back-projected area in the ”top view” coordinate system corresponding to the size of a pixel. As a matter of

fact, the tracking process could hardly manage far targets and provided uncorrect estimations of relative velocities

used in the Kalman filtering.

In the current implementation of the algorithm, the crucial difference consists in performing the tracking process

directly in the image coordinate system, and performing back-projection after the tracking process. This method

proves to be more efficient and stable.

4) Fusion and certainty about the existence of an object: Since the frequencies of the laser scanner (about 38

Hz) and of the stereovision sensor (about 25 Hz) are not the same, temporal alignment must be performed before

the fusion task. A first order Kalman filtering is used to predict the position and width of the tracks from both

sensor at the next same step of time.

Once this temporal alignment is performed, the next task consists in checking wether a track created from the

stereovision process and a track created from the laser scanner process overlap. This is done thanks to the position

and width of the tracks from both sensors in the ”top-view” (O,X, Y ) coordinate system.

A confidence value about the existence (the so-called certainty) of the track is computed as follows:

• the certainty is initially set to 0,

• if an overlap is detected, the certainty is increased by an increment I1 set to 0.3 in the system,

• if no overlap is detected, the certainty is decreased by a decrement D1 set to 0.1 in the system,

• the certainty is limited between 0 and 1.

A track is confirmed (e.g. taken into account) when its certainty is above a threshold S0 set to 0.7 in the system.

The values of I1, D1 and S0 have been chosen experimentally, taking into account that a track must be confirmed

quickly after its first detection, and that disappearance of short duration should not affect the behavior of the

system. With the chosen values, a track is confirmed after 3 consecutive observations and the system can handle

disappearances lasting up to 3 times duration of the step of time (in the prototype system the step of time lasts for

26 ms).

The final position, width, and relative velocity of a track are the ones coming from the laser scanner process

which are more accurate than the corresponding values coming from the stereovision process. Thus, the stereovision

is used to increase the certainty about the existence of the tracks.
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5) Relative Velocity and TTC estimation: A Kalman filtering is used to estimate the relative velocity of an object

with respect to the vehicle. A crucial point for fast convergence consists in making a suitable choice for the initial

value of the estimated relative velocity. For non-moving obstacles, the best initial value would be the ego speed of

the equipped vehicle. However the collision mitigation system must be able to cope with moving objects, including

followed vehicles, whose relative velocity can be positive or negative. In this case, if the initial value of the relative

speed is set to the ego speed of the vehicle, the convergence time can be too long (about 300 ms) to ensure the

system to be reactive enough to cope with some urban situations (see in section III scenarios 5,6,7). That is why

we have chosen to set the initial value of the estimated relative speed to 0 m / s.

Figure 6 compares the estimated relative velocity versus the velocity of the equipped vehicle given by odometer, for

a motionless obstacle. The two curves are closed to each other and one can notice a 115 ms time of convergence

before the difference between the two velocities becomes less than 5%.

The TTC of a track is estimated as TTC = D
Vr

where D is the distance between the track and the equipped

vehicle and Vr is the relative velocity of the track with respect to the equipped vehicle.

[Figure 6 about here.]

B. Warning area generation

[Figure 7 about here.]

In order to remove tracks that are not on the path of the vehicle and handle narrow roads and tight turns, we

generate a warning area which corresponds to the prediction of the path of the vehicle in the next second (see

Figure 7). To this purpose, we use the velocity V of the vehicle computed from the odometer signal and the yaw

rate ψ output from the inertial sensor. The bicycle model is used in order to compute the coordinates of the borders

of the warning area in the ”top-view” (0,X, Y ) coordinate system. The left and right borders of this warning area

are computed using an iterative process, from the closest to the furthest point. Let L denote the width of the vehicle,

N the number of points on one border, and dt = 1
N

the time increment. θ, Xcenter and Ycenter are initialized to 0

and updated at each iteration, and the coordinate (Xbl
, Ybl

), (Xbr
, Ybr

) of the next {left, right} border points are

computed as follows:



















θ ← θ + ψdt

Xcenter ← Xcenter + V cos θdt

Ycenter ← Ycenter + V sin θdt

(1)







Xbl
= Xcenter −

L
2 sin θ

Ybl
= Ycenter + L

2 cos θ
(2)
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Xbr
= Xcenter + L

2 sin θ

Ybr
= Ycenter −

L
2 cos θ

(3)

where bl stands for left border and br stands for right border.

Figure 8 presents two examples of the warning area projected onto the image. On Fig. 8 (a), the vehicle is on a

curve and follows the road. In this case, the warning area is located on the vehicle lane. On Fig. 8 (b), the vehicle

is on a straight line but is turning to the left. In this case, the waning area is not located on the vehicle lane.

However, in both cases, the warning area corresponds to the path the vehicle is going to. As a matter of fact, this

area is well adapted to the collision mitigation system. Indeed the system must detect the obstacles that the vehicle

is likely to collide with, that are not necessary located on the vehicle lane, but on the vehicle path. Moreover,

the warning area is generated dynamically. No assumption about the movement of the obstacles is made, and so

avoidance maneuvers can be addressed by the system (see scenarios 10 and 11 in section III).

One can notice the width of the warning area is set to L in the system, where L is the width of the vehicle. This

ensures all the obstacles potentially colliding with the vehicle path will be taken into account: the detection rate will

be maximal. However, because of some inaccuracies that could occur at various levels in the system (estimations

of obstacle position, orientation, width, ego vehicle speed, etc), setting the width of the warning area to L could

result in some false alarms. In order to reduce as much as possible the false alarm rate, one could choose to set

the width of the warning area at a lower value, for example 2L
3 . The sensibility of the performances regarding the

value of the width of the warning area will be tackled in future works.

[Figure 8 about here.]

C. Decision unit

The decision unit send a warning message to the automatic braking system if the three following conditions are

fulfilled for a track:

• the certainty of the track after the fusion step is above 0.7,

• 0 < TTC ≤ 1 s,

• the intersection between the track and the warning area is not empty.

It should be noted that we do not assume at any time that the equipped vehicle stays on target: as soon as the

target is no longer in the warning area, it is no longer taken into account (negative tests stress this important point

in section III, especially in scenarios 10 and 11).

D. Automatic braking system

An additional brake circuit has been installed on the prototype vehicle along with an electric pump, a brake

pressure sensor, and a electromagnetic sluice gate. The chosen strategy consists in decreasing as much as possible
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the velocity of the vehicle before the collision. Thus, when a warning message is received, a pressure command

of 90 bars is applied on the brakes -90 bars corresponds to the maximal pressure the system can handle. The

prototype vehicle is equipped with ABS brake system so that the braking is as efficient as possible. Figure 9 shows

the behavior of the system during a typical emergency braking: the trigger (reception of warning message), the

pressure curve, the deceleration, and the velocity of the ego vehicle are measured over time. The pressure begins

to increase 120 ms after the reception of the warning message and reaches its maximum about 300 ms later.

During the first second, the average deceleration is about −6 m/s2 and the velocity is reduced by 6 m/s. Then

the average deceleration is about −8 m/s2, and the velocity is reduced by 4 m/s within the next 0.5 s. When an

emergency braking is performed on a motionless obstacle (e.g. TTC = 1 s if no braking is applied), the process

lasts for about 1.5 s and the velocity is reduced by 10 m/s before the collision. The kinetic energy is reduced

by 10 m (V − 5) J where V is the velocity of approach of the vehicle and m its weight. For instance, with

V = 14 m/s and m = 1500 kg, the kinetic energy is reduced by 135 kJ = 0.49 kWh before collision.

[Figure 9 about here.]

One should notice that once launched (when the TTC equals 1 second), the braking actually lasts for more than

1 second before the collision occurs. Indeed the velocity of the vehicle decreases as soon as the braking is engaged.

As a matter of fact, the TTC decreases more slowly to 0 second than it would have without braking, and the

dissipated kinetic energy is higher than the one would have been dissipated during a 1 second braking.

III. SYSTEM ASSESSMENT

Before presenting the results of the tests, we introduce the main features of the prototype vehicle and describe

the sensors configuration process.

A. Features of the prototype vehicle

Figure 10 shows a photo of the prototype vehicle which is a Renault ScenicTM . It is equipped with a stereoscopic

sensor, a laser scanner, an automating braking system and two PC computers.

The stereo sensor has the following features. The used CCD cameras are SonyTM 8500 C with ComputarTM

Auto Iris 8.5 mm focal length. The resolution of each image is 380 x 288 pixels. The images are 8 bits grey-scale.

They are grabbed using a MatroxTM Meteor II card. The baseline is b = 1 m, the height h = 1.4 m and the pitch

θ = 8.5 o in the resting position. Images are rectified on-line thanks to an homography matrix computed during

the sensor configuration (see section III B), using bicubic interpolation. The frame rate is 25 Hz.

The used laser scanner is a SickTM laser scanner. Its pitch is θl = 0 o, its height hl = 0.42 m, and its offset

Xl = −0.50 m in the ”top-view” coordinate system (see Figure 7). The raw output of the laser scanner is a set of

200 laser points, positioned every 0.5 o from −50 o to 50 o with respect to the longitudinal axis of the vehicle.

The frame rate is 38 Hz.
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With these sensors, the range of the system is [0;36] m which allow the system to work up to an ego speed of 36

m / s.

A bi-Xeon running at 2.6 GHz is used for the perception task.

An additional computer is used for the activator control. Both computers are linked through a 100 Mb/s ethernet

connection. Warning messages from the computer dedicated to the perception task are sent to the computer dedicated

to the activator control through this connection.

[Figure 10 about here.]

B. Sensor configuration

Two configurations must been performed. The first one consists in the configuration of the stereo sensor in order to

obtain a rectified epipolar geometry. This configuration is done through the process described in [19]. Homography

matrix are obtained for left and right images. Images are then corrected online using bicubic interpolation. Figure

11 presents the used mire.

[Figure 11 about here.]

The second configuration consists in estimating the laser scanner pose with respect to the stereovision sensor.

The relative position of the laser scanner is manually measured once the laser scanner is mounted on the vehicle.

The laser scanner is adjusted so that its relative roll and yaw are negligible. Figure 12 shows the protocol used to

estimate its pitch: an oblique plane (height H , length d0) is placed at a distance d1 in front of the laser scanner.

The distance D measured by the laser scanner allows to compute the pitch θl as follows (under the little angles

assumption): θl = H(d0+d1−D)
Dd0

.

[Figure 12 about here.]

C. Quantitative tests

1) Criteria of efficiency:

In order to assess the efficiency of the system, we define several criteria used in the test scenarios:

• a track is confirmed if the certainty about its existence after data fusion is above S0 = 0.7, and if the

intersection between the track and the warning area is not empty,

• an obstacle is confirmed if the track is confirmed and if TTCNom < TTC ≤ TTCMax,

• an obstacle is confirmed late if the track is confirmed and if TTCMin < TTC ≤ TTCNom,

• an obstacle is not confirmed if {the track is confirmed and TTC ≤ TTCMin}, or if {the track is not

confirmed}.

For the test scenarios, the following values are used:
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TTCMax = 1.1s

TTCNom = 0.9s

TTCMin = 0.5s

(4)

All the confirmed obstacles which do not fulfill at least one of the following criteria are considered as false

alarms:

• the obstacle is in the warning area,

• the height of the obstacle is above 0.4 m.

If road furniture (sign, barrier, tree, object along the road) or the road itself is confirmed as an obstacle, this

is considered as a false alarm.

2) Experimental protocol:

Figure 13 presents a typical HMI output. In this case an automatic emergency braking has been launched in front

of a pedestrian. The pedestrian has been detected and is located in the warning area and its TTC is 0.98 second.

The vehicle on the left has also been detected but it is not located on the warning area and its TTC is above 1

second, so the system would not have launched any emergency braking if this vehicle would have been the only

obstacle in the scene.

The test scenarios are shown on Figures 14 to 24. All these scenarios were defined within the functional analysis

of the ARCOS project. On each Figure, a diagram explains the situation, two photos illustrate the test, and tables

of results are given for positive tests. On the diagrams, a cross indicates an obstacle where an emergency braking

must be performed by the system. Each test is carried out 10 times. The tables of results indicate the distance of

the obstacles, the velocity of the vehicle and the TTC when the emergency braking is launched, wether the track

is confirmed and wether a false alarm occurred. For negative test, we indicate only how many false alarms were

observed.

In the different scenarios, we use a 1.8 m high and 0.5 m broad pedestrian, a 0.5 x 0.7 x 0.6 m box, 2.3 m x

1.5 m x 4.5 m vehicles, and a 1.6 m high and 0.5 m broad cyclist.

The velocity of the prototype vehicle is between 6 and 11 m/s and is indicated on the diagram. The tests have

been carried out by day time. The weather was partially cloudy.

[Figure 13 about here.]

3) Positive test scenarios:

Tests no 1 and 2 are intended for evaluating the capacity of the system to react when a motionless obstacle is in

the lane of the vehicle, as well as assessing if objects located along the lane could generate false alarms. Tests no 1

and 2 have been carried out on both straight line and curve with curvature c = 40 m. A detection failure occurred
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in test 2 − 6 (on straight line): a dazzling effect due to sun prevent the stereovision algorithm from detecting the

pedestrian, so that the certainty of the track was no high enough.

Tests no 3, 4 and 5 are intended for evaluating the capacity of the whole system (obstacle detection and confirmation,

and emergency braking) to be reactive when an obstacle appears suddenly in front of the vehicle. The obstacle is

moving in tests no 3 and 4. For the test no 3, a catapult is used to propel a pedestrian on the lane at 2 m/s. It

is launched so that the pedestrian arrives at the middle on the lane when the vehicle is located at 11 m from the

obstacle.

Tests no 6 and 7 are intended for evaluating the capacity of the system to be reactive when an obstacle appears

suddenly after a tight curve, and how relevant is the use of the warning area. Tests no 6 and 7 correspond to

dangerous urban situations. Tests no 3, 4, 5, 6 and 7 have been carried out on a straight line. For some tests, the

tracks are confirmed late: this is either the result of an inaccuracy concerning the warning area, because of the

noise of the inertial sensor, or the consequence of the limited field of view of cameras, especially for scenarios 6

and 7.

[Figure 14 about here.]

[Figure 15 about here.]

[Figure 16 about here.]

[Figure 17 about here.]

[Figure 18 about here.]

[Figure 19 about here.]

[Figure 20 about here.]

4) Negative test scenarios:

Tests no 8, 9, 10 and 11 are intended for evaluating the capacity of the system for managing vehicle following and

avoidance without generating false alarms, and for assessing how relevant is the use of the warning area. Tests no

8, 9 and 10 have been carried out on both straight line and curve with curvature c = 40 m. Test no 11 has been

carried out on a straight line. One false alarm occurred in scenario 9 and is the result of an uncorrect matching

during the association task. The followed vehicle was matched with the static vehicle along the lane so that the

estimated relative velocity was incorrect.

[Figure 21 about here.]

[Figure 22 about here.]

[Figure 23 about here.]

September 21, 2005 DRAFT



13

[Figure 24 about here.]

5) Results:

For the 90 positive tests and 70 negative tests carried out:

• the obstacle detection rate is (90− 8)/90 = 91.11%,

• the late obstacle detection rate is 7/90 = 7.71%,

• the non detection rate is 1/90 = 1.12%,

• the false alarm rate is 1/160 = 0.63%.

D. Qualitative tests

In order to have a more precise idea about the false alarm rate, qualitative tests have been carried out on different

road types : freeway, highways, rural roads and downtown. All these tests took place on the French road network

around Paris.

1) Experimental protocol: These tests have been carried out in real driving situations. The automatic braking

system was turned off and only the warning messages were checked. In normal driving situations, an automatic

system should never be launched. Each time an emergency braking would have been launched is thus considered

as a false alarm.

The tests have been carried out under various meteorological situations: sunny, cloudy, rainy, and under various

traffic situations: low traffic to dense traffic.

2) Tests on freeways: 403 km have been ridden on freeways. The velocity was up to 36 m / s. No false alarm

was observed during these tests.

Figure 25 (a) and (b) presents some typical freeway situations under which the system has been tested.

3) Tests on highways and rural roads: 78 km have been ridden on highways and 116 km on rural roads. The

velocity was up to 25 m / s. No false alarm was observed during these tests.

Figure 25 (c) (d) presents some typical highway situations, and Figure 25 (e) (f) some rural road situations under

which the system has been tested.

[Figure 25 about here.]

4) Tests in downtown: The downtown tests are certainly the most challenging tests since the context is the more

complex. 140 km have been ridden in downtown and in urban areas. The velocity was up to 14 m/s. A false alarm

was observed twice. The first one is due to a matching error during association, and the second one is due to a

false target detected by stereovision on a uphill gradient portion.

September 21, 2005 DRAFT



14

Figure 26 presents some typical urban situations under which the system has been tested.

[Figure 26 about here.]

5) Qualitative tests results overview: For the 737 km ridden, two false alarms were observed. The false alarm

rate is thus 2.7 false alarms for 1000 km. No false alarm was observed either on freeways or on highways and

rural roads. The two remaining false alarms were observed in downtown. Thus, the false alarm rate in downtown

is thus 1.4 false alarm for 100 km.

These results are quite promising, even if the false alarm rate must be reduced by a factor of about 1000 before

the system can be envisaged to be put in the hands of common driver.

IV. REMAINING ISSUES: HOW TO TACKLE THEM ?

This study can be seen as a performance report about the version 1.0 of the collision mitigation system RESCUE.

The following conclusions are the results of the analysis of the tests carried out.

Concerning the detection rate, the remaining non detections are due to a technological issue of the used CCD

cameras. Their dynamic range is not high enough to handle all the driving situations one can meet. As a matter of

fact, using cameras with higher dynamic range, such as CMOS cameras, could improve this point.

Concerning the remaining false alarms, the first issue concerns the matching process, between tracks and targets

which could be improved as described in [20]. The second issue is about stereovision. One way to tackle this problem

could be to implement a second stereovision process to confirm the existence of obstacles detected initially. Basically,

an additional stereovision algorithm directly launched in the part of the image corresponding to a detected obstacle

could evaluate a criteria so as to confirm the existence of the obstacle.

The system has proven to be reactive, while some improvements can be made. Some detections were late. These

delays mainly occurred in situations were the field of view of the cameras was too small. As a matter of fact,

the base of the stereo sensor should be reduced, in order to handle better near obstacles appearing suddenly. The

resolution of the cameras should be increased at the same time to be able to detect further obstacles. A crucial

point for the reactivity of the system is the time of convergence of the process leading to the estimation of the

relative speed of obstacles. This point could be improved. Indeed, a method for fast Kalman convergence with

various initial conditions has been proposed in [21] and could be used in our system.

Beyond this algorithmic considerations, our experiments gave us some feelings about features the sensors should

meet to handle the different situations with good reactivity. First, the sensors should process data at a relatively

high frequency. Second, the position of the sensors should be chosen carefully. Concerning our system, best results

were obtain when:
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• the frequency of the slowest sensor (i.e. the CCD camera) is 25 Hz,

• the laser scanner height and pitch are adjusted to detect obstacles from 0.40 up to 1.5 meters high in the whole

range of the system (basically 0− 36 m),

• the field of view of the stereo sensor is included into the field of view of the laser scanner.

In future works, we will take into account the speed of the equipped vehicle to launch the emergency braking. The

constant TTC criteria (emergency braking launched when TTC equals 1 second) seems indeed not accurate enough

for full efficiency, above all at low speed: the emergency braking should be launched only at the time required for

stopping before the collision, that can be under 1 second when the speed is low (basically under 10 m / s).

Eventually, the auto-calibration of the set of sensors (stereovision and stereovision with respect to laser scanner)

is an essential task for the viability of such a system in the automotive context. This task is being investigated at

the moment.

V. CONCLUSION

In this paper, the version 1.0 of the RESCUE (REduce Speed of Collision Under Emergency) collision mitigation

system was proposed and evaluated. The obstacles detection process, based on the algorithm presented in [14], was

improved. An efficient way to predict the vehicle path as well as the automatic braking system was detailed.

Then typical test scenarios were introduced. 90 positive tests and 70 negative tests were performed. All these tests

were demonstrated in real time at the final ARCOS symposium. Concerning these tests, the false alarm rate is

0.63% and the detection rate is 98.82%. The RESCUE system has proved to be reactive in special urban scenarios,

including crossroads scenarios. 737 km have also been ridden in countryside, on rural roads, freeways and highways.

Concerning these tests, the false alarms rate is 2.7 false alarms every 1000 km ridden (the remaining false alarms

were observed in downtown, no false alarm occurred in rural roads, highways or freeways). These experiments

show the RESCUE system is quite promising, even if the false alarm rate must be reduced by a factor of about

1000 before the system can be put in the hands of common driver. In the next versions of the RESCUE system,

the remaining false alarms problem will be addressed and we will investigate how the system could be extended

to be used in other applications such as Stop’n’Go and ACC.
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Fig. 5. Result of tracking of multi-objects over time. The vertical axis represents the number of steps of time (one step of time lasts for 26
ms).
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Fig. 8. Examples of warning areas projected onto the image. See text for details.
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Fig. 10. The prototype vehicle, equipped with stereovision sensor, laser scanner sensor, odometer, inertial sensor, and automatic braking system.
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Fig. 11. Typical image of the mire used for the stereo sensor configuration.
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Fig. 14. Scenario 1 (SL: on Straight Line - C: in Curve) - Emergency braking on a pedestrian.
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Fig. 15. Scenario 2 (SL: on Straight Line - C: in Curve) - Emergency braking on a pedestrian with vehicle on the side.
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Fig. 16. Scenario 3 - Emergency braking on a pedestrian appearing suddenly from the side.
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Fig. 17. Scenario 4 - Emergency braking on a box thrown from a followed vehicle.
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Fig. 18. Scenario 5 - Vehicle following and emergency braking on a pedestrian appearing suddenly.
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Fig. 19. Scenario 6 - Emergency braking on a pedestrian hidden by a truck.
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Fig. 20. Scenario 7 - Emergency braking on a pedestrian located on a cross-road and hidden by a vehicle.

September 21, 2005 DRAFT



FIGURES 38

V e h i c l e

Pe d e s t r i a n

3.5 m  0.2 m

0.2 m

Vehicle 11 m
V = 11 m/s
V1 V e h i c l e

Pe d e s t r i a n

3.5 m  0.2 m

0.2 m

Vehicle 11 m
V = 11 m/s
V1

Fig. 21. Scenario 8 - Vehicle and pedestrian on the side. No false alarm occurred.
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Fig. 22. Scenario 9 - Vehicle following with pedestrian and vehicle on the side. 1 false alarm occurred (test in curve).
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Fig. 23. Scenario 10 - Cyclist following and avoidance. No false alarm occurred.
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Fig. 24. Scenario 11 - Pedestrian avoidance. No false alarm occurred.
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Fig. 25. Typical images of freeway and rural road situations. (a) truck following on a freeway, dense traffic - (b) freeway with low traffic -
(c)(d) peri-urban highway - (e)(f) rural road with tight uphill gradient.
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Fig. 26. Typical images of urban situations. (a) pedestrian crossing - (b) road works - (c) car driving out of parking lot - (d) car and bus traffic
- (e) narrow road and tight curve - (f) tight curve, non flat road - (g) dense traffic - (h) road with high roll - (i) narrow paved road, tight curve.
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