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On computing isogenies of unknown degree

We present an extension to Couveignes algorithm that, given two elliptic curves E and E ′ , permits to compute all isogenies of degrees up to a certain bound N in time Õ(N 2 ).

It is well known that two curves having the same number of points over a finite field are isogenous, however this doesn't say anything on the degree of the isogeny connecting them. Given two elliptic curves E and E ′ defined over F q and having the same number of points, we want to find the smallest degree isogeny between them.

The simplest solution is to take any algorithm computing a fixed degree isogeny and try all the degrees until an isogeny is found. If ℓ is the degree of the smallest isogeny, this of course adds a factor ℓ to the complexity of any polynomial time algorithm.

Couveignes' algorithm [START_REF] Couveignes | Computing ℓ-isogenies using the p-torsion[END_REF], however, can be easily adapted to solve this problem at no additional cost. This short paper is not self-contained: we make references to the variants and improvements to Couveignes' algorithm given in [START_REF] Feo | Fast algorithms for computing isogenies between ordinary elliptic curves in small characteristic[END_REF].

Observe that in Couveignes' algorithm, apart for the choice of k, the computation of E[p k ] and the polynomial interpolation step do not depend at all on ℓ. The degree of the isogeny only comes into play in the last part of the Cauchy interpolation, that is the rational function reconstruction. We study more in detail this last step.

Rational Function Reconstruction Rational function reconstruction takes as input a degree n polynomial T , a polynomial A of degree less than n and a target degree m n and outputs the unique rational function such that

A ≡ R V mod T and deg R < m, deg V n -m.
This is done by computing a Bezout relation AV + T U = R with the expected degrees via an XGCD algorithm. If a classical XGCD algorithm is used, one simply computes all the lines

R 0 = T, U 0 = 1, V 0 = 0, R 1 = A, U 1 = 0, V 1 = 1, R i-1 = Q i R i + R i+1 , U i+1 = U i-1 -Q i U i , V i+1 = V i-1 -Q i V i (1) 
and stops as soon as a remainder R i+1 with deg R i+1 < m is found. If a fast XGCD algorithm as [START_REF] Zur Gathen | Modern Computer Algebra[END_REF]Algo. 11.4] is used, one directly aims at the two lines

R h-2 = Q h-1 R j-1 + R h R h-1 = Q h R h + R h+1 (2) 
such that deg R h+1 < m deg R h without computing the intermediate lines.

When looking for an ℓ-isogeny, one simply sets m = ℓ+1. Observe that if the algorithm doesn't return a rational fraction R V with deg R = ℓ and deg V = ℓ-1, then no such fraction congruent to A modulo T exists.

If ℓ is not a priori known, we can still use the fact that a separable isogeny with cyclic kernel must have deg

R = deg V + 1. In fact if we suppose R = R i and V = V i , then deg T = deg V i+1 + deg R i , deg R i -deg V i = deg R i-1 -deg V i+1 implies deg T + 1 = deg R i-1 + deg R i . Hence, if A is congruent to an ℓ-isogeny with ℓ = deg T 2 -t for some t 0, then deg R i-1 = deg T 2 + t + 1 > deg T 2 -t = deg R i . (3) 
Thus we can recover any isogeny having degree less than deg T Recognising an isogeny Once we have a rational fraction with the required degree, we have to test if it really is an isogeny. In order to understand how often we have to make this test, we introduce some more terminology. Let n i = deg R i , we call (n 0 , . . . , n r ) the degree sequence of A and T ; a degree sequence is said normal if n i = n i+1 + 1 for any i.

Proposition 1. Let f, g ∈ F q [X] be uniformly chosen random polynomials of respective degrees n 0 > n 1 > 0 and let (n 0 , n 1 , . . . , n r ) be their degree sequence. For 0 i < n 1 define the binary random variables X i = 1 ⇔ i ∈ (n 0 , n 1 , . . . , n r ), then the X i are independent random variables and Prob(X i = 0) = 1 q .

Proof. Pairs of polynomials f, g are in bijection with the GCD-sequence (R r , Q r , . . . , Q 1 ) constituted by their GCD and the quotients of the GCD algorithm. To each such sequence is associated a degree sequence

(n 0 , n 1 , . . . , n r ) = deg R r + r i=1 deg Q i , . . . , deg R r + 1 i=1 deg Q i , deg R r ,
thus for any given degree sequence there are (q -1)q n0-n1 • (q -1)q n1-n2 • • • • • (q -1)q nr = (q -1) r+1 q n0 GCD-sequences. Let I and O be two disjoints subsets of {X i }, the number of GCD-sequences such that X ∈ I ⇒ X = 1 and X ∈ O ⇒ X = 0,

n1-#I-#O s=0 n 1 -#I -#O s (q -1) s+2+#I q n0 = (q -1) 2+#I q n0 q n1-#I-#O .
There are (q -1) 2 q n0 q n1 pairs of polynomials of degrees n 0 , n 1 , thus

Prob {X = 1 | X ∈ I}, {X = 0 | X ∈ O} = q -1 q #I 1 q #O . (4) 
The claim follows.

Degree sequences associated to isogenies are in general not normal, in fact if [START_REF] Zur Gathen | Modern Computer Algebra[END_REF] shows that there must be at least a gap of degree 2c in the degree sequence. Heuristically, we can expect that if the polynomial A doesn't correspond to an isogeny, then A and T act like random polynomials, thus, by the proposition above, the probability that A looks like an isogeny of degree ℓ deg T 2

ℓ deg T 2 -t, equation ( 
t is less than 1 q 2t . Therefore, by choosing an appropriate t ∈ O(log q p k ), our variant can find any isogeny of degree less than p k -1 4 -t at the same cost of one run of Couveignes' algorithm.

No other method for computing isogenies is known to have a similar generalisation. This makes Couveignes' algorithm a rather surprising exception and we wonder whether this simple idea can find interesting applications.

2 using either a classical or a fast XGCD algorithm setting m = deg T 2 + 1 .
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