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Abstract
This paper proposes an enhancement of the non linear conjugate gra-

dient algorithm for some non-smooth problems. We first extend some
results of descent algorithms in the smooth case for convex non-smooth
functions. We then construct a conjugate descent algorithm based on the
proximity operator to obtain a descent direction. We finally provide a
convergence analysis of this algorithm, even when the proximity operator
must be computed by an iterative process.

1 Introduction
A common and convenient formulation when dealing with an inverse problem
is to model it as a variational problem, giving rise to a convex optimization
problem. In this article, we focus on the following formulation:

minimize
x∈RN

F (x) = f1(x) + f2(x) , (1)

assuming that

Assumption 1.

• f1 is a proper convex lower semi-continuous function, L−Lipschitz differ-
entiable, with L > 0,

• f2 is a non-smooth proper convex lower semi-continuous function,

• F is coercive.

• dom(F ) = RN

A wide range of inverse problems belongs to this category. In the past
decades, several algorithms have been proposed to deal with this general frame-
work, intensively used in the signal processing community, as stressed in Com-
bettes et al. [9]. An outstanding illustration concerns regularized or constrained
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least squares. For about 15 years, the convex non-smooth `2 − `1 case, known
as Basis Pursuit (Denoising) [8] in signal processing or as Lasso [26] in machine
learning and statistics, has been widely studied both in a theoretical and prac-
tical point of view. This specific problem highlights interesting properties, in
particular the sparsity principle which finds a typical application in the com-
pressive sensing [11],[7].

Within the general framework given by (1) and Assumption 1,1 we aim to
generalize a classical algorithm used in smooth optimization: the non-linear con-
jugate gradient algorithm. To solve Problem (1), we propose to take advantage
of the forward-backward proximal approach to find a good descent direction
and to construct a practical conjugate descent algorithm. To our knowledge,
such a method has not been proposed in this context, although a generaliza-
tion of the steepest residual methods was proposed in the past for non-smooth
problems [29].

The paper is organized as follows. Section 2 recalls definitions and results
on convex analysis. In Section 3, we give a brief state of the art concerning
the methods that deal with Problem (1), and describe more precisely the two
algorithms which inspired ours: the forward-backward proximal algorithm [9]
and the non-linear conjugate gradient method [24]. We then extend some results
known in the smooth case for (conjugate) gradient descent to the non-smooth
case in Section 4. Hence, we derive and analyze the resulting algorithm in
Section 5. Finally, Section 6 presents some numerical illustrations.

2 Reminder on convex analysis
This section is devoted to important definitions, properties and theorems issued
from convex analysis, which is intensively used in the rest of the paper. First, we
focus on directional derivatives and subgradients which are important concepts
to deal with non differentiable functionals. In this context, we define what we
call a descent direction and give some important properties used to establish
results of convergence in the following sections. Finally, the foundations con-
cerning proximity operators are recalled together with an important theorem of
convex optimization.

Definition 1 (Directional derivative). Let F be a lower semi-continuous convex
function on RN . Then, for all x ∈ RN , for all d ∈ RN , the directional derivative
exists and is defined by

F ′(x; d) = lim
λ↓0

F (x+ λd)− F (x)
λ

.

We also give the definition of the subdifferential which is a significant notion
of convex analysis.

1In here and what follows, the denomination Problem (1) refers to this combination.
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Definition 2 (Subdifferential). Let F be a lower semi-continuous convex func-
tion on RN . The subdifferential of F at x is the subset of RN defined by

∂F (x) =
{
g ∈ RN , F (y)− F (x) ≥ 〈g, y − x〉 for all y ∈ RN

}
,

or equivalently

∂F (x) =
{
g ∈ RN , 〈g, d〉 ≤ F ′(x; d) for all d ∈ RN

}
.

An element of the subdifferential is called a subgradient. A consequence of
this definition is that

sup
g∈∂F (x)

〈g, d〉 = F ′(x; d) ,

and we denote by
gs(x; d) = arg sup

g∈∂F (x)

〈g, d〉 . (2)

As we are interested in descent methods for optimization, we recall the def-
inition of a descent direction.

Definition 3 (Descent direction). Let F : RN → R be a convex function. d
is a descent direction for F at x if and only if there exists α > 0 such that
F (x+ αd) < F (x) .

A direct consequence of this definition, is that such a direction exists if
and only if x is not a minimum of F . More precisely, we have the following
proposition usefull for convex optimization.

Proposition 1. Let F : RN → R be a convex function. d is a descent direction
for F at x if and only if, for all g ∈ ∂F (x), 〈d, g〉 < 0.

In order to prove some convergence results we also need the following propo-
sition, that specify some kind of continuity properties of the subgradient (one
can refer to [5, sec. 8.2.2, p. 106])

Proposition 2. Let F : RN → R be a convex function and ∂F (x) its sub-
differential at x. Then the operator x 7→ ∂F (x) has a closed graph. i.e, for
any sequences {xk} of RN such that lim

k→∞
xk = x̄, and gk ∈ ∂F (xk) such that

lim
k→∞

gk = ḡ, then

ḡ ∈ ∂F (x̄) .

However, as stressed in [5], we do not have in general:

xk → x̄, ḡ ∈ ∂F (x̄)⇒ ∃gk ∈ ∂F (xk)→ ḡ .

Because of this lack of continuity, the steepest descent method for non-smooth
convex functions does not necessarily converge (see [5] for a counter example).

As this work is based on the forward-backward algorithm, we also deal with
the proximity operator introduced by Moreau [17], which is intensively used in
convex optimisation algorithms.
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Definition 4 (Proximity operator). Let ϕ : RN → R be a lower semi-continuous
convex function. The proximity operator associated with ϕ denoted by proxϕ :
RN → RN is given by

proxϕ(y) =
1
2

arg min
x∈RN

{
‖y − x‖22 + ϕ(x)

}
. (3)

Furthermore, proximity operators are firmly non expansive, hence continu-
ous ( See [9] for more details concerning proximity operators).

To conclude this section, we state an important theorem of convex opti-
mization [23], usefull to prove convergence of optimization algorithm in a finite
dimensional setting.

Theorem 1. Let F : RN → R be a convex function, which admits a set of
minimizer X∗. Let {xk} be a sequence satisfying lim

k→∞
F (xk) = F (x∗), with

x∗ ∈ X∗. Then all convergent subsequences of {xk} converge to a point of X∗.

Before going further into the proximal-conjugate algorithm, we present a
brief state of the art of the main existing algorithms in convex optimization.
A particular attention is paid on the two algorithms which inspire the present
paper.

3 State of the art
We first expose the non-linear conjugate gradient algorithm for smooth func-
tions, and then the Iterative Shrinkage/Thresholding Algorithm (ISTA). We
conclude by a short review of popular algorithms used for convex non-smooth
optimization.

3.1 Non-linear conjugate gradient (NLCG)
The conjugate gradient algorithm was first introduced to minimize quadratic
functions [15], and was extended to minimize general smooth functions (non
necessarily convex). This extension is usually called the non-linear conjugate
gradient algorithm. There exists an extensive literature about the (non-linear)
conjugate gradient. One can refer to the popular paper of Shewchuck [25] avail-
able on line, but also to the book [24] of Pytlak dedicated to conjugate gradient
algorithms or to the recent survey [14].

The non-linear conjugate gradient algorithm has the following form:

Algorithm 1 (NLCG). Initialization: Choose x0 ∈ RN .
Repeat until convergence:

1. pk = −∇F (xk)

2. dk = pk + βkdk−1

3. choose a step length αk > 0
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4. xk+1 = xk + αkdk

where βk is the conjugate gradient update parameter that relies in R. Various
choices can be made for βk. Some of the most popular are

βHSk =
〈∇F (xk+1),∇F (xk+1)−∇F (xk)〉
〈dk,∇F (xk+1)−∇F (xk)〉

, (4)

βFRk =
‖∇F (xk+1)‖2

‖∇F (xk)‖2
, (5)

βPRPk =
〈∇F (xk+1),∇F (xk+1)−∇F (xk)〉

‖∇F (xk)‖2
. (6)

βHSk was proposed in the original paper of Hestenes and Stiefel [15]; βFRk , intro-
duced by Fletcher and Reeves [13], is useful for some results as the Al-Baali’s
theorem [1]; βPRPk , by Polak and Ribière [21] and Polyak [22], is known to have
good practical behavior. One can refer to [14] for a more exhaustive presentation
of the possible choices for βk.

3.2 Forward-backward proximal algorithm
A simple algorithm used to deal with functionals as (1) is ISTA, also known as
Thresholded Landweber [10] or forward-backward proximal algorithm [9]. Let
us recall that f1 must be L−Lipschitz differentiable.

Algorithm 2 (ISTA). Initialization: choose x0 ∈ RN .
Repeat until convergence:

1. xk+1 = proxµf2 (xk − µ∇f1(x))

where 0 < µ < 2/L.

As one of the aim of this contribution is to connecte conjugate descents
methods and the proximal method, let us rewrite the previous algorithm as a
descent algorithm with a constant step size equals to one. First, we give in
Algorithm 3 the general form of a descent algorithm.

Algorithm 3 (General descent algorithm). Initialization: choose x0 ∈ RN .
Repeat until convergence:

1. choose a descent direction dk

2. choose a step length αk > 0

3. xk+1 = xk + αkdk

Then, we can proove that sk = proxµ f2 (xk − µ∇f1(x)) − xk is a descent
direction. Indeed, since f1 is convex L-Lipschitz differentiable,

0 ≤ f1(x)− f1(y)− 〈∇f1(y), x− y〉 ≤ L/2‖x− y‖2 . (7)
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Hence, by introducing the surrogate

F sur(x, y) = f1(y) + 〈∇f1(y), x− y〉+ L/2‖x− y‖2 + f2(x) (8)

we have for all x, y ∈ RN

F (x) = F sur(x, x) ≤ F sur(x, y) . (9)

Let us denote by xk+1 the minimizer of F sur(., xk). Then, one can prove that [28,
p. 30]

xk+1 = arg min
x

F sur(x, xk) = prox 1
L f2

(xk −∇f1(xk)/L) . (10)

Such a choice assures to decrease the value of the functional:

f1(xk+1) + f2(xk+1) = F sur(xk+1, xk+1)
≤ F sur(xk+1, xk)
≤ F sur(xk, xk)
≤ f1(xk) + f2(xk) .

Consequently, sk = xk+1 − xk is a descent direction for F at xk, and we can
write algorithm 2 as a descent algorithm with a constant step size αk = 1 for
all k:

Algorithm 4 (ISTA as a descent algorithm). Initialization: choose x0 ∈ RN .
Repeat until convergence:

1. pk = proxµ f2 (xk − µ∇f1(x))

2. sk = pk − xk

3. xk+1 = xk + sk

It is well known that ISTA converges to a minimizer of F (see [9], [10]). We
can state the following corollary of this convergence results.

Corollary 1. Let F be the function defined in (1). Let {xk} be generated by the
descent algorithm 3, and let pk = proxµf2(xk − 1

L∇f1(xk)), with 0 < µ < 2/L.
If lim

k→∞
xk − pk = 0, then all convergent subsequences of {xk} converge to a

minimizer of F .

Proof. F (xk) is a decreasing sequence bounded from bellow. As F is contin-
uous and stand in a finite dimensional space, one can extract a convergent
subsequence of {xk}, denoted by {x̃k},with x̃ being its limit. As the proximity
operator is continuous, let {p̃k} being the corresponding subsequence of {pk}
obtained from {xk}.

Then, for ε > 0, there exists K > 0 such that for all k > K, we have
(by hypothesis) ‖p̃k − x̃k‖ < ε/2 and ‖x̃k − x̃‖ < ε/2. Hence, for all k > K,
‖p̃k − x̃‖ ≤ ‖p̃k − x̃k‖ + ‖x̃k − x̃‖ < ε. Thus, x̃ is proven to be a fixed point
of prox 1

L f2
(. − 1

L∇f1(.)). Moreover, one can state that x̃ is a minimizer of F ,
using Propostion 3.1 from [9].

Finally, Theorem 1 leads to Corollary 1.
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3.3 Others algorithms
As already mentioned in the introduction, a various range of algorithms were
developed during the last past years. In particular, one can cite algorithms
inspired by the significant works of Nesterov [19, 18], such as the Beck and
Teboulles’s Fast Iterative Shrinkage/Thresholding Algorithm (FISTA) [3]. The
main advantages of these algorithms is the speed of convergence, inO( 1

k2 ), where
k is the number of iterations, which must be compared to the speed of ISTA
in O( 1

k ). This theoretical results are often verified in practice: ISTA is much
slower than FISTA to reach a good estimation of the sought minimizer. In [27],
Paul Tseng gives a good overview, with generalizations and extensions of such
accelerated first order algorithm. Other accelerated algorithms were proposed,
such as SPARSA by Wright et al. [30] or the alternating direction methods via
the augmented Lagrangian [20].

4 A general conjugate descent algorithm
In this section, we generalize some theoretical results known for gradient descent
in the smooth case, to a general descent algorithm which can be used to minimize
a convex, non smooth, functional. We first present a general conjugate descent
algorithm, not studied yet in the non smooth case, and discuss the choice of the
step length thanks to an extension of the Wolfe conditions defined in the smooth
case (see for example [4, 24]). We then study the convergence of the algorithm
for different choices of the step length. For this purpose, we extend the notion
of “uniformly gradient related” descent proposed by Bertsekas [4] and generalize
the Al-Baali’s theorem [1], which assures that the conjugation provides a descent
direction under some conditions for the choice of the conjugate parameter.

4.1 A general (conjugate) descent algorithm for non-smooth
functions

We extend the non linear conjugate gradient Algorithm 1 by presenting the
following general conjugate descent algorithm.

Algorithm 5. Initialization: choose x0 ∈ RN .
Repeat until convergence:

1. find sk, a descent direction at xk for F

2. choose βk, the conjugate parameter

3. dk = sk + βkdk−1

4. find a step length αk > 0

5. xk+1 = xk + αkdk
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This algorithm obviously reduces to a classical general descent algorithm as
Algorithm 3 with an adaptive step length if βk = 0.

Ideally, one would find the optimal step size αk. However, in the general
case, one does not have access to a closed form of this quantity, then a line
search must be performed.

4.2 (Modified) Wolfe conditions
Wolfe conditions are usually defined for smooth functions in order to perform
a line search of a proper step size. These conditions were extended to convex,
non necessarily differentiable, functions in [31]. At each iteration k, let xk be
updated as in step 5 of Algorithm 5. One can perform a line search to choose
the step size αk in order to verify the Wolfe conditions which are:

F (xk + αkdk)− F (xk) ≤ c1αk〈gs(xk; dk), dk〉 (11)
〈gs(xk + αkdk; dk), dk〉 ≥ c2〈gs(xk; dk), dk〉 , (12)

with 0 < c1 < c2 < 1, and gs defined in (2).
As in the smooth case, one can extend these conditions to obtain the strong

Wolfe conditions by replacing (12) by

|〈gs(xk + αkdk; dk), dk〉| ≤ −c2〈gs(xk; dk), dk〉 . (13)

In [31], the authors proove that such a step size αk exists. For non smmoth
problem, Mifflin proposed in [16] another conditions:

F (xk + αkdk)− F (xk) ≤ −c1αk‖dk‖2 (14)

〈gs(xk + αkdk; dk), dk〉 ≥ −c2‖dk‖2 , (15)

with 0 < c1 < c2 < 1. We will refers to these conditions as the Mifflin-Wolfe
conditions in the following. Mifflin proposed also a procedure which converges
in a finite number of iterations to a solution α satisfying the Mifflin-Wolfe con-
ditions. The procedure is the following:

Algorithm 6 (Line search). Initialization: Choose α > 0. Set αL = 0, αN =
+∞.
Repeat until α verifies (14) and (15)

1. If α verifies (14) set αL = α

Else αN = α

2. If αN = +∞ set α = 2α

Else α = αL+αN
2

Now that we have defined rules to choose the step length, we pay attention
to the convergence properties of Algorithm 5.
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4.3 Convergence results
We first provide general results on the descent method for convex non-smooth
functional, which generalize the ones obtained in the smooth case. We begin by
stating the following theorem.

Theorem 2. Let F : RN → R be a convex function. Assume that {xk}, {dk}
and αk are the sequences generated by Algorithm 5. Assume that for all k, dk
is a descent direction, and that we have F (xk + αkdk) < F (xk).

1. If αk is a constant step size or satisfies the Mifflin-Wolfe conditions, then

lim
k→+∞

‖dk‖ = 0 .

2. If αk is the optimal step size or satisfies the Wolfe conditions, then

lim
k→+∞

〈gs(xk, dk), dk〉 = 0 ,

where gs is the subgradient defined in (2).

Proof. We provide here the proof for the Mifflin-Wolfe conditions. The proof in
the other cases is straightforward. Since dk is a descent direction, the sequence
of F (xk) is decreasing, and as it is bounded from bellow, converges to some F ∗.

Then
+∞∑
k=0

F (xk)− F (xk+1) < +∞.

From the first Mifflin-Wolfe condition, we can state that

lim
k→+∞

αk‖dk‖2 = 0 .

Suppose that lim
k→+∞

αk = 0 and that ‖dk‖ doest not tend to 0. Then, during

Algorithm 6, we can find α such that:

F (xk + αdk)− F (xk) > −c1α‖dk‖2 .

Thus,
F (xk + αdk)− F (xk + αkdk) > −c1(α− αk)‖dk‖2 ,

and because F is convex we have (see [16])

lim inf
α↓αk
〈gs(xk+αdk; dk), dk〉 ≥ lim sup

α↓αk

F (xk + αdk)− F (xk + αkdk)
α− αk

≥ −c1‖dk‖2 .

Thanks to proposition 2, there exists K1 > 0, such that for all k > K we
have

〈gs(xk + αkdk; dk), dk〉 ≤ 〈gs(xk; dk), dk〉 . (16)

Therefore,
〈gs(xk; dk), dk〉 ≥ −c1‖dk‖2 ,
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i.e.
c1 ≥

|〈gs(xk; dk), dk〉|
‖dk‖2

.

Then, as c1 < 1 for k > K, we have

|〈gs(xk; dk), dk〉| ≤ ‖dk‖2 .

From the second Mifflin-Wolfe condition, we obtain that for all k > K:

〈gs(xk+1; dk)− gs(xk; dk), dk〉 = 〈gs(xk+1; dk), dk〉 − 〈gs(xk; dk), dk〉
≥ −c2‖dk‖2 − 〈gs(xk; dk), dk〉
≥ (1− c2)‖dk‖2 ,

with c2 < 1, contradicting 16. Then lim
k→+∞

‖dk‖ = 0.

Remark 1. Usually, such results are obtained in the smooth case assuming
that the gradient is Lipschtiz continuous (see for example [24]). Even if such an
hypothesis simplifies the proof, we have seen in the previous proof that it is not
at all necessary when F is convex.

Such a theorem is not sufficient to ensure the convergence of the descent
algorithm. When lim

k→+∞
〈gs(xk, dk), dk〉 = 0, one needs stronger hypothesis in

order to conclude on the convergence. For that, we adapt the definition of the
uniformly gradient related descent of [4] to the non differentiable convex case.

Definition 5. Let F : RN → R be a convex function, and ∂F (x) its subd-
ifferential at x. Let {xk} be a sequence generated by a descent method, with
xk+1 = xk + αkdk . The sequence {dk} is uniformly subgradient related to {xk}
if for every convergent subsequence {xk}k∈K for which

lim
k→+∞,k∈K

0 /∈ ∂F (xk) ,

there holds

0 < lim inf
k→+∞,k∈K

|F ′(xk; dk)| , lim sup
k→+∞,k∈K

|dk| < +∞ .

Thanks to this definition, if dk is uniformly subgradient related to xk then,
with the Wolfe conditions, one can conclude that lim

k→+∞
gs(xk; dk) = 0, i.e. the

descent algorithm converges to a minimizer of the functional. In the following
subsection, we give a sufficient condition on the conjugacy parameter in order
to ensure that the descent direction dk is indeed uniformly subgradient related.
When lim

k→+∞
‖dk‖2 = 0, we give in Section 5 sufficient conditions for the choice

of sk in step 1 of Algorithm 5, in order to assure the convergence results under
the Mifflin-Wolfe conditions.
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4.4 A uniformly subgradient related conjugation
In the case of an optimal choice of the step size, we are sure that at each
iterations, dk is a descent direction.

Lemma 1. Let F : RN → R be a convex function. Let α∗k = arg min
α>0

F (xk +

αdk), where dk is a descent direction for F at xk. If sk+1 is a descent direction
for F at xk+1 = xk+α∗kdk, then for all βk > 0, dk+1 = sk+1 +βkdk is a descent
direction for F at xk+1.

Moreover, if sk is uniformly subgradient related and if, lim
k→+∞

|βk| < 1, then

dk is uniformly subgradient related.

Proof. For every g(xk+1) ∈ ∂F (xk+1), by definition of α∗k, 〈dk, g(xk+1)〉 = 0.
Hence, for all g(xk+1) ∈ ∂F (xk+1),

〈dk+1, g(xk+1)〉 = 〈sk+1 + βkdk, g(xk+1)〉
= 〈sk+1, g(xk+1)〉 < 0 , (17)

as sk+1 is a descent direction.
We assume now that sk is uniformly subgradient related. Let {xk}k∈K a

subsquence of {xk} such that lim
k→+∞,k∈K

xk = x̃ and 0 /∈ ∂F (x̃).

As sk is uniformly subgradient related, we directly have from Eq.(17) that
0 < lim inf

k→+∞,k∈K
|F ′(xk; dk)|.

Moreover, as lim
k→+∞

|βk| < 1, we have lim
k→+∞,k∈K

‖dk‖ < +∞. Then dk is

uniformly subgradient related

However, as we do not usually have access to the optimal step, it would
be interesting to know when the conjugacy parameter βk assures to obtain an
descent direction. Inspired by Al-Baali’s theorem [1], we provide the following
result.

Theorem 3. Let F : RN → R be a convex function. Let {xk} be a sequence
generated by the conjugate descent algorithm 5, where for all k, the step size
αk was chosen under the strong Wolfe conditions (11), (13). Let dk = sk +
βkdk−1, such that sk is uniformly subgradient related. Let 0 < b < 1, if |βk| <
min

(
|〈gs(xk;sk),sk〉|

|〈gs(xk−1;sk−1),dk−1〉| , b
)
, then dk is a uniformly gradient related descent

direction.

Proof. We first proove by induction that dk is a descent direction such that

〈gs(xk, dk), dk〉 ≤ 〈gs(xk, sk), sk〉 , (18)

distinguish two cases.

1. If 〈gs(xk+1, dk+1), dk〉 ≤ 0, then conclusion follows immediately.
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2. If 〈gs(xk+1, dk+1), dk〉 > 0, then

|〈gs(xk+1; dk+1), dk〉| ≤ |〈gs(xk+1; dk), dk〉| ,

and, with the strong Wolfe condition (13)

|〈gs(xk+1; dk+1), dk〉| ≤ −c2〈gs(xk; dk), dk〉 .

Thus

〈gs(xk+1; dk+1), dk+1〉
|〈gs(xk+1; sk+1), sk+1〉|

=
〈gs(xk+1; sk+1), sk+1〉
|〈gs(xk+1; sk+1), sk+1〉|

+βk+1
〈gs(xk+1; dk+1), dk〉
|〈gs(xk+1; sk+1), sk+1〉|

.

Consequently

〈gs(xk+1; dk+1), dk+1〉
|〈gs(xk+1; sk+1), sk+1〉|

≤ −1− c2βk+1
〈gs(xk; dk), dk〉

|〈gs(xk+1; sk+1), sk+1〉|

≤ −1− c2
〈gs(xk; dk), dk〉
|〈gs(xk; sk), dk〉|

.

By definition of gs(xk, dk) we have that −1 ≤ 〈gs(xk;dk),dk〉
|〈gs(xk;sk),dk〉| and finally,

〈gs(xk+1; dk+1), dk+1〉
|〈gs(xk+1; sk+1), sk+1〉|

≤ −1 + c2 < 0 ,

which leads to 〈gs(xk, dk), dk〉 ≤ 〈gs(xk, sk), sk〉.

Let {xk}k∈K be a subsquence of {xk} such that lim
k→+∞,k∈K

xk = x̃ and 0 /∈

∂F (x̃). On one hand, in a similar manner as in the proof of Lemma 1, we
directly have from Eq.(18) that 0 < lim inf

k→+∞,k∈K
|F ′(xk; dk)|.

On the other hand, as by assumption we have lim
k→+∞

|βk| < 1 we can conclude

that lim
k→+∞,k∈K

‖dk‖ < +∞. Then dk is uniformly subgradient related.

Note that in the smooth case, the bound on βk reduces to the conjugate pa-
rameter proposed by Fletcher and Reeves, in which case Theorem 3 corresponds
to Al-Baali’s results.

5 Proximal conjugate algorithm
This section is dedicated to the proposed proximal conjugate algorithm to find
a minimizer of Problem (1). We give a practical choice to choose an appro-
priate descent direction, thanks to the proximity operator. We begin with a
study of the algorithm and show that it is an authentic conjugate gradient al-
gorithm when f2 is a quadratic function. We also analyze its asymptotic speed
of convergence.
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5.1 The algorithm
The idea is to construct a conjugate direction, based on the descent pk − xk.
This gives the following algorithm:

Algorithm 7 (Proximal Conjugate Algorithm). Initialization: choose x0 ∈
RN .
Repeat until convergence:

1. pk = proxf2/L
(
xk − 1

L∇f1(xk)
)

2. sk = pk − xk

3. Choose the conjugate parameter βk

4. dk = sk + βkdk−1

5. Choose the step length αk

6. xk+1 = xk + αkdk

First, we prove that the descent direction sk provided by the proximal op-
erator is uniformly subgradient related.

Proposition 3. Let F be a convex function, defined as in Eq. (1) under As-
sumption 1, {xk} be a sequence generated by a descent method, pk = prox 1

L f2

(
xk − 1

L∇f1(xk)
)

and sk = pk − xk. Then the sequence {sk} is uniformly subgradient related.

Proof. Let x̃k a convergent subsequence of x̃ such that lim
k→∞

x̃k = x̃, p̃k =

proxf2/L
(
x̃k − 1

L∇f1(x̃k)
)
, and lim

k→∞
p̃k = p̃. We also denote s̃k = p̃k − x̃k and

lim
k→∞

s̃k = s̃. Assume that x̃ is not a critical point of F .

On one hand, we immediately have limk→+∞,k∈K ‖sk‖ < +∞.
On the other hand, we first prove that, if x is a critical point of F sur(., xk)

defined in (8), then for all h ∈ RN

F sur(x+ h, xk)− F sur(x, xk) ≥ L

2
‖h‖22 .

For that, we compute ∂xF sur(x, a):

∂xF
sur(x, a) = ∇f1(x) + L(x− a) + ∂f2(x) ,

and define:
gsurs (x, a; d) = arg sup

g∈∂xF sur(x,a)
〈g, d〉 .

As a consequence gsurs (x, x; d) = gs(x; d). One can check that

F sur(x+ h, xk)− F sur(x, xk) = 〈∂F sur(x, xk),h〉+ L/2‖h‖22
+ {f2(x+ h)− f2(x)− 〈∂f2(x), h〉} .

13



Since x is a critical point of F sur(., xk), for all h, we have 〈∂F sur(x, xk), h〉 = 0,
then

F sur(x+ h, xk)− F sur(x, xk) = L/2‖h‖22 + {f2(x+ h)− f2(x)− 〈∂f2(x), h〉} .

By definition of the subgradient, an element v belongs to ∂f2(x) if and only if
for all y, f2(x) + 〈v, y− x〉 ≤ f2(y). In particular, when y = x+ h, for all h and
for all v ∈ ∂f2(x), we have that

f2(x) + 〈v, h〉 ≤ f2(y) i.e. 0 ≤ f2(x+ h)− f2(x)− 〈∂f2(x), h〉 ,

and
F sur(x+ h, xk)− F sur(x, xk) ≥ L/2‖h‖22 .

Now, we apply the previous inequality to x = pk, which is a critical point of
F sur(., xk) as seen in Section 3.2, and to h = −sk. This gives

−L/2‖sk‖2 ≥ F sur(pk, xk)− F sur(pk − sk, xk)
≥ F sur(pk, xk)− F sur(xk, xk)
≥ 〈gsurs (xk, xk; sk), sk〉
≥ 〈gs(xk; sk), sk〉 ,

where the third inequality comes from the definition of the subgradient gsurs (xk, xk; sk),
for the descent direction sk = pk − xk. Taking the limit, we have then

L/2‖s̃‖2 ≤ lim inf |〈gs(x̃, s̃), s̃〉| .

As s̃ 6= 0 (otherwise, x̃ is a critical point), the proposition follows .

Then, if αk is chosen with the Wolfe conditions, the proximal conjugate algo-
rithm converges (assuming that dk is a descent direction for all k). Furthermore,
if αk is chosen with the Mifflin-Wolfe conditions, we also have the convergence
of the algorithm thanks to the following theorem.

Theorem 4. Let F be a convex function, defined as in Problem (1). Let {xk} be
a sequence generated by Algorithm 7. Assume that for all k, αk is chosen thanks
to the Mifflin-Wolfe conditions, dk is a descent direction, and βk is bounded.
Then all convergent subsequences of {xk} converge to a minimizer of F .

Proof. Immediate using Theorem 2 and Corollary 1.

5.2 Remarks on the step size
Variants of ISTA estimate at each iteration the Lipshitz-parameter L in order to
ensure convergence of the Algorithm. Such a variant is restated in Algorithm 8.
One can refer for example to [3] for more details.

Algorithm 8 (ISTA with Line search). Initialization: choose x0 ∈ RN and
η > 1.
Repeat until convergence:
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1. Find the smallest integer ik such that with µk = 1
ηikLk−1

and with

xk+1 = proxµkf2 (xk − µk∇f1(x)) ,

we have F (xk+1) ≤ F̄ sur(xk+1, xk), where F̄ sur is defined as in Eq. (8)
replacing L by ηikLk−1.

Then, in frameworks like SPARSA [30], the authors propose to use µk as a
step parameter, and propose strategies as the Bazilei-Borwein choice to set it
up. The following lemma establishes a necessary and sufficient condition which
states that µk is equivalent to the step-size parameter αk in Algorithm 7 (when
the conjugate parameter βk is set to zero).

Lemma 2. Let F be a convex function defined as in Eq. (1) under Assump-
tion 1, pk = prox 1

L f2

(
xk − 1

L∇f1(x)
)
, xk+1 = xk + αk(pk − xk). We also have

xk+1 = proxαk
L f2

(
xk − αk

L ∇f1(xk)
)
if and only if ∂f2(pk) ∩ ∂f2(xk+1) 6= ∅.

Proof. By definition of the proximity operator, xk− 1
L∇f1(xk)−pk ∈ 1

L∂f2(pk).
Let us denote by pαk = proxαk

L f2

(
xk − αk

L ∇f1(x)
)
. Then

pαk = xk + αk(pk − xk)⇔ xk −
αk
L
∇f1(xk)− xk − αk(pk − xk) ∈ αk

L
∂f2(pαk )

⇔ 0 ∈ −αk
L
∇f1(xk) +

αk
L

(∇f1(xk) + ∂f2(pk))− αk
L
∂f2(pαk )

⇔ 0 ∈ ∂f2(pk)− ∂f2(pαk )
⇔ ∂f2(pk) ∩ ∂f2(xk+1) 6= ∅

However, the necessary and sufficient condition given in the previous Lemma
is hard to check, and can never occur for certain choices of function f2 (for
example, if f2 is differentiable).

5.3 The quadratic case
A natural question concerns the behavior of this proximal-conjugate descent
algorithm when f2 is quadratic, i.e.

f2(x) =
1
2
〈x,Qx〉+ 〈c, x〉 ,

with Q a symmetric definite positive linear application, and c ∈ RN . We have
then

x̂ = proxµf2(y) = arg min
x

1
2
‖y − x‖2 + µf2(x)

⇐⇒ 0 = x̂− y + µQx+ µc

⇐⇒ x̂ = (I +Qµ)−1(y − µc)
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Hence, the descent direction sk given in the proximal conjugate algorithm is

sk = proxµf2(xk − µ∇f1(xk))− xk
= (I + µQ)−1(xk − µ∇f1(xk)− µc)− xk
= (I + µQ)−1(−µ∇f1(xk)− µc− µQxk)

= −(
1
µ
I +Q)−1(∇f1(xk) +∇f2(xk))

The proximal conjugate descent is then the classical conjugate gradient algo-
rithm preconditioned by 1

µI +Q.

5.4 Speed of convergence
Intuitively, the conjugate algorithm has asymptotically the same behavior as
ISTA. Then, one can expect that the speed of convergence will be O(1/k), for
k large enough. This is stated with the following theorem.

Theorem 5. Let F be a convex function satisfying Assumption 1 and x∗ a
minimizer of F . Let {xk} be the sequence generated by the proximal conjugate
Algorithm 7. Then, there exist K > 0 such that for all k > K, F (xk)−F (x∗) ≤
L‖x∗−xk‖2
2(k−K+1) .

Proof. The proof is based on the one given by Tseng in [27] for the speed of
convergence of ISTA.

Let
`F (x; y) = f1(y) + 〈∇f1(y), x− y〉+ λf2(x) .

We can recall the “three points property”: if z+ = arg minx ψ(x) + 1
2‖x − z‖

2,
then

ψ(x) +
1
2
‖x− z‖ ≥ ψ(z+) +

1
2
‖z+ − z‖2 +

1
2
‖x− z+‖2

Moreover, with the following inequality

F (x) ≥ `F (x; y) ≥ F (x)− L

2
‖x− y‖2 ,

F (pk) ≤ F (x) +
L

2
‖x− xk‖2 −

L

2
‖x− pk‖2

k∑
n=K

F (pn)− F (x) ≤ L

2

∑
n=K

k(‖x− xn‖2 − ‖x− pn‖2)
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Since the sequence of F (pk) is decreasing, we have

(k −K + 1)(F (pk)− F (x)) ≤ L

2

k∑
n=K

(‖x− xn‖2 − ‖x− pn‖2)

≤ L

2

k∑
n=K

(‖x− xn‖2 − ‖x− xn+1‖2 − ‖xn+1 − pn‖2)

≤ L

2
‖x− xk‖2 −

L

2
‖x− xk+1‖ −

L

2

k∑
n=K

‖xn+1 − pn‖

≤ L

2
‖x− xk‖2 −

L

2

k∑
n=K

‖xn+1 − pn‖

For all ε1, there exists a number K1 for which all k ≥ K1 |F (xk) − F (pk)| <
ε1. Moreover, for all ε2, there exists a number K2 such that for all k ≥ K2

‖xk+1 − pk‖ < ε2. The choices ε1 = L
2 ε2 and K = max(K1,K2), ensure that

for all k > K

F (xk)− F (x∗) ≤ L‖x∗ − xk‖2

2(k −K + 1)
− L

2
ε2 + ε1

F (xk)− F (x∗) ≤ L‖x∗ − xk‖2

2(k −K + 1)
.

5.5 An approximate proximal conjugate descent algorithm
In Algorithm 7, one must be able to compute exactly the proximity operator of
function f2. However, in many cases, one does not have access to a close form
solution, but can only approximate it thanks to iterative algorithms. In that
case, a natural question arises: how does behave the proposed algorithm when
we cannot have a close form formula for the proximity operator?

The study made in section 4 shows that one needs to obtain a descent direc-
tion sk to construct the conjugate direction dk. Remember that the proximity
operator has exactly the form of the general optimization problem given by
Eq. (1). Then, any iterative algorithm able to deal with this kind of problem
can estimate the solution of the proximity operator, within an inner loop of the
main proximal conjugate algorithm.

Using such a procedure may be computationnaly costly. Nevertheless, with
a few iterations of the inner loop, the functional decreases. Since we only need
a descent direction, as defined in Definition 3, we are looking for an algorithm
where step 1. in Algorithm 7 is replaced by:

1. Find p̌k such that F sur(p̌k, xk) < F sur(xk, xk)

Indeed, in that case we have

F (p̌k) = F sur(p̌k, p̌k) ≤ F sur(p̌k, xk) ≤ F sur(xk, xk) = F (xk) ,
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regarding the definition of the surrogate F sur given by Eq. (8) and the inequal-
ity (9). Then at Step 2. of the proximal conjugate algorithm, sk = p̌k − xk
is guaranteed to be a descent direction. But, this descent direction may not
be uniformly subgradient related anymore and there is no more guaranty to
converge to a minimizer of the functional. Nevertheless for a certain class of
function f2, we can establish a strategie which ensure the convergence. From
now, we assume the following.

Assumption 2. There exists a linear operator Φ : RN → RM and a function
f̃ : RM → RM such that f2 : RN → R can be written as

µf2(x) = f̃(Φx) .

Denoting by f̃∗, the Fenchel conjugate of f̃ , we suppose that the proximity op-
erator of f̃∗ is given by a closed form.

Again, we do not have access to a close formula for proxµf2 . However, using
the Fenchel dual formulation we can rewrite this minimization problem such
that

min
u

1
2
‖y − u‖22 + f̃(Φu) = max

v
−‖Φ∗v‖ − 〈φ∗v, y〉+ f̃∗(v) .

Moreover, thanks to the KKT conditions, the following relationship between the
primal variable u and the dual variable v holds:

u? = y + Φ∗v? .

Hence, one can use any known algorithm to obtain an approximation of the
proximal solution at step 1 of Algorithm 7. Such a strategy is already used in
practice (see for example [12, 2]). However, this inner loop is usually run in order
to obtain a estimate close to the true minimizer, and may be a computational
burden. In the light of the remark above, we propose to stop the inner loop as
soon as a point allowing to decrease the original functional is obtained. This
strategy is summarized in the following algorithm, where one can use any first
order algorithm in the inner loop.

Algorithm 9 (Approximate Proximal Conjugate Algorithm). Initialization:
choose x0 ∈ RN

Repeat until convergence:

1. yk = xk − 1
L∇f1(xk)

2. Computation of pk such that F sur(pk, xk) ≤ F sur(xk, xk), by solving the
dual problem of min

p

1
2‖yk − p‖

2
2 + λ

Lf2(p)

3. sk = xk − pk

4. Choose the conjugate parameter βk

5. dk = −sk + βkdk−1
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6. Choose the step length αk

7. xk+1 = xk + αkdk

When βk is set to zero at each iteration, the step size αk is set to one and the
inner loop is run until “convergence”. In the latter case the algorithm reduced
to the one proposed for the Total Variation regularized inverse problems in [12].
Here, we propose a simple criterion to stop the inner loop, and the convergence
is given by the following theorem.

Theorem 6. Let {xk} be a sequence generated by Algorithm 9. Assume that for
all k, dk is a descent direction and βk is bounded. Then, if αk is chosen thanks
to the Mifflin-Wolfe conditions, or is a constant step size, {xk} converges to a
minimizer of F .

Proof. We first show that, in a finite number of iterations, we can find pk =
y + Φ∗vk, such that F sur(pk, xk) < F sur(xk, xk), if xk is not a minimizer of
F sur(., xk). Assume the opposite: ∀` F sur(p`, xk) ≥ F sur(xk, xk). Then the se-
quence of dual variable v` generated by the inner loop converges to a fixed point
of proxf̃ ( 1

2‖Φ
∗.‖22 + 〈yk,Φ∗.〉), and by definition of the Fenchel duality, p` con-

verges to arg min
p

1
2‖yk − p‖

2 + λf2(p). Hence lim
`→∞

F sur(p`, xk) = F sur(xk, xk),

contradicting that xk is not a minimizer of F sur(., xk).
Secondly, using the same arguments than in Theorem 2, we have lim

k→0
‖dk‖ =

0, and then lim
k→0
‖sk‖ = 0. Let x̃ be an accumulation point of {xk}, which is

also an accumulation point of {pk}. We have

lim
k→∞

F sur(pk, xk) = F sur(x̃, x̃)

= min
p
F sur(p, x̃)

= min
x
F (x) by definition of F sur .

Then, applying Theorem 1, Algorithm 9 converges.

6 Numerical illustrations
We provide in this section two experiences to show the behavior of the presented
algorithms 7 and 9, denoted by ProxConj in the following. These experiments
are made on the block signal, displayed on Figure 6, used in several papers of
Donoho (see for example [6]), which has a length of 1024 samples.

The functionals we minimize are constructed using a “compressed sensing”
framework [11],[7]. Denoted by s the original block signal, we apply a random
sensing matrix A, and then add a white Gaussian noise b to obtain the observed
signal y = As+b. The random matrix A is generated using normalized centered
Gaussian random vectors, and the white Gaussian noise has a standard deviation
σ0 = 15.
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Figure 1: The block signal

Aims of this section is not to discuss the performance of the algorithms on
a particular application, but to provide a support for the discussion of the next
Section.

6.1 Experiment on a synthesis problem
The first experiment use the fact that the signal s is sparse in a wavelet dictio-
nnary. We then choose a Haar wavelet basis, and we seek to minimize

1
2
‖y −AΦx‖22 + λ‖x‖1

where Φ is the matrix associated with the Haar wavelet basis. λ is chosen
in order to reach approximately the best Signal to Noise Ration between the
original signal and the estimated one ŝ = Φx̂, with x̂ the computed minimizer
(λ = 500).

We compare the performance of the following algorithms:

• FISTA;

• ISTA;

• ISTA with an optimal step length;

• ProxConj with an optimal step length, where the optimal step is computed
thanks to (expensive) numerical optimization. The conjugate parameter
is choosen as βk = max(0, 〈sk−sk−1,sk〉

‖sk−1‖22
).
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• ProxConj with the Wolfe-Mifflin line search of the step length. The con-
jugate parameter is choosen as above, but we check at each iteration if the
functional value decrease.

We display on Figure 6.1 the evolution of the functionals values during the
iterations.

Figure 2: Comparaison of different algorithms on a synthesis problem.

6.2 Experiment on a analysis problem
The second experiment use the fact that the block signal must have a small `1
norm of its total variation. We then minimize the following functional:

1
2
‖y −Ax‖22 + λ‖DTx‖1 ,

where D is a finite difference operator (hence ‖DT • ‖1 correspond to a discrete
Total Variation penalization). As in the previous experiment, λ is chosen to
maximize the SNR of the estimated signal (λ = 1000). We compare the same
algorithms, which share the same strategie to stop the inner loop. Figure 6.2
shows the evolution of the functional values during the iterations.

If algorithms with an adaptive step length seems faster than FISTA and
ISTA, we stress that the curves show the functionals values with respect to
the number of iterations. In practice, FISTA remains the faster algorithm (in
terms of computational time) because of the simplicity of one iteration. Next
section provide a more detailled discussion about the shortcomming, but also
some hopes, of the proposed algorithms.
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Figure 3: Comparaison of different algorithms on an analysis problem.

7 Discussion
The main goal of this contribution was to answer the following question: as the
conjugate gradient algorithm is popular for differentiable functions, is it possible
to adapt it to non-differentiable ones ? As the proximal algorithm is able to
find a descent direction, it seems natural to try to “conjugate” them during the
iteration. Then, the study made in this contribution is mainly theoritical, and
their is still some issues in order to use the proximal-conjugate algorithms in
practice.

In particular, the choice of the step length is certainly the most difficult,
and then a lost of time can be spend during its search. A good choice of this
step can greatly increase the speed of convergence of an algorithm: the proximal
conjugate alorithm, and also ISTA, with an optimal step length give particularly
good results. However, computation of an optimal step length is usually avoided
in practice if no closed form is provided. The Mifflin-Wolfe conditions give a
pratical way to obtain a step length. However, the optimal step length does not
necessarily verify these conditions. In the previous experiments, the step was
sometimes very small and did not decrease the functional value significantly.

Another shortcomming of the proposed conjugate algorithm, is the choice
of the conjugate parameter βk during the iterations. The choice made in the
experiments does not garanty to obtain a descent direction at each iterations.
And the sufficient condition given by theorem 3 is actually difficult to check in
practice.

Finaly, the asymptotical speed of convergence of the algorithm is slower
than the one of FISTA. However, the experiments shows than during the first
iterations, the functional decrease very quickly compared to FISTA.
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In the futur, it would be interesting to find a efficient strategy in order to
choose a “good” step length. Moreover, one should investigate the possible and
efficient choices of the conjugate parameter βk, as it was done for the conjugate
gradient decent, in particular to be sure that the resulting direction is a descent
direction. And last but not least, the question of the generalization in the case
of non-convex functional remains open.
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