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Abstract
Background: Glioblastoma multiforme (GBM) is the most aggressive and frequent brain tumor, albeit without cure. 
Although patient survival is limited to one year on average, significant variability in outcome is observed. The 
assessment of biomarkers is needed to gain better knowledge of this type of tumor, help prognosis, design and 
evaluate therapies. The neurodevelopmental polysialic acid neural cell adhesion molecule (PSA-NCAM) protein is 
overexpressed in various cancers. Here, we studied its expression in GBM and evaluated its prognosis value for overall 
survival (OS) and disease free survival (DFS).

Methods: We set up a specific and sensitive enzyme linked immunosorbent assay (ELISA) test for PSA-NCAM 
quantification, which correlated well with PSA-NCAM semi quantitative analysis by immunohistochemistry, and thus 
provides an accurate quantitative measurement of PSA-NCAM content for the 56 GBM biopsies analyzed. For statistics, 
the Spearman correlation coefficient was used to evaluate the consistency between the immunohistochemistry and 
ELISA data. Patients' survival was estimated by using the Kaplan-Meier method, and curves were compared using the 
log-rank test. On multivariate analysis, the effect of potential risk factors on the DFS and OS were evaluated using the 
cox regression proportional hazard models. The threshold for statistical significance was p = 0.05.

Results: We showed that PSA-NCAM was expressed by approximately two thirds of the GBM at variable levels. On 
univariate analysis, PSA-NCAM content was an adverse prognosis factor for both OS (p = 0.04) and DFS (p = 0.0017). On 
multivariate analysis, PSA-NCAM expression was an independent negative predictor of OS (p = 0.046) and DFS (p = 
0.007). Furthermore, in glioma cell lines, PSA-NCAM level expression was correlated to the one of olig2, a transcription 
factor required for gliomagenesis.

Conclusion: PSA-NCAM represents a valuable biomarker for the prognosis of GBM patients.

Background
Progress in GBM treatment has been limited. The disease
is still characterized by a mortality rate approaching 100%
and a lifespan of a few months from point of diagnosis.
One of the main impediments to long-term survival is
recurrence despite resection of the primary tumor.
Recently, radiotherapy associated to adjuvant Temozolo-

mide chemotherapy has increased median survival to
14.2 months [1]. However, the development of more effi-
cient drugs as well as the use of more appropriate thera-
peutic protocols requires an improved knowledge of the
disease, at the molecular level. Molecular diagnostics
have emerged as a powerful tool to discover new genes
and therapeutic targets, and have realized the proof of
principle that personalized medicine can increase sur-
vival and cure cancer patients [2]. Various genetic altera-
tions have been identified in GBM, which lead to altered
signaling in core pathways [The cancer Genome Atlas
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Research network: [3]]. However, to date, the main signif-
icant prognosis factors evaluated in large cohorts of
patients are O6-methylguanine-DNA methyl transferase
promoter methylation status, age, extent of resection,
performance status, and mini mental state examination
[4].

Another focus of intense investigation has been the
existence and the role of cancer initiating cells (CIC) in
GBM [reviewed in [5]]. Although early studies have
focused on CD133 antigen as the CIC marker in GBM
[6], more recent studies have pointed out to the existence
of CIC characterized by other cell surface markers such
as L1CAM [7] or the ganglioside A2B5 [8,9]. In addition,
some studies have shown the critical role of olig2, a tran-
scription factor expressed by normal oligodendrocytes.
We have reported that olig2 is expressed by all human
gliomas whatever their subtype and grade [10], but its
level is dramatically increased in highly proliferative,
tumorigenic GBM cell lines [11]. Furthermore, olig2
seems to be required for gliomagenesis and proliferation
of neural progenitors [12].

We have postulated that PSA-NCAM could be a pow-
erful biomarker for human GBM. In fact, the spatio-tem-
poral pattern of expression of PSA-NCAM, a critical
parameter for proper neural morphogenesis, and its bio-
logical functions, are consistent with a possible role in
GBM. Indeed, polysialylation of NCAM is a broad feature
of growing CNS tissue in development, and it is a marker
specifically associated with proliferative and plasticity
events in adulthood [13,14]. PSA is a unique polymer of α
2,8-N-acetyl neuraminic acid residues added to the fifth
Immunoglobulin domain of the membrane bound
NCAM. Importantly, by enabling limited cell-cell and
cell-extracellular matrix interactions [15], one hallmark
of PSA-NCAM is to favor cell migration, a critical feature
of the highly invasive behavior of GBM cells.

In order to investigate the expression and the putative
role of PSA-NCAM in GBM, we first set up a sensitive
ELISA test, which allowed specific detection above 10 pg
PSA-NCAM/μg of protein. Results of the ELISA test were
correlated with immunohistochemical detection of PSA-
NCAM. We studied the expression of PSA-NCAM in a
series of 56 GBM samples and found PSA-NCAM expres-
sion in 70% of them. Moreover, we report that detectable
PSA-NCAM by ELISA test (> 10 pg PSA-NCAM/μg of
protein) is an adverse factor of prognosis associated with
shorter OS and DFS. We then analyzed PSA-NCAM
expression in a human GBM cell line GBM9, previously
developed in our laboratory from a patient biopsy and
characterized by a highly proliferative behavior and long
term sphere formation [9]. We could show that removing
PSA-NCAM from these cells down-regulated olig2. Con-
versely, PSA-NCAM forced expression in the C6 glioma
cell line induced olig2 synthesis.

Methods
Human subjects and clinical parameters
Surgically resected samples were obtained from 56 adult
patients (age>18 years) from the Departments of Neu-
rooncology and Neurosurgery at the Marseille Hospitals
(AP-HM), in France from 1986 to 2005. All had primary
GBM, histologically proven according to the WHO classi-
fication, formalin fixed paraffin embedded tissue. The
frozen specimens were stored in the AP-HM tumor bank
(Authorization number 2008/70) with written informed
consent for tumor banking and study.

All patients benefited from surgery followed by radio-
therapy and alkylating agents chemotherapy (nitrosou-
rea), and included long term survivors with a clinical
follow up of 8 years. Because the patients were treated
before 2005, none of them received the radiotherapy
associated to Temozolomide chemotherapy protocol
described by Stupp et al. [1].

For all patients, 26 males and 30 females, available clin-
ico-pathological data were the age, preoperative Karnof-
sky performance status (KPS), extent of surgical removal,
OS and DFS. Mean age at diagnosis was 60.4 +/- 10.7,
preoperative KPS was less than 70 in 21 patients and
greater than 70 in 35 patients. Total surgical excision
based on operative chart protocol was achieved in 39
patients and partial excision in 17 patients. The median
OS was 12.5 months [mean confidence interval (CI): 9.7-
15.4]. Of the 56 patients, 48 had relapse. The median DFS
was 6.7 months (mean CI: 4.2-9.2).

In addition, frozen specimens of 3 medulloblastomas
(MB) known to highly express PSA-NCAM [16], and non
tumorigenic adult brain tissues taken from a patient
biopsy in an area containing only non tumoral tissue were
used as controls. For PSA-NCAM immunohistochemis-
try and ELISA analysis, cryostat sections from each
patient were checked and consisted of at least 60%
tumoral tissue and less than 40% necrotic or non tumoral
tissue.

PSA-NCAM immunohistochemistry
Anti-PSA-NCAM antibody (clone Men B2-2B dilution 1/
500, Abcys, Paris, France) was applied on 5 μm cryostat
sections available for all GBM and control cases. Immu-
nohistochemistry was performed on a Benchmark XT
(Ventana, Tucson, AZ, USA). Controls included omission
of primary antibody and abolition of the immunostaining
after endoneuraminidase N (endo N, 1/1000; Abcys)
treatment, which specifically cleaves alpha 2,8 linked
acetyl neuraminic acid residues added to N glycosylation
sites on the fifth immunoglobulin domain of NCAM [17].
Immunostaining was analyzed by using a semi-quantita-
tive score. Briefly, the percentage of positive tumor cells
per slide (0% to 100%) was multiplied by the main inten-
sity of staining (0: negative; 1: very weak; 2: weak; 3: mod-
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erate; 4: intense). PSA-NCAM expression score ranged
from 0 to 320 in GBM. It was up to 360 in MB.

Preparation of tissue and cell extracts, and protein 
measurement for ELISA
Cells or tissues were homogenized in PBS, 0.1% TritonX-
100 and sonicated. The nuclear and mitochondrial frac-
tions and debris were removed by centrifugation at 10000
g, 4°C, for 15 minutes. Total proteins were measured
from the supernatant using the BCA kit (Perbio,
Brebieres, France). Samples were initially diluted in phos-
phate buffered saline (PBS) at 37 μg/ml of protein and
tested in the ELISA assay. If necessary, the dilution was
adjusted to be in the linear range of the standard curve,
and the PSA-NCAM concentration calculated in pg PSA-
NCAM/μg of total protein.

Purification of PSA-NCAM for ELISA standard curve, and of 
NCAM for anti-NCAM antibody generation
PSA-NCAM was purified from postnatal stage P0 mice
by affinity chromatography using the previously charac-
terized H28 monoclonal antibody [18] immobilized on an
Aminolink column (Perbio) at 10 mg/ml of resin, accord-
ing to the manufacturer's procedure. Protein concentra-
tion was measured using the BCA kit.

NCAM was purified from adult mice brain on the same
affinity column, and used to produce a goat polyclonal
anti-NCAM antibody (Eurogentec, Orleans, France). The
anti-NCAM recognizes the 3 main NCAM isoforms
(data not shown).

PSA-NCAM ELISA
Ninety six-well microtiter plates (Nunc Maxisorp, VWR,
Strasbourg, France) were coated with 100 μl of mouse
monoclonal antibody directed against PSA-NCAM (1/
4000 in PBS) (Abcys). After PSA-NCAM capture, the
wells were washed 3 times with PBS (Sigma, Lyon,
France) and blocked with 200 μl of PBS containing 5%
bovine serum albumin (BSA; Sigma) for 2 h at 37°C. Hun-
dred μl of samples of unknown PSA-NCAM concentra-
tion, and standards were then incubated overnight at 4°C.
Standards were prepared from known amounts of PSA-
NCAM purified from postnatal P0 mice as described
above. The dose range for PSA-NCAM standard curve
was 0.25 to 16 ng/ml. After 5 washes with PBS containing
0.1% Tween20 (PBST), wells were incubated with 100 μl
of goat anti N-CAM prepared from purified mouse
NCAM as described above (1/4000; Eurogentec) in PBST,
5% BSA (PBSTB) for 2 h at 37°C. After 5 washes with
PBST, wells were incubated with 100 μl of donkey horse-
radish peroxidase (HRP)-coupled anti-goat antibody
(Jackson Laboratory, Ban Harbor, MA) diluted 4000
times in PBSTB for 2 h at 37°C. Plates were washed 5
times with PBST and incubated with 100 μl of Tetrameth-
ylbenzidine (TMB; Sigma). TMB tablets were diluted in

0.2 M dibasic sodium phosphate, 0.1 M citric acid, 0.6%
H2O2. The reaction was stopped with 100 μl 1.8 N H2SO4.
Absorbance was read at 450 nm using a 96-well plate
reader (Berthold, Thoiry, France) and the concentration
of PSA-NCAM in samples was deduced from the stan-
dard curve.

For ELISA validation, the rhabdomyosarcoma TE671
cell line was used and grown as previously described [17].
The specificity of the ELISA test was established using
endoN. A TE671 extract was digested with endoN for 4 h
at 37°C. Non digested and digested extracts were serially
diluted and tested in parallel in the same ELISA test to
ensure that the signal detected with the ELISA was
indeed specific for PSA-NCAM.

Cell culture, endoneuraminidase treatment and 
immunocytochemistry
The rat C6 glioma cell line (ATCC-LGC, Molsheim,
France) was grown in Dulbecco's modified Eagle's
medium (DMEM) supplemented with 10% fetal calf
serum (FCS), penicillin (50 Units/ml) and streptomycin
(100 μg/ml). The C6-PSA-NCAM cell line (generous gift
of M. Fukuda, The Burnham Institute for Medical
Research, La Jolla, CA) over expresses PSA-NCAM after
transfection with a polysialyltransferase construct (ST8-
SiaIV/PST) and has been previously described [19]. C6-
PSA-NCAM cells were grown in DMEM supplemented
with 10% FCS, penicillin, streptomycin and geneticin (0.5
mg/ml). Both cell lines display similar proliferation rates
[20]. For olig2 quantification, 10 mm diameter plates of
C6 and C6-PSA-NCAM were used when cells had
reached confluence.

The GBM9 cell line was described in our previous study
[9]. Cells were grown as neurospheres in Neurobasal
medium supplemented with B27, GlutaMAX™, EGF (20
ng/ml) and bFGF (20 ng/ml), both from Peprotech (Lon-
don, UK). For splitting cells, spheres were spun down
(300 g, 5 minutes, RT) and dissociated with 1 to 2 ml
Accumax (Abcys, Paris, France) for 30 minutes at 37°C.
Single cells suspensions were obtained by mechanical dis-
sociation. Cells were subsequently spun down and resus-
pended in growth medium. For differentiation
experiments, cells were plated in Poly-D-lysine (10 μg/
ml) coated multiwell-24 plates (30000 cells/well). All cells
were grown in humidified atmosphere containing 5%
CO2 at 37°C. All tissue culture reagents were from Invit-
rogen (Cergy Pontoise, Fance).

For studying the effect of PSA-NCAM on differentia-
tion, cells were treated with endoN (1/1000) for 3 days in
vitro. GBM9 cells were fixed with 4% paraformaldehyde
for 15 minutes at room temperature (RT), and washed
with PBS. Cells were permeabilized with 0.1% Triton X-
100 and 3% BSA for 45 minutes. Primary antibodies were
incubated for 2 h at RT in PBS. Following 3 washes of 10
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minutes each, appropriate secondary antibodies were
incubated for 1 h at RT. Nuclei were stained with DAPI
(0.5 μg/ml) for 5 minutes and washed with PBS. Immuno-
fluorescence staining was observed using the Carl Zeiss
Observer D1 inverted microscope (Carl Zeiss, Gottigen,
Germany) equipped with a 20 × objective. The following
antibodies were used: olig2 (rabbit IgG, 1/1000; Abcys),
GFAP (mouse IgG, 1/1000; Millipore, Molsheim, France),
β3-tubulin (mouse IgG, 1/1000; Sigma), Nestin (mouse
IgG, 1/500; Abcys), PSA-NCAM (mouse IgM, 1/1000;
Abcys), Alexa555-anti-mouse IgG, CY3-anti-mouse IgM,
Alexa488-anti-rabbit IgG (all 1/500; Jackson Laboratory).

Western Blot
C6 and C6-PSA-NCAM total cell extracts were prepared
by scraping cells in 500 μl of 10 mM TrisHCl pH 7.4 con-
taining 0.1% TritonX-100 and Complete™ protease inhibi-
tors (Roche, Mannheim, Germany) followed by
sonication. Proteins were run on an 8% SDS-polyacryl-
amide gel. Western blot was performed according to
standard protocols with anti-olig2 (1/4000), anti-PSA-
NCAM (1/1000), and anti-α-tubulin (mouse IgG, 1/2000,
Sigma). Secondary antibodies were coupled to HRP (1/
20000; Jackson Laboratory).

Statistical analysis
The percentage of olig2 positive cells in GBM9 differenti-
ation assay was analyzed using contingency tables fol-
lowed by the Fisher's exact test. The Spearman
correlation coefficient was used to evaluate the consis-
tency between the 2 methods of PSA-NCAM content
measurements in biopsies (immunohistochemistry and
ELISA).

For statistics performed on GBM patients, the SPSS
15.0 software for windows (SPSS Inc, Chicago, Illinois,
USA) was used. Survival was estimated using the Kaplan-
Meier method, and curves were compared using the log-
rank test. On multivariate analysis, the effect of potential
risk factors including age (< 60 versus ≥ 60), preoperative
KPS (< 70 versus ≥ 70), extent of surgical excision (partial
versus total), and PSA measurement by ELISA (≤ 10 pg
PSA-NCAM/μg of protein versus > 10 pg PSA-NCAM/
μg of protein) on the DFS and OS were evaluated using
the cox regression proportional hazard models. The
threshold for statistical significance was p = 0.05.

Results
PSA-NCAM ELISA sensitivity, linearity and specificity
We developed a sandwich ELISA to detect PSA-NCAM
by taking advantage of the monoclonal anti-PSA-NCAM
developed in our laboratory [21] (Abcys) as the capture
antibody. An anti-mouse NCAM was then produced by
immunizing goats with NCAM purified from adult mice
brain, and used as the detection antibody.

A linear relationship could be established between
known amounts of PSA-NCAM and optical density read-
ings between 0.25 and 16 ng PSA-NCAM/ml (Figure 1A).
Tissue extracts were tested after dilution at 37 μg of pro-
tein/ml; therefore the corresponding limit of detection in
such sample is 6.75 pg PSA-NCAM/μg of protein. The
test was linear over 2 logs around the concentration
tested. Intra-assay coefficient of variation was less than
5% (n = 3). Although the ELISA was designed with appro-
priate antibodies to detect PSA-NCAM, we first verified
the specificity of the ELISA by digesting PSA-NCAM
from an extract of TE 671 cells known to express PSA-
NCAM [17]. After verifying that endoN indeed digested
PSA-NCAM by Western blot (not shown), a serial dilu-
tion of TE671 extract treated or not with endoN was pre-
pared and tested by ELISA. Data shown on Figure 1B
indicate that the signal obtained in absence of endoN is
specific for PSA-NCAM as it was completely abolished at
most dilutions of the extract after enzymatic digestion. In
these diluted extracts, PSA-NCAM was more concen-
trated than in the GBM biopsies, ensuring that the signal
measured in GBM biopsies was entirely PSA-NCAM spe-
cific. However, a limitation of our test is that although the
anti-PSA antibody allows to reveal PSA, it does not dis-

Figure 1 Standard curve of PSA-NCAM ELISA. (A) Increasing 
amounts of purified PSA-NCAM from P0 mouse brains were detected 
by the developed ELISA. Data are presented as mean +/- standard de-
viation of duplicate measurements. (B) ELISA test on serial dilutions of 
TE671 extract expressing PSA-NCAM or treated with endoN.
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criminate between different lengths of PSA chains. In
order to accurately assess PSA-NCAM level from GBM
biopsies, its expression in normal brain tissue had to be
determined. Adult human brain cortex expresses PSA-
NCAM only on rare cells [22]. In non tumoral adult
human brain tissue, a signal equivalent to 8 pg PSA-
NCAM/μg of protein was measured, and PSA-NCAM
was below detection in adult mouse cortical tissues (n =
4). Moreover, the inter assay variability for these samples
was of 10 pg/μg of protein. Therefore, the threshold of
significance for specific detection of PSA-NCAM was set
to 10 pg PSA-NCAM/μg of protein. This value was cho-
sen to classify groups of GBM patients that express either
less or more than 10 pg PSA-NCAM/μg of protein.

Embryonic human brain extract served as positive con-
trol since it is known to express high level of PSA-
NCAM, as do medulloblastoma (MB) tissues [16], which
was confirmed in the current study by immunohis-
tochemistry (Figure 2C) and ELISA for MB (150-1030 pg
PSA-NCAM/μg of protein, n = 3) and embryonic human
brain (1600 pg PSA-NCAM/μg of protein).

PSA-NCAM measurement by ELISA is correlated to 
immunohistochemistry analysis
Immunohistochemistry has been so far the standard
method in anatomopathology laboratories, including
using the PSA-NCAM antibody [16,23]. Therefore, we
verified that the results obtained using the ELISA test
correlated with the immunohistochemistry results. Fig-
ure 2A shows biopsies with various degrees of PSA-
NCAM immunohistochemistry staining with the corre-
sponding ELISA measurements. They illustrate weak or
medium PSA-NCAM immunostaining in two GBM sam-
ples, which generated a corresponding PSA-NCAM value
by ELISA, similar to non-tumoral adult human brain tis-
sue for GBM1 (Figure 2A) and higher for GBM2 (Figure
2B). It is worth noticing that PSA-NCAM expression was
different from one GBM to another: either weak and dif-
fuse in large area of the biopsy in some cases (Figure 2B),
or strong but restricted to fewer tumor cells in others
(Figure 2A), this last pattern of expression being more
frequent. We also included in our study 3 MB known to
express high levels of PSA [16]. These MB samples were
highly stained by immunohistochemistry (score 360 to
400) (Figure 2C) and displayed high PSA-NCAM concen-
trations by ELISA (150-1030 pg PSA-NCAM/μg of pro-
tein, n = 3). In total, a series of 56 GBM samples were
analyzed by immunohistochemistry and given a score,
and by ELISA. Figure 2D shows the 56 individual values
of PSA-NCAM measured by ELISA and immunohis-
tochemistry, and on Figure 2E, patients were separated in
two groups (ELISA PSA-NCAM <10 pg/μg of protein and
PSA-NCAM >10 pg/μg of protein). Spearman correlation
test shows a statistical positive correlation between the

two methods of PSA-NCAM measurement (Rho = 0.439,
p = 0.005).

PSA-NCAM is expressed in 70% of 56 GBM biopsies
We quantified PSA from 56 GBM biopsies. As much as
70% of them expressed PSA-NCAM at levels above 10 pg
PSA-NCAM/μg of protein. The median was of 24.73 pg
PSA-NCAM/μg of protein. Apart from some very high
values as depicted on the histogram (Figure 2F), 50% of
the biopsies gathered around the median. It should be
noted that 90% of them contained less PSA-NCAM than
the MB with the lowest PSA-NCAM content (150 pg
PSA-NCAM/μg of protein).

PSA-NCAM expression in GBM is correlated to shorter OS 
and DFS
In this series, none of the clinical factors including age,
preoperative KPS and extent of surgical removal was cor-
related to OS or DFS. The patient cohort includes long-
term survivors, and surgical resection was not systemati-
cally analyzed by MRI. These factors could have pre-
vented to reveal the prognosis value of these classical
clinical parameters. However, PSA-NCAM expression
was significantly associated to OS [median OS: 20.8
months (CI:14.2-27.4) in patients with PSA-NCAM GBM
content ≤ 10 pg/μg of protein versus 12.2 months
(CI:11.0-13.5) in the others; p = 0.04, n = 56] (Figure 3A).
PSA-NCAM expression was also statistically correlated
to DFS (median DFS: 11.2 months (CI:7.6-14.8) in
patients with PSA-NCAM GBM content ≤ 10 pg/μg of
protein versus 6 months (CI:3.4-8.5) in the others; p =
0.017, n = 54] (Figure 3B).

On multivariate analysis (age, KPS and extent of surgi-
cal excision), PSA-NCAM expression was the unique
predictive parameter of OS [hazard ratio (HR): 2.01 for
patients suffering from a GBM with PSA-NCAM content
>10 pg/μg of protein (CI:1.01-4); p = 0.046, n = 56] and
DFS [HR: 2.89 for patients suffering from a GBM with
PSA-NCAM content >10 pg/μg of protein (CI:1.34-6.27);
p = 0.007, n = 54].

PSA-NCAM regulates olig2 expression in glioma
To further elucidate the role that PSA-NCAM could play
in GB, we investigated whether PSA removal using
endoN affected the properties of the GBM9 cell line we
previously developed and characterized as a highly prolif-
erative neurosphere forming cell line [9]. To this end we
compared features of endoN treated and non treated cells
in different culture conditions. In basal conditions, cells
were grown in presence of EGF and FGF [9]. In a repre-
sentative experiment described on Figure 4, out of two
performed, 88% of the GBM9 cells expressed the olig2
transcription factor. Representative pictures taken from
at least 5 independent fields are shown on Figure 4A.
Under conditions of PSA removal, the percentage of olig2



Amoureux et al. BMC Cancer 2010, 10:91
http://www.biomedcentral.com/1471-2407/10/91

Page 6 of 12
positive cells decreased to 64% (Figure 4B). If EGF and
FGF were removed from the culture medium, 52% of the
cells were olig2 positive, and this percentage further
decreased to 35% after PSA digestion. The mean of at
least 5 fields is represented on Figure 4B. In the two
experiments performed, the percentage of cells losing
olig2 was 30 and 46% in the presence of EGF and FGF,
and 17 and 35% in the absence of growth factors, respec-
tively. PSA removal was capable of decreasing signifi-
cantly olig2 content in this GB cell line both under
proliferative conditions in the presence of EGF and FGF
(p = 0.0153 and p = 0.0399 for the 2 experiments, respec-
tively), and in their absence (p = 0.0289 and p = 0.0297 for
the 2 experiments, respectively). We found no effect of
PSA removal on the percentage of other cell lineages gen-
erated (GFAP+ astrocytes, β3-tubulin+ neurons or Nestin+

progenitors) neither in presence, nor in absence of
growth factors (not shown).

To uncover a possible causal relationship between olig2
and PSA expression, we tested whether PSA-NCAM gain
of function would affect olig2 expression. We chose C6
cells which displayed undetectable PSA-NCAM by
ELISA or Western blot and show many features of GB
tumors after intracranial injection such as an undifferen-
tiated morphology [20], neovascularization [24], diffuse
infiltrating borders and invasion of the surrounding tis-
sue by isolated cells [25]. Moreover, PSA-NCAM forced
expression in these cells has been shown to be associated
with their increased migration when transplanted in mice
[20]. Therefore, we compared olig2 content in PSA-
NCAM negative C6, and C6-PSA-NCAM that contained
19.5 pg PSA-NCAM/μg of protein as measured by

Figure 2 PSA-NCAM measurements by immunohistochemistry and ELISA, and distribution of PSA-NCAM measurement by ELISA in 56 GBM 
biopsies. PSA-NCAM immunohistochemistry on two GBM biopsies with below detection (A) or positive (B) staining, and on a MB biopsy highly ex-
pressing PSA-NCAM (C); scale bar: 33 μm. (D) Individual measurements of PSA-NCAM in the 56 GBM, by ELISA and Immunohistochemistry. (E) Individ-
ual measurements of PSA-NCAM by ELISA and Immunohistochemistry in two groups (PSA-NCAM<10 pg/μg of protein and PSA-NCAM>10 pg/μg of 
protein). Lines indicate the median in each group (F) Distribution of PSA-NCAM content from 56 biopsies, represented as boxplot with first quartile (9 
pg PSA-NCAM/μg of protein), median (25 pg PSA-NCAM/μg of protein) and third quartile (40 pg PSA-NCAM/μg of protein). The dotted line corre-
sponds to 10 pg PSA-NCAM/μg of protein (level of sensitivity of PSA-NCAM detection in GBM tissue).
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Figure 3 PSA-NCAM is negatively correlated to overall (OS) and disease free (DFS) survival. Survival curves of patients from the two groups: 
PSA-NCAM>10 pg/μg of protein (n = 39 for OS; n = 38 for DFS) and PSA/NCAM ≤ 10 pg/μg of protein (n = 17 for OS; n = 16 for DFS). (A) OS: Kaplan-
Meier curves indicate for each time point the proportion of patients still alive at that time. (B) DFS: Kaplan-Meier curves indicate for each time point 
the proportion of patients that did not yet have a relapse at that time. (+): censored patients.
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ELISA. Whereas C6 cells did not express olig2, C6-PSA-
NCAM displayed strong olig2 expression indicating that
in these cells, forced expression of PSA is sufficient to
induce olig2 as shown by western blot analysis in Figure
4C.

Discussion
In the current study, we show that PSA-NCAM is a prog-
nosis factor in GBM, by using a new ELISA assay for
PSA-NCAM. This test allows quantifying accurately, spe-
cifically, and with high sensitivity PSA-NCAM on small
amounts of biopsy materials. The results obtained were
well correlated to immunohistochemistry analysis, show-
ing the robustness of the assay. However, some samples

displayed different levels of PSA, depending on the
method of measurement. The non-linear scoring by IHC
and the possible heterogeneity of the tumor may partly
explain the discrepancy between the two methods. High
PSA values by ELISA could therefore represent false posi-
tives (type I error) as their IHC score was 0 in the PSAEL-

ISA >10 pg/μg of protein group (12 cases), or false
negatives (type II error) as their IHC value was much
higher than the median IHC score in the PSAELISA <10
pg/μg of protein group (4 cases). Nevertheless, when con-
fronted with the outcome of patients, the ELISA mea-
surement of these samples seemed to be more predictive.
Three out of the 4 samples that had low PSA by ELISA

Figure 4 Olig2 is positively correlated to PSA-NCAM. (A) Immunostaining of GBM9 cells with anti-olig2 (green, Alexa488) and anti-PSA-NCAM (red, 
CY3) in the presence of EGF + FGF (a), EGF + FGF + endoN (b), no growth factor (c), endoN and no growth factor (d). Cells were counterstained with 
DAPI (blue); scale bar: 20 μm. (B) Quantification of immunostaining described above from a representative experiment out of 2 performed. Percentage 
of olig2+ cells is presented as mean +/- standard deviation of the percentage of olig2+ cells grown in presence of EGF and FGF, from at least 5 inde-
pendent fields of view per condition. Between 174 and 571 cells per condition were counted. (*: p < 0.05, ***: p < 0.001; Fisher's test). (C) Representative 
western blot out of 3 independent cultures of C6 and C6-PSA-NCAM with anti-PSA-NCAM, anti-α-tubulin and anti-olig2 antibodies.
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came from patients that had an overall survival > 20.8
months (median OS in the PSAELISA <10 pg/μg of protein
group) and disease free survival > 11.2 months (median
DFS in the PSAELISA <10 pg/μg of protein group). Nine
out of the 12 samples that had high PSA by ELISA came
from patients that had an overall survival < 12.2 months
(median OS in the PSAELISA >10 pg/μg of protein group)
and disease free survival <6 months (median DFS in the
PSAELISA >10 pg/μg of protein group).

Importantly, this test presents a number of advantages
over currently in use measurement techniques, immuno-
histochemical detection and Western blot, which are
semi-quantitative. Therefore, once validated on a larger
scale, it fulfills the criteria (quantitative test, sensitivity
and specificity) that would allow its use in the clinic for
GBM and other cancers. Indeed, in addition to the prog-
nosis value of PSA-NCAM in GBM demonstrated here,
evidence from our and others' studies have shown that
PSA-NCAM is also a reliable marker in many types of
cancers of the CNS and other organs, and that it is
involved in the process of metastasis [16,23,26-28]. A cor-
relation could also be established between the level of
PSA-NCAM and the severity of the disease and/or the
response to treatment and relapse in a large variety of
cancer including medulloblastoma [28], neuroblastoma
[29], rhabdomyosarcoma [30] and small cell lung carci-
noma [31]. PSA-NCAM in non-small cell lung cancer
biopsies was correlated with tumor progression and was
an independent prognosis factor [32]. NCAM expression
has also been evaluated in glioma [20], and other tumor
types [31], but NCAM immunoreactivity does not differ-
entiate polysialylated from non polysialylated NCAM.
Interpretations of NCAM expression results have there-
fore been limited due to the omitted consideration of
NCAM polysialylation, post-translational modification
that affects dramatically NCAM binding properties and
intermembrane repulsion [15].

In gliomas, PSA-NCAM has been detected in GBM
explants [33] and on biopsies more frequently in diffuse
astrocytoma cells, which spread extensively [20]. It has
also been shown to confer invasive properties to glioma
cells in animal models [20]. However, although some
studies have reported biomarkers of different grades of
glioma [34,35], investigations showing the prognosis
value of molecular factors by multivariate analysis, specif-
ically in the GBM subgroup, have been limited, and most
used semi-quantitative methods or mRNA analysis
[36,37]. Therefore, the methodology developed here and
the finding of PSA-NCAM as a prognosis marker in GBM
appears significant.

We found that 70% of biopsies expressed PSA-NCAM
at levels above the level set up as background, with some
variability. Moreover, GBM showed considerably lower

levels than MB. A likely explanation for this difference is
that MB cells are all in the same differentiation state,
engaged in a neuronal phenotype, whereas in GBM, cells
from very immature to differentiated phenotype can be
observed (personal observations). The contrasted low
PSA levels in GBM versus high levels in MB could also
explain the highly metastatic versus non metastatic
behavior of MB versus GBM, respectively.

The content of PSA-NCAM in GBM biopsies might
result from at least two phenomena: the number of cells
expressing PSA-NCAM and the amount of PSA-NCAM
expressed by individual cells. The different patterns of
PSA-NCAM expression observed by immunohistochem-
istry in GBM are in keeping with these hypotheses as
some show a rather low level on many cells spread over
the tissue whereas for others high expression is exhibited
only by islets of cells. However, since the tumor is not
strictly homogeneous, the different staining patterns that
can be observed cannot be assumed to be respresentative
of the entire tumor of a given patient. Cells expressing
PSA-NCAM could be either progenitors and/or cells
exhibiting an altered differentiation process due to trans-
formation, although we cannot exclude that in some cases
PSA-NCAM positive cells are cells from the subventricu-
lar zone attracted by the tumor [38]. PSA expression is
under transcriptional control, a mechanism that can be
perturbed following oncogenic transformation, and the
enzymes polysialyltransferases that transfer PSA to
NCAM represent obvious targets. In addition, several
post-translational mechanisms that have been shown to
regulate the expression dynamics could be at play [39,40].

Despite variations of expression, PSA-NCAM expres-
sion was correlated with poor prognosis for both OS and
DFS. Although at this stage whether PSA-NCAM mole-
cule itself plays a causal role or is a downstream conse-
quence of changes in tumorigenesis is not known, some
hypotheses may be formulated to explain a negative role
of PSA-NCAM in survival. First, PSA-NCAM may be
carried by undifferentiated cells in the tumor capable of
cancer initiation and resistance to therapy [7]. Indeed,
cumulative studies suggest that persistence of PSA-
NCAM could prevent differentiation. During develop-
ment, a defined spatial and temporal window of expres-
sion of PSA-NCAM illustrates that this molecule
constitutes a very effective cue when plasticity and pre-
cise timing of differentiation is required [40]. A promi-
nent role of PSA in differentiation is also supported by its
capacity to delay oligodendrocyte maturation events such
as differentiation and myelinating potential [19,41,42] or
neuronal differentiation [43,44]. Moreover, PSA-NCAM
is an attractive candidate to be expressed by CIC since it
is characterized by a strong and ubiquitous expression
during embryonic development in multipotent or lineage
restricted precursors, and a stem cell niche marker in the
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adult CNS, mainly in the SVZ and hippocampus produc-
ing neuroblasts throughout life. Polysialylation could
therefore support the maintenance of an immature phe-
notype. Transplantation studies with PSA+ and PSA-

GBM cell populations will be required to answer whether
PSA-NCAM defines cell populations with CIC proper-
ties.

Second, PSA-NCAM could favor infiltration of cells in
the surrounding healthy tissue and be responsible for ear-
lier relapse, which may subsequently lead to decreased
OS as disseminated tumor cells play a critical role in
GBM recurrence. This PSA-NCAM enhancing effect on
migration was indeed demonstrated in healthy tissue and
in disease models such as rhabdomyosarcoma metastasis
mouse model [27] and after grafting of PSA-expressing
C6 glioma cells in mouse brain [20].

Third, PSA-NCAM might trigger proliferation and
enhance GBM growth. This could occur via an increased
sensitivity of PSA-NCAM positive cells to growth factors
such as PDGF, as shown for oligodendrocytes [45], or
GDNF [17]. Interestingly PDGF receptor expression was
required for oligodendrocytes to generate gliomas [46].
An alternative could be the prevention of contact medi-
ated inhibition of proliferation as exerted in astrocytes
[47] or neuroblastoma cell lines [48].

Importantly, we also found olig2 expression to be regu-
lated by PSA-NCAM expression in the GBM9 cell line or
to be activated in C6 after PSA-NCAM expression. The
mechanisms underlying olig2 regulation could be related
to PSA-NCAM mediated alterations of cell proliferation,
survival or differentiation [19,41-44,48] and remain to be
elucidated. Olig2 has been described as a negative regula-
tor of astrocytic differentiation pathway [49], to be
required for gliomagenesis and to be coupled to an inhi-
bition of the antiproliferative p21 pathway [12]. Olig2 is
also known to play an important role in proliferation and
fate determination in the development of the nervous
system and adulthood [50]. Therefore, one of the conse-
quences of PSA-NCAM up regulation in GBM could be
olig2 increase and its downstream growth and differenti-
ation consequences. Further investigations of the impact
of olig2 levels in relation to GBM patients' survival appear
compelling.

In conclusion, PSA-NCAM is another example of mol-
ecules having a dual role, during development as funda-
mental regulators of pattern formation and
differentiation, and in cancer. Moreover, the role of an
adhesion molecule of the immunoglobulin family in can-
cer stem cell is not unprecedented since L1CAM was
recently shown to be required to suppress glioma growth
of CD133+ cells in vitro and in vivo [7]. These findings
constitute the first evidence that PSA-NCAM expression
correlates with GBM patient survival. This novel bio-
marker for GBM may represent an interesting molecular

tool for diagnosis and prognosis in clinical use. This may
also have important clinical implications for the treat-
ment of GBM patients as previously suggested with
chemicals that alter PSA expression with the goal to mod-
ulate polysialylation in tumors [51]. This study warrants
further investigation of PSA-NCAM with regard to
response to treatment in future prospective studies on a
larger number of GBM patients.

Conclusions
We present PSA-NCAM as a new candidate prognosis
biomarker for GBM. It represents immediate valuable
information to improve life conditions of patients and
clinical decisions, and represents a prospective therapeu-
tic target and stratifying factor for clinical trials. This
novel finding, next to the negative impact of PSA-NCAM
on survival and metastasis in other cancers, emphasizes a
critical and general role of PSA-NCAM in cancer evolu-
tion. The new ELISA test described in the current study
was characterized as an accurate and specific quantitative
mean to measure PSA-NCAM from a small amount of
biopsy, and therefore is a powerful tool, notably for vali-
dation in a larger patient cohort, but also to investigate
PSA-NCAM with regard to response to treatment. In
addition, this new ELISA test can be applied to all tumors
expressing PSA-NCAM.
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