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Abstract

This work extends the methods of demographic inference based on the distribution

of pairwise genetic differences between individuals (mismatch distribution) to the case

of linked microsatellite data. Population genetics theory describes the distribution of

mutations among a sample of genes under different demographic scenarios. However,

the actual number of mutations can rarely be deduced from DNA polymorphisms. The

inclusion of mutation models in theoretical predictions can improve the performance of

statistical methods. We have developed a maximum pseudolikelihood estimator for the

parameters that characterize a demographic expansion for a series of linked loci evolv-

ing under a stepwise mutation model. That would correspond to DNA polymorphisms

of linked microsatellites (such as those found on the Y-chromosome or the chloro-

plast genome). The proposed method was evaluated with simulated datasets and with a

dataset of chloroplast microsatellites that showed signal for demographic expansion in

a previous study. The results show that inclusion of a mutational model in the analysis

improves the estimates of the age of expansion in the case of older expansions.
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INTRODUCTION

The shape of the genealogy of a random sample of genes (i.e. copies of the same locus) from a

population is strongly influenced by the demographic history of the population. For expanding

populations the gene genealogy will have a ‘star’ shape (SLATKIN and HUDSON, 1991), with short

internode branches and long terminal branches. Under such genealogies, terminal branches accu-

mulate many mutations producing an ‘excessive’ number of haplotypes and singletons compared to

the expectation for a constant size population. This pattern is exploited in most neutrality test (e.g.

TAJIMA, 1989; FU, 1997). In addition, the distribution of pairwise differences between individuals

(also known as mismatch distribution) follows a unimodal distribution, in contrast to the ragged

patterns that would be found for a sample from a constant size population (SLATKIN and HUDSON,

1991).

In the present work we propose an approach which follows the ideas developed for the study

of mismatch distributions of mtDNA for demographic inference (ROGERS and HARPENDING,

1992; ROGERS, 1995; SCHNEIDER and EXCOFFIER, 1999), which are adapted here to linked mi-

crosatellites by assuming the stepwise mutation model (KIMURA and OHTA, 1978). The interest

of linked microsatellites comes from their application in chloroplast (PROVAN et al., 2001) and

mammal Y-chromosome genetic diversity studies (mainly studied in humans, ROEWER et al. 1992;

WILLUWEIT and ROEWER 2007, but also found in other species, EDWARDS et al. 2000; LUO

et al. 2007). The proposed method is evaluated through simulations and its use is exemplified with

a dataset of chloroplast microsatellites for the Canary Island pine (Pinus canariensis).

THEORY

Number of mutations between two random gene copies: The classical work by WATTERSON

(1975) gives the distribution probability for the number of mutations j occurring between a pair of

genes sampled randomly from a population of constant size N :
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P (j|θ) =
θj

(θ + 1)j+1
(1)

where θ = 2Nµ is the effective population size scaled by the mutation rate µ. And LI (1977)

obtained the equivalent distribution for the case of a population size change from N0 to N1 in a

single step t generations ago:

P (j|θ0, θ1, τ) = P (j|θ1) + e

(

−τ
θ1+1

θ1

)

×
j

∑

j′=0

τ j′

j′!
[P (j − j′|θ0) − P (j − j′|θ1)] (2)

where θ0 = 2N0µ, θ1 = 2N1µ, τ = 2tµ and P (j|θ) corresponds to equation 1 for the stationary

case.

Fitting equation 2 to the distribution of pairwise genetic differences of a sample of genes has

been employed to obtain estimates of the three demographic parameters θ0, θ1 and τ (ROGERS and

HARPENDING, 1992). However, the use of equation 2 implies that the number of observed genetic

differences should correspond to the number of mutations that actually occurred, i.e. an infinite

site mutation model (KIMURA, 1969) is being assumed for DNA sequence evolution. This will be

an unrealistic model for most datasets in which some amount of multiple hits (i.e. homoplasious

mutations) are expected.

Number of differences between two random gene copies: SCHNEIDER and EXCOFFIER (1999)

proposed to introduce a mutational model to describe the probabilistic relationship between the

number of observed differences, i, and the number of mutations, j, to infer the parameters of a

demographic expansion from the distribution of genetic differences between pairs of gene copies.

Their strategy consists in using equation 2 and integrate over all possible number of mutations that

can produce the observed number of differences:

P (i|θ0, θ1, τ) =
∞

∑

j=i

P (j|θ0, θ1, τ)P (i|j) (3)

where P (i|j) is the probability of observing i differences when j mutations have occurred. Simi-
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larly, the stationary state could be described with:

P (i|θ) =
∞

∑

j=i

P (j|θ)P (i|j) (4)

SCHNEIDER and EXCOFFIER (1999) derived P (i|j) for DNA sequence data with models of

nucleotide substitutions with heterogeneous mutation rates across sites. In this work we present the

equivalent distribution for the differences between two non-recombining chromosomes typed at

several microsatellite loci, assuming a symmetrical stepwise mutation model (KIMURA and OHTA,

1978).

First we will consider the case of a single microsatellite locus. The mutational process, con-

ditioned on the number of mutations j, can be seen as a Markov process of j steps from the state

(number of repeats) of one gene to the state of the other gene. Each step might increase or de-

crease the number of repeats with equal probability. If we defined x as the number of steps in a

given direction (let it be the number of steps increasing the number of repeats), x has a binomial

distribution, b
(

x, j, 1

2

)

=
(

j

x

) (

1

2

)j
. The most informative measure of difference available for a pair

of microsatellite genes is their absolute difference in number of repeats, δ, which in our Markov

process is δ = |x − (j − x)| and its distribution, from the binomial distribution of x, is:

P (δ|j) =












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






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(

j
j
2

) (

1

2

)j
, if δ = 0 and j is even;

(

j
j+δ
2

) (

1

2

)j
+

(

j
j−δ
2

) (

1

2

)j
, if δ 6= 0 and (j + δ) is even;

0, otherwise.

(5)

which is equivalent to equations 22 and 26 from WALSH (2001). Substituting δ for i in equa-

tion 3, we can describe the probability distribution of the difference in number of repeats for two

microsatellite genes randomly drawn from a population that underwent a demographic expansion.

Now we will consider a non-recombining chromosome (or chromosome fragment) containing

L microsatellite loci. We define ∆ = {δ1, δ2, . . . , δL} as a vector which contains the differences in

number of repeats at each locus for a pair of chromosomes. Let kl equal the number of mutations
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at locus l, and let K equal the vector {k1, k2, . . . , kL} with properties:
∑L

l=1
kl = j; k1, . . . , kL

are non-negative integers and kl ≥ δl for any locus l. For each number of mutations j several K

vectors can be build, each of them with a probability given by the multinomial distribution:

P (K = {k1, . . . , kL}|j) =



















j!

k1!...kL!
pk1

1 . . . pkL

L , if
L

∑

l=1

kl = j;

0, otherwise.

(6)

where pl is the probability that a mutation hitting the chromosome hits locus l (i.e. pl is the ratio

between the l locus mutation rate, µl, and the global mutation rate for the set of loci, µg). Note that,

for the multilocus case, θ0, θ1 and τ are scaled to global mutation rate µg.

Assuming that mutational process is independent among loci, P (∆|K) can be calculated as the

product of P (δl|kl) (from equation 5) for all loci. From P (K|j) and P (∆|K) it is possible to

obtain P (∆|j) by integrating over all possible K vectors for j and ∆:

P (∆ = {δ1, . . . , δL}|j) =
∑

K={k1,...,kL}
∑L

l=1
kl=j

kl≥δl

P (K|j) P (∆|K) (7)

MATERIALS AND METHODS

Estimation of demographic parameters: In order to obtain estimates θ̂0, θ̂1 and τ̂ , we fit equa-

tion 3 to the distribution of pairwise differences by maximizing the pseudolikelihood of the empir-

ical sample. Let θ∗0, θ∗1 and τ ∗ be a combination of possible values for parameters θ0, θ1 and τ , we

can calculate the likelihood of θ∗0, θ∗1 and τ ∗, for a sample of two chromosomes from equations 3

and 7. For larger samples the pseudolikelihood of θ∗0, θ∗1 and τ ∗ is the product of the likelihoods

for all possible pairs in the sample. Code in C programming language for the calculation of pseu-

dolikelihood is available from the corresponding author. The combination θ∗0, θ∗1 and τ ∗ attaining

the highest pseudolikelihood value will be our point estimates θ̂0, θ̂1 and τ̂ , which we will call

maximimum pseudolikelihood using a model with homoplasy (MPH) estimates. Parametric boot-
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strap confidence intervals around those point estimates can be obtained as described by SCHNEIDER

and EXCOFFIER (1999).

Multinomial parameters (p1, . . . , pL) must be provided in order to obtain MPH estimates in the

multilocus case. When independent mutation rate estimates are available for every locus, multino-

mial parameters can be easily calculated by approximating the global mutation rate of the chromo-

some, µg, as the sum of all local mutation rates µ1, . . . , µL (this holds if µl ≪ 1 for every l). When

no mutation rate estimates are available, relative mutation rates can be inferred from allele size vari-

ance or homozygosity for loci evolving under a stepwise mutation model (CHAKRABORTY et al.,

1997; KIMMEL et al., 1998). Note that the sample from which variance in allele size or homozygos-

ity are estimated does not need to be restricted to the sample from which demographic inferences

will be withdrawn, as using additional datasets will increase the precision of those estimates. If

relative mutation rate estimates are obtained from the same dataset used for the demographic esti-

mation, the uncertainty in the rates estimates can be taken into account in the parametric bootstrap

procedure (see below).

In addition, two other methods to estimate demographic parameters of a population expansion

can be proposed for linked microsatellite data. For these we will ignore the problem of recurrent

mutation and we will use methods originally described for DNA sequence data evolving under

an infinite site model. In order to apply these methods, the Manhattan distance (DM =
∑L

l=1
δl)

will be used to describe differences between two chromosomes (instead of ∆). Assuming that

DM corresponds to the actual number of mutations (DM = ̂), maximum pseudolikelihood (MP)

estimates can be obtained fitting equation 2 to the distribution of pairwise DM of the data (this will

be equivalent to ROGERS and HARPENDING, 1992, approach). ROGERS (1995) proposed moment

based (M) estimates assuming that θ1 → ∞ (i.e. θ1 is very large). For this model θ̂0 =
√

v − m

and τ̂ = m− θ̂0, where m and v are the mean and variance of the number of mutations (DM in our

case) between all pairs of the sample (in practice, if v < m then θ̂0 = 0 and if m < θ̂0 then τ̂ = 0,

as in ROGERS, 1995).

It must be noted that, while these methods (M, MP and MPH) provide estimates for the parame-
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ters of a stepwise demographic expansion, they do not provide a formal test for the null hypothesis

of a constant neutral demography. Thus, previous to this kind of estimation some evidence of

expansion should be obtained, typically through a neutrality test.

Simulations: The accuracy of the three described methods (M, MP and MPH) has been evalu-

ated through coalescent simulations performed with SIMCOAL2 (LAVAL and EXCOFFIER, 2004).

Samples of 50 chromosomes were simulated from a population that underwent a step change in its

effective population size from θ0 to θ1 at time τ before present. Three types of chromosomes (single

locus, four loci and eight loci chromosomes, with uniform mutation rate across loci) and ages of the

demographic expansion ranging from τ = 1 to τ = 9 were considered. Effective population sizes

were between θ0 = 0.01 and θ0 = 2, and between θ1 = 1 and θ1 = 1000 (always θ0 < θ1). In order

to explore the bias and accuracy of the estimates 1000 replicates were run for several scenarios (i.e.

combination of parameters: number of loci, age of expansion and effective population sizes before

and after expansion). Output of simulations was analysed to obtain estimates θ̂0, θ̂1 and τ̂ for the

three methods (with the exception of θ̂1 for the moment method which assumes θ1 → ∞).

Pinus canariensis, a study case: P. canariensis is an endemic tree of the Canary Islands, whose

recent volcanic origin make them an interesting place to study dispersal and colonization processes

(JUAN et al., 2000). NAVASCUÉS et al. (2006) detected demographic expansion for P. canariensis

at each island using chloroplast microsatellites and considered these expansions likely linked to the

colonization process. However, they considered their estimates for the time of expansion to be bi-

ased because of the assumption of a model without homoplasy in the analysis. We have re-analyzed

the same data set to obtain estimates for the three methods described above (M, MP and MPH) of

the time of expansion for each island. This set comprises 497 individuals from four islands, Tener-

ife (280 individuals), Gran Canaria (145 individuals), La Palma (48 individuals) and El Hierro (24

individuals), genotyped for six microsatellite loci (Pt15169, Pt30204, Pt71936, Pt87268, Pt26081

and Pt36480; VENDRAMIN et al., 1996). This data has been previously published by GÓMEZ et al.

(2003), VAXEVANIDOU et al. (2006) and NAVASCUÉS et al. (2006). Demographic estimates were
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not produced for the sample from a fifth island, La Gomera (see NAVASCUÉS et al., 2006). Relative

mutation rates among loci were estimated using allele size variance for the whole dataset (including

La Gomera sample). For MP estimates confidence intervals were estimated by parametric bootstrap

by simulating 1000 samples under an infinite site model and demographic parameters θ̂0MP , θ̂1MP

and τ̂MP using MS (HUDSON, 2002). Similarly, for MPH confidence intervals parametric bootstrap

was performed simulating the evolution of a six microsatellite chromosome, with relative mutation

rates as estimated by allele size variance, and demographic parameters θ̂0MPH , θ̂1MPH and τ̂MPH

using SIMCOAL2 (LAVAL and EXCOFFIER, 2004). There are no reliable mutation rate estimates

for chloroplast microsatellites. However, in order to compare τ̂ (in mutation units) with dated geo-

logical or biogeographical events, mutation rates in the range 10−5–10−4 mutations per generation

per locus (and 100 years per generation, PROVAN et al., 1999; NAVASCUÉS et al., 2006) can be

used.

RESULTS

Pseudolikelihood profile: Figure 1 shows the pseudolikelihood profiles of the demographic pa-

rameters for three example simulated datasets. Pseudolikelihood profiles for τ present narrow bell

shapes with the maxima within the proximity of the true value (figure 1a). However, the behavior

is quite different for the population size parameters θ0 and θ1. For θ1 > 100 the pseudolikelihood

profile often takes an S-shape (figure 1c), and for θ0 < 1 it often takes an inverted-S-shape (fig-

ure 1b). Therefore it is not possible to distinguish very large final population sizes or very small

initial population sizes. By increasing the final effective population size (given a fixed τ , note

that time is scaled to mutation rate) a threshold is reached from which a coalescent event after the

expansion has an extremely low probability and, thus, the shape of the genealogy is the same (ter-

minal branches of length τ ) for any θ1, and the average number of mutations accumulating after the

expansion reaches a maximum. By decreasing the initial effective population size another thresh-

old is reached from which a mutation event has an extremely low probability, getting scenarios

where no mutations occur before the expansion, regardless of the shape of the genealogy. These
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characteristics of the pseudolikelihood profile are helpful to understand the results of the accuracy

and bias in the demographic estimates. See Supplemental Material for further discussion about the

pseudolikelihood profile.

Bias and accuracy of estimates: The estimation of the effective population sizes before and after

the expansion shows a poor performance with biases of some orders of magnitude (figure 2, note

logarithmic scale). Only in one case (θ1 = 10, figure 2b) the estimates are apparently better, but

it seems to be for a very narrow range of the parameter values and it still show a tendency for the

overestimation of the parameter. A partial explanation of this can be found looking at the shape of

the pseudolikelihood profiles of θ∗0 and θ∗1 when they take extreme values. In addition, there seems

to be a tendency for pseudolikelihood maxima to be in combinations of extreme values for both θ∗0

and θ∗1 pushing the estimates to have big biases for these two parameters (see, for instance, point

estimates for simulations represented in figure 1). Conversely, estimates for the time of expansion

are more accurate. Figure 3 presents results for simulations with ages of expansion τ = 1 and

τ = 7. Some bias, which increases with the age of expansion, is evident for the two methods that

do not account for homoplasy (M and MP). By estimating the number of mutations between two

chromosomes by the differences in number of repeats (i.e. DM ) there is a proportion of back and

parallel mutations that is missed. Therefore, a younger time of expansion fits well the estimated

number of mutation, as it leaves less time for mutations to accumulate. The method that uses a

model with homoplasy (MPH) shows a clear improvement over the other two methods, particularly

when several linked loci are considered. The reduction of the bias comes with an increase in

the variance of the estimator; however, the mean squared error (MSE) for the MPH method was

similar or lower than in the other methods (for instance, for simulation of τ = 7 and eight loci,

M̂SE(τ̂M) = 20.23, M̂SE(τ̂MP ) = 10.17 and M̂SE(τ̂MPH) = 9.15; and for simulation of τ = 1

and eight loci, M̂SE(τ̂M) = 0.16, M̂SE(τ̂MP ) = 0.15 and M̂SE(τ̂MPH) = 0.23). These results

suggest that using a more complex analysis that includes a mutational model for microsatellites

can improve the estimates, but only when there has been substantial homoplasious mutation in the

sample (i.e. older expansions).
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Pinus canariensis: Applying these methods we obtained estimates of the time of expansions

(i.e. putative time of colonization) for the P. canariensis (table 1). For the MPH method, relative (to

total) mutation rates were estimated from allele size variance, giving: pPt15169 = 0.070, pPt30204 =

0.140, pPt71936 = 0.530, pPt87268 = 0.210, pPt26081 = 0.048 and pPt36480 = 0.002. Regardless of

the method considered, the geologically older Gran Canaria and Tenerife present older expansions

than La Palma and El Hierro in the point estimates. However, taking into account the confidence

intervals, the differences in time of expansion among islands are similar in magnitude than the error

of the estimates, which makes difficult the interpretation of the results. The major source of error

can be attributed to the samples from El Hierro and La Palma as they have a significantly lower

sample size. When the analysis takes into account recurrent mutation (by assuming the stepwise

mutation model), older times of expansion are obtained, as predicted by NAVASCUÉS et al. (2006),

except for the island of La Palma. In the light of the results of our simulated data, getting lower

estimates in the MPH method that in the MP method is rare but is more frequent for very recent

expansion where MPH method can have slightly higher error. Despite the uncertainty around the

expansion age estimates and mutation rate of chloroplast microsatellites, the results obtained are

roughly congruent with the geological history of the archipelago and with the phylogeography

knowledge of the pine specific parasite Brachyderes rugatus (see table 1, EMERSON et al., 2000;

NAVASCUÉS et al., 2006). However, the analysis seems to gain little from the use of a mutational

model due to the young age of the expansions.

DISCUSSION

This work presents an analytical framework to describe the evolution of a set of linked microsatel-

lites between a pair of individuals. WALSH (2001) presented a similar description scaling the

process to clock time (i.e. generations). Because of scaling to mutation rate is necessary for demo-

graphic inference, a different approach than the one used by WALSH (2001) was used to account

for the heterogeneity in mutation rates (i.e. equation 7). As long as relative mutation rates across

loci are available, equation 7 can be employed to the analysis of sites evolving under mixed models.
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Therefore, it is straightforward to include single nucleotide polymorphisms [for instance, consid-

ering them as unique event polymorphisms where P (i = 0; j = 0) = 1 and P (i = 1; j = 1) = 1]

or microsatellites evolving under the geometric step mutation model (following WATKINS, 2007).

Statistical inference from linked microsatellite data can be performed by coalescent MCMC

Bayesian (implemented in BATWING software, WILSON and BALDING, 1998; WILSON et al.,

2003) and approximate Bayesian (i.e. without likelihoods, PRITCHARD et al., 1999) methods.

These are computationally intensive approaches but that are changing the way population genetics

analysis is currently done (BEAUMONT and RANNALA, 2004; BEAUMONT, 2004). This applica-

bility of state of the art statistics contrasts to the lack of simple summary statistics specific to linked

microsatellites. Using simple statistics is an effective way to describe the genetic diversity of a sam-

ple and incorporating mutational models can make them more informative. We demonstrate their

usefulness for characterizing demographic expansions, but the same framework could be extended

to further statistics, such as neutrality test or estimation of identity by descent probabilities, with

linked microsatellites. The development of a neutrality test would be particularly interesting since

such a test should be performed before considering the demographic inference under the model

of expansion described in this work. A scheme for this could be the estimation of the parameter

θ of the constant size model (via BATWING, WILSON and BALDING, 1998, or by maximazing

the pseudolikelihood, equation 4), and the use of simulations under the null model to obtain the

distribution of some statistic sensitive to demographic expansion, such as the number of haplotypes

(FU, 1997; NAVASCUÉS et al., 2006).

The method for demographic inference proposed (MPH) does not substitute the above men-

tioned coalescent MCMC Bayesian approach (WILSON et al., 2003), which can also be used to

characterize demographic expansions; however, it requires less computation time, especially for

data sets with large number of individuals. It must be noted that this computation advantage is only

attained when a low number of loci is typed. This is because in our approach we integrate over all

possible ways to distribute j mutations in l loci (equation 7), which becomes a huge number when

j is large and many loci are considered. This increases greatly the computation time, particularly
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for highly diverse samples. Nevertheless, most published works on chloroplast or Y-chromosome

microsatellites use a number of loci within the limits of computationally ‘affordable’ (which we

suggest around ten, depending on the machine used and the diversity of the sample analysed).

To conclude, the present work extends the methods of demographic inference based in the distri-

bution of pairwise genetic differences to the case of linked microsatellite data. A statistical method

to estimate the demographic parameters of a population expansion (i.e. time and magnitude) is de-

veloped to be applied on datasets where there is some evidence for demographic expansion (i.e.

through a neutrality test). This method assumes that microsatellites follow a stepwise model for

mutation to account for homoplasious mutations. This approach improves the estimates of the age

of expansion by reducing their bias when the event is relatively old, however little is gained by its

application to younger expansion as can be seen both with the simulated and the empirical data

analysed.
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Table 1: Age of expansion estimates for Pinus canariensis with three methods

Island τ̂M τ̂MP (90%CI) τ̂MPH(90%CI) geological age weevil colonizationb

Gran Canaria 1.79 1.80(1.24–4.47) 1.98(1.22–2.30) 5.5–3 MYAa >2.56 MYA

Tenerife 1.98 2.38(1.42–2.95) 3.11(1.69–7.14) 3.5–0.2 MYAa 1.89–2.56 MYA

La Palma 0.78 0.80(0.44–2.49) 0.49(0.14–0.99) 2 MYA 1.58–2.00 MYA

El Hierro 1.26 1.26(0.43–1.75) 1.61(0.60–2.55) 1 MYA 1.00 MYA

a for Gran Canaria and Tenerife the geological age of the last major volcanic period is reported

(JUAN et al., 2000).

b colonization times estimated for Pinus canariensis specific parasite Brachyderes rugatus (EMER-

SON et al., 2000).
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Figure 1: Pseudolikelihood profiles for three simulated dataset. Pseudolikelihood was calculated

each time fixing two of the parameters to their true values and letting the third one to vary. Values

of pseudolikelihood represented are relative to the maximum value obtained. Data for 50 chro-

mosomes with four microsatellite loci were simulated with parameters: (i) τ = 9, θ0 = 0.01 and

θ1 = 100 (continuous line), (ii) τ = 7, θ0 = 0.01 and θ1 = 1000 (dashed line) and (iii) τ = 5,

θ0 = 2 and θ1 = 1000 (pointed line). Note that point estimates (maximum psudolikelihood) are, for

these three simulations: (i) τ̂ = 6.7, θ̂0 = 7.6×10−4 and θ̂1 = 99835, (ii) τ̂ = 6.6, θ̂0 = 1.4×10−4

and θ̂1 = 2.1 × 1012 and (iii) τ̂ = 6.7, θ̂0 = 0.08 and θ̂1 = 5.8 × 1012.
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Figure 2: Box-plots showing estimates for the logarithm of population sizes before and after the

expansion, log10(θ̂0) and log10(θ̂1), for the MPH method. Datasets were generated by simulation

of samples of 50 individuals typed at four linked microsatellite loci. (a) log10(θ̂0) estimates for

simulations with demographic parameters τ = 7, θ1 = 10 and six different values of θ0. (b)

log10(θ̂1) estimates for simulations with demographic parameters τ = 7, θ0 = 0.01 and seven

different values of θ1. Median is marked with thick black line, box delimits first and third quartiles

and whiskers extend to 5% and 95% percentiles. Horizontal dashed line on (b) marks θ1 = 10 for

reference. Distribution for each scenario is build from 1000 replicates.
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Figure 3: Box-plots showing estimates of time of expansion, τ̂ , for the three methods evaluated

on six simulation scenarios. The six simulated scenarios differ in the number of loci [one for (a)

and (d), four for (b) and (e) and eight for (c) and (f)] and the age of the expansion [τ = 1 for

(a), (b) and (c); τ = 7 for (d), (e) and (f)]. Median is marked with thick black line, box delimits

first and third quartiles and whiskers extend to 5% and 95% percentiles. Distribution for each

scenario is build from 1000 replicates. Horizontal dashed lines mark the true value of parameter τ .

M: moment based estimates (ROGERS, 1995); MP: maximum pseudolikelihood estimates using a

model without homoplasy (equivalent to ROGERS and HARPENDING, 1992) and MPH: maximum

pseudolikelihood estimates using a model with homoplasy.
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Pseudolikelihood vs. likelihood

Pseudolikelihood is a statistic used as an approximation of the likelihood by the product
of non-independent likelihoods. Thus, one may ask how much this approximation affects
the inference. Likelihood and pseudolikelihood surfaces for the different parameters were
compared to evaluate the behavior of the pseudolikelihood function under constant size and
stepwise expansion models.

The pseudolikelihood profile of the parameter θ = 2Nµ for a given dataset under the
constant population size model can be straightforward calculated from equation 4; the like-
lihood profile can be estimated through the MCMC algorithm implemented in the software
BATWING (WILSON et al., 2003). Although this software is designed within the Bayesian
statistical framework, setting an improper prior for θ [uniform(0,∞)] will give a posterior
probability estimate proportional to the likelihood. As coalescent scaling in BATWING is
set to the mutation rate of a single locus, while our scaling is to the global mutation rate of
the chromosome, rescaling can be approximated as θ ≈

∑
L

l=1
θBATWING.

Datasets of 50 chromosomes sampled from a constant size population (θ = 10) typed
at four linked microsatellites were simulated with SIMCOAL2 (LAVAL and EXCOFFIER,
2004). The pseudolikelihood profile was calculated from equation 4 in main article and
the likelihood profile was obtained from BATWING (burn-in of 20 000 steps plus chain of
200 000 steps) for each simulation. Both pseudolikelihood and likelihood curves presented
maximum values around the true value of the parameter θ (figure S1). The main difference
between them consists on the narrower shape for the pseudolikelihood curve. While the
likelihood curve might be used for the estimation of confidence intervals, the pseudolikeli-
hood profile is inadequate for this purpose as it would give too narrow intervals.

Currently, there is no MCMC implementation of the stepwise demographic expansion
for the estimation of likelihood curves (BATWING uses a model of exponential expansion,
WILSON et al., 2003). However, it is possible to calculate a true likelihood from our model
if independent pairs of chromosomes are sampled from the same demographic history. Two
scenarios can be imagined for this sampling scheme. Under the first one, two individuals
are sampled from the population and are typed at different independent (i.e. unlinked) loci,
each one mutating at the same rate and composed by the same number of linked microsatel-
lite sites. The second scenario would consist on independent sampling (‘with replacement’)
of several pairs of individuals from the same population. Although both scenarios are un-
realistic, such sampling scheme allow us to compare the behavior of the pseudolikelihood
function with the likelihood.

In order to generate this type of data we simulated 1225 samples of two individuals,
typed at four linked microsatellites evolving under the stepwise mutation model and with
the same mutation rate, with SIMCOAL2. The demographic scenario was an expansion
with τ = 7, θ0 = 0.01 and θ1 = 10. Likelihoods for each pair are computed from equa-
tion 3 and their product correspond to a true likelihood. In order to obtain an equivalent
pseudolikelihood, a sample of 50 individuals (which gives 1225 pairs for the computation
of the pseudolikelihood) were also simulated under the same demographic scenario of ex-
pansion. Figure S2 presents the obtained curves for four simulations of each type (i.e. 1225
independent pairs for likelihood, 1225 pairs from 50 individuals for the pseudolikelihood).
To obtain the curve for each parameter the remaining two parameters were set to their true
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value. The shape of the curves are similar for likelihood and pseudolikelihood (see also
figure 1 in main article) but likelihood maxima are located closer to the true values of the
parameters.

In conclusion, the (maximum) pseudolikelihood approach seems to have an adequate
performance for obtaining point estimates. However, the amplitude of the curve correspond
to that of a sampling scenario of a larger amount of data, and no confidence intervals should
be produced directly from the pseudolikelihood profile.

Pseudolikelihood vs. sum of squared differences

The pseudolikelihood inference approach presented in this work is an extension of the
method developed by SCHNEIDER and EXCOFFIER (1999). The main difference between
them is the mutational model, since SCHNEIDER and EXCOFFIER (1999) were interested
in DNA sequence data while this work targets microsatellites. In both cases a mutational
model without homoplasy can be assumed: infinite site model (ISM) for DNA sequence
or RFLP data, and the unnamed model which assumes that Manhattan distance (DM ) cor-
responds to the number of mutation for microsatellites. For both models can be described
with equations 1 and 2 in main article as long as appropriate distance metric is employed
in the different types of markers.

Another difference is the statistic employed for the fitting of the demographic param-
eters. SCHNEIDER and EXCOFFIER (1999) obtained the demographic estimates by mini-
mizing the sum of squared differences (SSD) between the observed and expected mismatch
distributions. In fact, for a mutational model with no recurrent mutations using any SSD or
pseudolikelihood would be largely equivalent and should produce similar results.

We have evaluated our implementation of the MP method (which follows a model with-
out homoplasy) by comparing its results with the approach using SSD as implemented in
Arlequin 3.0 (EXCOFFIER et al., 2005). Thousand simulations of 50 individuals typed at
four linked microsatellites were run with demographic parameters: τ = 7, θ0 = 0.01

and θ1 = 10. For each simulated dataset, MP estimates were obtained as described in
the Materials and Methods section of main article. Estimates using SSD were obtained
with Arlequin as described in NAVASCUÉS et al. (2006). It must be noted that Arlequin
is originally designed to compute the statistics under the ISM for DNA sequence or RFLP
data. Nevertheless, microsatellite data can be coded in a non standard way (as RFLP, see
NAVASCUÉS et al., 2006) so the computation of pairwise differences between haplotypes
correspond exactly to DM , thus, providing a genetic pairwise distribution identical to the
one used in the MP estimation.

The results of this comparison are shown in figure S3. Estimates using either of the
statistics seem to be congruent in general for τ and for some range of the values of θ0 and
θ1. The big differences observed must be because the particular characteristics of both im-
plementations. One clear difference is some limits in the values of the parameters θ0 and
θ1 for Arlequin since, beyond certain threshold, estimates get a fixed value. Other imple-
mentation differences affecting the estimates can be due to the precision of calculations or
the optimization algorithm.
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Figure S1: Relative likelihood and pseudolikelihood of the parameter θ = 2Nµ for three
simulations (a, b and c) of a constant size population (θ = 10). A sample of 50 chro-
mosomes was simulated, typed at four linked microsatellites evolving under the stepwise
mutation model and with the same mutation rate. Likelihood surfaces (dashed lines) were
estimated with BATWING using improper prior on θ [uniform(0,∞)]. Pseudolikelihood
(continuous line) was calculated from equation 4. Values represented are relative to the
maximum value obtained for each dataset.
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Figure S2: Relative likelihood and pseudolikelihood of the parameter τ , θ0 and θ1. Four
simulation of 1225 independent pairs (a, b, c and d; dashed lines represent their likelihood
profiles) and four simulations of 50 individuals (α, β, γ and δ; continuous lines represent
their pseudolikelihood profiles) are represented. To obtain the curve for each parameter
the remaining two parameters were set to their true value. Values represented are relative
to the maximum value obtained for each dataset. Demographic scenario consisted on a
population expansion with parameters τ = 7, θ0 = 0.01 and θ1 = 10.
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Figure S3: Relationship between point estimates obtained by maximization of the pseudo-
likelihood or by minimization of the sum of squared differences. Thousand simulations of
50 individuals typed at four linked microsatellites are presented. Demographic parameters
were: τ = 7, θ0 = 0.01 and θ1 = 10. For each dataset, point estimates of the demographic
parameters were obtained by: (i) maximization of pseudolikelihood (MP) and (ii) mini-
mization of sum of squared differences (SSD) between expected and observed mismatch
distribution (as implemented in Arlequin 3.0, EXCOFFIER et al., 2005).
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