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The use of electrostatic ion beam traps require to set many potentials on the electrodes (ten in
our case), making the tuning much more difficult than with quadrupole traps. In order to obtain
the best trapping conditions, an analytical formula giving the electrostatic potential inside the trap
is required. In this paper, we present a general method to calculate the analytical expression of the
electrostatic potential in any axisymmetric set of electrodes. We use conformal mapping to simplify
the geometry of the boundary. The calculation is then performed in a space of simple geometry.
We show that this method, providing good accuracy, allows to obtain the potential on the axis as
an analytic function of the potentials applied to the electrodes, thus leading to fast, accurate and
efficient calculations. We conclude by presenting stability maps depending on the potentials that
enabled us to find the good trapping conditions for O4+ at much higher energies than what has
been achieved until now.

PACS numbers: Valid PACS appear here

I. INTRODUCTION

In the last few years a variety of electrostatic devices
for storing and handling low energy ion beams have been
designed and operated. Electrostatic storage rings [1–3],
cone traps [4], Orbitraps [5], and electrostatic ion beam
traps (EIBT)[6, 7] are now used to study atomic and
molecular metastable states or molecular fragmentation,
photodissociation or mass spectrometry (see, e.g., Ref.
[8] for a review). The design and study of these instru-
ments relies nowadays mainly on computer simulations.
An EIBT, as designed by D. Zajfman and collaborators
[6, 9], and independently by W.H. Benner [7], is a purely
electrostatic trap composed of two electrostatic mirror–
Einzel lens combinations, as represented on Fig. 1. This
trap has many interesting features [10] : on one hand, it
offers trapping of energetic particles (keV) in a well defi-
ned direction and on the other hand it is small, relatively
inexpensive and has a field-free region where ions move
freely and where measurements can easily be performed.
It can also be used as a moderate-resolution mass spec-
trometer [11].
In this paper, our aim is to provide a method enabling

the determination of analytical solution to the electro-
static potential in any axially symmetric configuration
using the elegant method of conformal mapping. We will
present the method on the EIBT, but it can be used on
other sets of electrodes.
The main reason for quadrupole traps’ extensive use

in precision experiments, lies in the fact that their fields
can easily be described by an analytical formula. It en-
ables a deeper understanding of many subtle phenomena
like frequency shifts due to space charge. The inventors of
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the ion trap resonator used either a matrix approach [11]
or numerical simulations [12]. The former are useful for
acquiring a qualitative understanding, but cannot pro-
vide detailed insight in the operating conditions, while
the later may not provide enough numerical accuracy to
follow the particles during several tens of thousands of
oscillations inside the trap, or be too time and resources
consuming to explore many different potential configu-
rations. The tracking of particles in the EIBT is rather
difficult because of the combination of a long free-flight
zone between the mirrors and of two areas in which the
particles slow down, stop and reverse their course on very
short distances, while being subjected to strong, rapidly
varying, electrostatic fields. The simulation time becomes
rapidly a limitation when many potential configurations
must be studied while looking for new operating condi-
tions. Instead of two tuning parameters as in a Paul trap,
we have to fix the potentials of five electrodes in a sym-
metric configuration (ten when each side of the trap is set
differently). The space to explore is therefore too large for
numerical simulations in which the field is determined by
usual finite element methods, where one has to make a
different calculation for each set of parameters. Moreover
numerical errors accumulate and perturb the trajectory
of the particle over long trapping times. In the sequel, we
will show how to find a formula, depending only on these
parameters, which is able to give the electrostatic poten-
tial with good accuracy. We will also show some practical
applications.
Before we present our method, we will just review two

ways of calculating electrostatic potentials and explain
why they are difficult to use in our case.
Green’s functions often yield analytical results because

they allow reduction of the solution of the Dirichlet pro-
blem to the calculation of the following integral :

V (M0) = −ǫ0
∫

S

US(M)
∂G(M,M0)

∂n
dS,

mailto:alexandre.vallette@spectro.jussieu.fr
mailto:paul.indelicato@lkb.ens.fr


2

Figure 1: (Color online) Overview of the EIBT. Five po-
tentials are applied to the electrodes, the other are grounded.
The injection of the bunch of ions is performed when all the
electrodes on one side of the trap are grounded. The potentials
are raised before the bunch has time to come back. This trap
can be used to make metastable state lifetime measurements,
hence the photomultiplier tube.

whereM0 is the point where the potential is evaluated, ǫ0
is the vacuum permeability, n parametrizes the direction
orthogonal to the surface, US(M) is a given potential dis-
tribution over the surface S and G is a Green’s function.
However, Green’s functions are only known for simple
geometries, which limits the analytical approach.
A very interesting method called quasi-Greens’ func-

tions has been developed in [13]. This method is based
on the division of a complicated geometry into different
simple shapes. The main drawback is that the final ex-
pression is given as an infinite sum whose coefficients
have no closed form. In practice, the given expression,
although analytical, is much more complicated than the
one we will present in this article.
Another technique, is the charge ring method [14–17].

The integral form of the Poisson equation is applied to
N rings representing the geometry. If N is large enough,
we get a set of linear equations Φ = AQ , where Φ is the
potentials applied to the rings, Q is the charge induced
on each ring and A is a matrix depending only on the
geometry. Once the inverse of A has been determined,
the charge of each ring is know and the potential at a
point r that is not on the boundary is given by :

V (r) =

N
∑

i=1

qi
4πǫ0si

∫

si

dri
|r− ri|

.

where si is the area of ring i. Hundreds of rings a usually
provide a accuracy of the on-axis potential of the order
of 10−4 (one order of magnitude better than the method
proposed here, see Sec. III A). However, it is at least one
order of magnitude slower to compute : even though the
inverse of A is calculated only once for a given geome-
try, one has to evaluate numerically N integrals, which
is much longer than to evaluate common mathematical
functions. We have implemented both methods on the
same geometry and the conformal method was 64 times
faster than the ring method. The choice between those

two techniques will rely on the need to improve accuracy
or speed.
This article is organized as follows : in Sec. II, we

present an approximate method to obtain the analytical
potential of an axisymmetric set of electrodes, having the
same radius. In Sec. III, we explain how to use Schwarz-
Christoffel method to alter the metric and obtain a set
of electrodes with the same radius and in Sec. III A we
solve the problem in this new space using the method of
section II. Section III B contains a summary of the key
steps of the whole method as well as a discussion on the
improvement of the accuracy. Finally, in Section IV we
show that the dynamics of the ions in the EIBT is go-
verned by an Hill’s equation and we present a stability
map showing what experimental parameters lead to an
efficient trapping.

II. SEPARATION OF VARIABLES AND

BERTRAM’S METHOD

We start from the Laplace equation in cylindrical co-
ordinates :

∇2V =
∂2V

∂r2
+

1

r

∂V

∂r
+
∂2V

∂z2
, (1)

where V = V (r, z) is the potential at radius r from the
axis and at a distance z from the center of the trap.
Using the method of separation of variables, i.e., assu-
ming V (r, z) = R(r)Z(z), we obtain [18] :

d2Z

dz2
− k2Z = 0

r2
d2R

dr2
+ r

dR

dr
+ r2k2R = 0, (2)

where k is a real constant. (2) is a particular case of the
general Bessel equation [19], whose solution is a Bessel
function of first kind : J0(kr). We can use the general
solution given by a Fourier-Bessel series of the form :

V (r, z) =
1

2π

∫ +∞

−∞
a(k)J0(kr)e

ikzdk, (3)

enabling us to take into account the boundary conditions.
Thus, if the potential at some radius R is known as a
function of z, then a(k) can be found by means of the
Fourier transform :

a(k)J0(jkR) =

∫ +∞

−∞
V (R, z)e−ikzdz. (4)

Given that any solution of the Laplace equation in a
cylindrical symmetry is also of the general form :

V (r, z) =

+∞
∑

n=0

(−1)n

n!222n
r2nV (2n)(0, z), (5)

it is sufficient to determine V (0, z) along the axis.
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Figure 2: (Color online) The line represents the analyti-
cal function and the dots is the numerical solution achieved
with the finite elements software COMSOL Multiphysics R©
(top). The difference between the two previous curves (bot-
tom). In this case, we applied Bertram’s method replacing R
by a function of z. Even though the function is a polynomial
going smoothly from Rz to R, we see that the error is large
(-258V) near z = −0.15 where the transition occurs. Here
{V1 = 4513 V, V2 = 4836 V, V3 = 3112 V, V4 = 1642 V, Vz =
, 3941 V }.

Following Bertram [20], we assume that if we know
the potential V (R, ζ) at a distance R from the axis then,
the potential on the axis is well approximated by the
formula :

V (0, z) =
ω

2R

∫ +∞

−∞
V (R, z − ξ)sech2(

ω

R
ξ)dξ, (6)

where the constant ω = 4A0 = 1.3152, and A0 is the first
coefficient of the following development [20] :

1

J0(jk)
=

+∞
∑

n=0

An cos
nk

2
. (7)

In our case, if all the electrodes had the same ra-

dius, we could use directly this method, taking V (R, ζ)
as a piecewise linear function of the set of potentials
{V1, V2, V3, V4, Vz}. However, since the radius of the first
four electrodes is R = 8mm, different from the Einzel
electrodes where Rz = 13mm, this method does not work
in the area where the radius changes. We tried to in-
troduce a smooth function R(z) in the integral, but the
difference between those results and a finite element so-
lution always shows a large discrepancy as illustrated on
Fig. 2.
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Figure 3: (Color online) A section of one side of the trap : the
crosshatched areas are the electrodes, the continuous lines are
the equipotentials, the domain A is surrounded by a dashed
border and the circled points represent the zi points, which
define our boundary conditions.

The previous method is rather simple and efficient to
find the potential. Its only limitation is the need to have
identical radii for all electrodes. In the next section, we
will show how to use conformal mapping to place our-
selves in the space where the borders have a constant
radius.

III. CONFORMAL MAPPING

Conformal mapping is widely used in applied physics
and chemistry. One can cite the design of airfoils : the
Joukowsky transformation [21] reduces the study of the
laminar flow on a complicated profile to the much ea-
sier study of a cylinder in the transformed flow, or the
study of diffusive flow at micro-ring electrodes in ana-
lytical chemistry [22, 23]. Applications in electrostatic
potential determination are also known (see, e.g., [24–
27]). However, all these works use conformal mapping in
a geometry where one dimension can be considered in-
finite. A section perpendicular to this infinite dimension
is then mapped. In this paper, we show that conformal
mapping can be used to find the electrostatic potential in
a space limited axisymmetric geometry by mapping the
plane parallel to the axis and rotating it.
In order to use the results of II, the first step is to find

the holomorphic function that maps section A, described
on Fig. 3, on a rectangle. Holomorphic functions are of
great interest because angles are conserved under those
transformations : equipotential lines stay orthogonal to
field lines.
We first use the Schwarz-Christoffel transformation

[28] to map domain A, parametrized by z = x+ iy onto
the upper half plane where t = r + is, as represented on
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Figure 4: (Color online) The three working planes. The Z-
plane is the physical plane corresponding to domain A on
Fig. 3. The T -plane is an intermediate step due to the fact
that the Schwarz-Christoffel method always maps a polygon
on the upper complex plane where Im(t) = s > 0. The W -
plane is the calculation plane where we can apply the method
of section II since it can be seen as the section of a constant
radius cylinder. The arrows on the border represent the three
mapping used to transform one plane to the other.

Fig. 4 :

dz

dt
= f ′(t) = K1t

−1(t− a)1/2(t− b)−1/2,

so that :

z = f(t) = K1

∫ t

0

(t′ − a)1/2

t′(t′ − b)1/2
dt′ +K2

where K1 and K2 are constants to be determined. With
an appropriate choice of the origin (f(0)=0), we have
K2 = 0. For K1, we use the boundary conditions : going
from point A to point E in the Z-plane (see Fig.4) cor-
responds to a large semicircle of radius ρ → +∞ and θ
from 0 to π in the T -plane :

iRz = K1

∫ π

0

(ρeiθ − a)1/2

ρeiθ(ρeiθ − b)1/2
iρeiθdθ.

When taking the limit ρ→ +∞, this reduces to :

iRz = K1

∫ π

0

(ρeiθ)1/2

ρeiθ(ρeiθ)1/2
iρeiθdθ = K1iπ,

and so K1 = Rz/π. The second boundary condition,
going from B to B′ in the Z-plane, is expressed by inte-
grating around BB′ with ρ → 0 and θ going from 0 to

π :

iR =
Rz

π

∫ π

0

(ρeiθ − a)1/2

ρeiθ(ρeiθ − b)1/2
iρeiθdθ

=
Rz

π

√

a

b

∫ π

0

idθ

= iRz

√

a

b

Choosing a = 1 only fixes the origin in the T -plane, and
it implies

√
b = Rz

R . Finally, we make the substitution :

p =

√

t′ − 1

t′ + 1

and the integration gives :

z =
Rz

π

(

1√
b
ln

√
bp− 1√
bp+ 1

+ ln
1 + p

1− p

)

.

The mapping from the W-plane to the T-plane is much
simpler :

w = g(t) = Log(t)

and we can finally link the Z-plane to the W-plane by
the following transformation :

z = f(g−1(w))

=
Rz

π

(

log

(
√
ew − b+

√
ew − 1√

ew − b−
√
ew − 1

)

+
1√
b
log

(

√

b (ew − 1)−
√
ew − b

√

b (ew − 1) +
√
ew − b

))

(8)

= ζ(w),

The transformation z = ζ(w) gives a one-to-one mapping
between points of the Z-plane and points of the W -plane
and it is a conformal transform as the composition of two
conformal transforms. Since ζ is not invertible, we have
found a good approximating function defined on three
intervals and inverse of which is :

ζ−1(z) =



























− log
(1−b)(exp [−

√
b( πz

Rz
−log

√

b+1
√

b−1
)]+1+b)

4b z < −z0

P (z) −z0 ≤ z ≤ z0,

log 1−b
4 (exp [ πzRz

− 1√
b
log

√
b−1√
b+1

] + 1+b
1−b ) z0 < z,

where z0 = 0.007mm and P (z) is a 6th-order polynomial
connecting continuously the two asymptotic expansions.
The points at ±z0 represent the limit of validity of the
two asymptotic expansions.
There is one last thing to do before one can solve the

problem in the W -plane. Fig. 5 shows the image of the
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Figure 5: (Color online) This figure represents the image
of the mapping ζ(w) applied to the rectangle defined as w =
u+ iv with −20 < u < 8 and −π < v < 0. The dots indicate
the position of the zi.

rectangle defined as w = u + iv with −20 < u < 8 and
−π < v < 0. On the vertical bold lines, u is constant
and we will call these lines iso-u. We see that the iso-
u are distorted near 0. Therefore, the distance between
the points wi = ζ−1(zi) is not the same as the distance
between the points zi : the metric is not conserved on the
border. Consequently, the width of the electrodes near
the point C in the W -plane is not the physical width,
which leads to errors in the potential. In order not to
modify the metric on the border, one should first apply
the function

β(z) = ζ(ζ−1(z)− iπ) (9)

to the points zi so that their image have the same dis-
tance between them in the W -plane and in the Z-plane
(physical plane). This function uses the fact that, on the
axis, the metric is not modified from one plane to the
other. It is the same idea as in [26] where a ”space de-
pendent diffusion coefficient” is used to account for the
fact that real space is compressed/expanded unevenly to
fit the W -plane. In the sequel, we shall use the following
notation : z̃i = β(zi).

A. Solving in the W-plane

Using ζ(w) we can now apply Bertram’s method in
the W-plane where the radius is constant. Following [20],
we assume that the potential varies linearly between the
electrodes. We shall come back to this approximation in
the last part of this section. We now use (6) in the W -
plane where the radius is constant R = π. On the border,
we have :

VW (π, u) =

13
∑

i=1

(

Vi+1 − Vi
ui+1 − ui

(u− ui) + Vi

)

Π(ui → ui+1),

with ui = ζ−1(z̃i), where z̃i = β(zi). zi are the posi-
tions of the points on Fig. 3, Vi is the potential at zi.
Π(ui → ui+1) is a function equal to zero everywhere ex-
cept between ui and ui+1 where it is equal to one. Re-

placing in (6), we obtain :

VW (0, u) = −1

2

13
∑

i=1

[

Qi(φi+1(u)− φi(u))

+(Qiui − Vi)χi(u) (10)

+
πQi

ω
ψi(u)

]

,

where :

Qi =
Vi+1 − Vi
ui+1 − ui

φi(u) = uitanh
ω

π
(u − ui)

χi(u) =
2sinhω

π (ui+1 − ui)

coshω
π (2u− ui+1 − ui) + coshω

π (ui+1 − ui)

ψi(u) = log

(

coshω
π (u− ui+1)

coshω
π (u− ui)

)

.

Now that we have VW , the potential along the axis in
the Z-plane is given by :

VZ(0, z) = VW (ζ−1(z))

as w = ζ−1(z) varies from point B to point A.
The error between the numerical solution and our re-

sult is around 1%, which is enough for many applications.
There are two main sources of errors. First, the calcula-
tion does not take into account the field leaking at the
front and at the rear of the set of electrodes. It can be seen
on Fig. 3 that the potential is not exactly zero on the axis
after the neutral electrodes preceding Vz and following
V1. This explains the two dark negative zones on Fig. 7.
Second, on the same figure, we see that the hypotheses
we have made, concerning the variation of the potential
between the electrodes, induce an error of about 100V on
the border. Yet, since this error is oscillating along each
border, it compensates and the error on the axis is only
about 20V (Fig. 6). An attempt to enhance the potential
at the borders is described in [29]. Finally, there is an
error coming from the cylindrical term of Eq. (1), which
is not invariant under conformal mapping. However, it is
always at least one order of magnitude smaller than the
two previous error types.
The best way to increase accuracy is to use a domain

that takes into account the shape of the electrodes. Ins-
tead of the mapping of Fig. 5, we could have used the
one of Fig. 8. Besides showing that this method can be
applied to complicated geometries, Fig. 8 enables us to
emphasize a crucial point : the mapping might not be
analytic for a given geometry. However, since the geo-
metry does not change, it is enough to calculate the in-
verse map numerically one time, find the polynomial that
fits this numerical solution on the axis and then, using
Bertram’s formula we have an analytic expression whose
parameters are the electrodes’ potentials. With this map-
ping, the accuracy is approximately 0.1%.
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Figure 6: (Color online) The line represents the analytical
function and the dots is the numerical solution (top). The
difference between the two previous curves (bottom). We see
that the error is around 1% and its smooth repartition shows
that it does not arise from the varying radius. This difference
is the consequence of the approximation we used to fix V (R, z)
between the electrodes. Here {V1 = 4513 V, V2 = 4836 V, V3 =
3112 V, V4 = 1642 V, Vz =, 3941 V }.

Solving numerically a Schwartz-Christoffel map will
not be treated here because we chose a complete ana-
lytical case to show all the details of the method. One
could refer to [28, 30] for an extensive review on all the
numerical techniques involved. Note that all the results
presented in the sequel, use the simple case of Fig. 8.

B. Summary of the method

1. Write the the Schwartz-Christoffel transformation
adapted to the geometry to obtain z = ζ(w). For
more details see [28].

2. If the inverse w = ζ−1(z) is not straightforward, it
can be well approximated by a polynomial.

3. Let zi = xi + iR(xi) be the points of the Z-plane
defining the position of each side of the electrodes,
one has to apply the function β(z) = ζ(ζ−1(z)−iπ)
to obtain the set of points z̃i = ζ(ζ−1(zi)− iπ)

4. Transpose the problem from the Z-plane to the
W -plane where wi = ζ(z̃i) = ui + ivi.
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Figure 7: The line represents the potential on the border
used to calculate the potential on the axis and the dots is
the numerical solution achieved with Comsol multiphysics
(top). The difference between the two previous curves (bot-
tom). Here {V1 = 4513 V, V2 = 4836 V, V3 = 3112 V, V4 =
1642 V, Vz =, 3941 V }.
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Figure 8: This figure represents the image of a mapping
obtained numerically.

5. Use the formula (10) to obtain VW (u,−Pi).

6. The potential of one point z = x+0× i on the axis
in the Z-plane is VZ(z, 0) = VW (ζ−1(z)).

IV. APPLICATION : STABILITY MAP

The main difficulty to tune an EIBT is due to the
large number of parameters implied in its manipulation :
five potential values on each side, the energy of the ions,
their temperature and their charge-to-mass ratio. The
designers of the trap used an optical model consisting
of mirrors and lenses [10], yet, since the focal length is
not linked to the values of the potential, the behavior
of the EIBT, given a set of potentials, is unpredictable.
Until now, experimentalists had to use simulation soft-
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Figure 9: (Color online) These curves show 1 − |∆| as a
function of Vz (potential applied to the lens) in two distinct
cases : (right curve, +) is the trapping efficiency of Ar+ at
4.2keV with the same conditions as in [32]. The set of points is
an reproduction of the experimental data in their Fig.3 a. (left
curve, o) represents the trapping efficiency of Ar+ at 1.2keV
with the same conditions as in [10]. The set of points is an
reproduction of the experimental data in their Fig. 8. There
is very good agreement between theory and experiment.

ware like SIMION R© [31] to determine optimal trapping
conditions [10]. Since a finite element calculation has to
be achieved each time a parameter is changed, this me-
thod turns out to be fastidious. Worse, simulating the
trajectory of ions going back and forth is much more dif-
ficult than simulating a beam because the errors on the
position accumulate and become comparable to the size
of the trap. Even with the smallest step and a recursive
method, SIMION R© [31] was not able to enforce energy
conservation after a few hundreds oscillations (the error
was about 100eV).
From Eq. (3), we can limit ourselves to the second order.
Higher order terms can be neglected as long as r < 8mm,
which is the aperture of our trap. The potential in the
trap is then given by

Φ(r, z) = V (z)− 1

4
r2
d2V (z)

dz2
, (11)

where V (z) is the potential along the axis. It follows that
the trajectory of one ion in the trap is determined by the
following set of equations :

m

q

d2z

dt2
= −dV (z)

dz
+

1

4
r2
d3V (z)

dz3
(12)

m

q

d2r

dt2
=

1

2
r
d2V (z)

dz2
(13)

The second term of the right side of equation (12) is
small compared to the first (for r < 8 mm) and can thus
be neglected. We obtain the longitudinal motion of the
ion z(t). Substituting z(t) in (13), we obtain an Hill’s
equation [33] :

d2r

dt2
−
(

q

2m

d2V (z)

dz2
z(t)

)

r = 0, (14)

the term in parentheses being a periodic function of per-
iod T . This equation arose in the study of the moon’s
dynamic and the usual method to discuss the stability of
its solution consists of calculating infinite determinants
[34]. The principal matrix of this equation is :

M(t) =

(

ψ1(t, t0) ψ2(t, t0)

ψ̇1(t, t0) ψ̇2(t, t0)

)

(15)

where ψ1(t, t0) is the solution of (14) with initial condi-

tions ψ1(t0, t0) = 1 and ψ̇1(t0, t0) = 0 and ψ2(t, t0) with

ψ2(t0, t0) = 0 and ψ̇2(t0, t0) = 1. Liouville’s formula [35]
shows that :

detM(t, t0) = 1 (16)

and therefore the characteristic equation of the mono-
dromy matrix M(t0 + T ) is given by [35] :

x2 − 2∆x+ 1 = 0 (17)

where :

∆ = Tr(M(t0 + T )) =
ψ1(t0 + T, t0) + ψ̇2(t0 + T, t0)

2
(18)

Applying Floquet’s theorem [36], we know that if ∆2 > 1,
one of the two solutions is unbound but if ∆2 < 1 there
are two solutions :

r(t) = e±γtp±(t) (19)

where p±(t + T ) = p±(t), γ = Im( 1
T log(x+)) and

x+ = ∆ +
√
∆2 − 1. In conclusion, Hill’s equation is

stable, and thus trapping can be observed, when |∆| < 1.
We now compare these theoretical results with expe-
riment.
Figure 9 shows a comparison with the results publi-

shed by other groups using the same kind of trap. These
curves show 1−|∆| as a function of Vz (potential applied
to the lens).They show a perfect agreement with two
independent groups [32], [10]. We also tried to reproduce
the data of [37] using H+

2 at 1.0keV and a negative
potential on the Einzel lens. We also predict three
stability intervals, approximately at the same position,
because we have not taken into account the differences
in the geometry of their trap. However we notice that
the method works also with negative potentials. Our
method enables to plot these curves in less than a second
whereas the cited authors had to make a SIMION R© [31]
simulation for each point.

Figure 10 shows the stability map depending on two
parameters V1 and Vz (the respective potentials of the
rear electrode and of the Einzel lens). This is the equi-
valent to the famous Ince-Strutt diagram used to tune
quadrupolar traps [38]. The white dots indicate settings
where trapping was experimentally observed. We fixed
the value of V1 and scanned Vz . Trapped ions go through
a ring at the center of the trap and induce a current.
We then analyze this amplified current with a spectrum
analyzer : if we see a peak corresponding to the oscilla-
ting movement of the ions, we mark this position with a
white dot. The radius of each dot is proportional to the
trapping efficiency.
There is a shift between theory and experiment, which
was first thought to be caused by a technical problem :
it is difficult to monitor with a good accuracy our power
supplies up to 8kV, especially because they raise in a
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Figure 10: (Color online) The contours show the iso-η values
where η = |∆| − 1. The stability region is defined by η < 0.
The white dots indicate settings where trapping was experi-
mentally observed. The radius of each dot is proportional to
the trapping efficiency. The thick white line is the border of
the three stability region : there are three stability zones mar-
ked I, II and III corresponding to the three types of orbits of
Fig. 11. We used O4+ at 5.2keV/charge and the potential set
is : {V1, V2 = 5850 V, V3 = 4150 V, V4 = 1650 V, Vz}.

few nanoseconds. However, a recent improvement of the
model, taking space charge effects into account, seems to
explain this shift. These results will be presented somew-
here else. Nonetheless, we could not explain the absence
of trapping on the upper part of the stability zone II. We
tested to see if higher order terms of Eq. (3) could ac-
count for this, without success. No trapping can be seen
in zone III, but as shown in Fig. 11, this region corres-
ponds to very peculiar closed trajectories, which seem
more theoretical than observable.

V. CONCLUSION

In this article, we have given a method to calculate ana-
lytical solution to the Laplace equation in axially sym-
metric devices. This method is very general and can be
used for various parts constituting a beam line. We suc-
cessfully applied it to the EIBT and showed that the
electrostatic potential is given by a formula depending
on the five electrodes potentials. The formula has been
compared with many finite element calculation where the
potentials have been changed on the whole achievable
range (from 0V to 8000V for each of the five potentials)

and, in the region where the ions can move, the error
is never greater than 1%. This analytical expression of
the potential inside this trap provides users with a much
more powerful tool to study and optimize this novel kind
of trap. As an example, we study the stability of the trap
and show that they agree with experiments giving a fast
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Figure 11: Trajectories of O4+ at 5.2 kV (top) : Stabi-
lity zone I : {V1 = 7500 V, V2 = 5850 V, V3 = 4150 V, V4 =
1650 V, Vz = 3650 V } . (middle) : Stability zone II : {V1 =
6500 V, V2 = 5850 V, V3 = 4150 V, V4 = 1650 V, Vz =
4950 V }. (bottom) : Stability zone III : {V1 = 5100 V, V2 =
5850 V, V3 = 4150 V, V4 = 1650 V, Vz = 5400 V }.

and easy way to predict trapping parameters.
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