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DISPERSION AND CONTROLLABILITY FOR THE SCHRÖDINGER

EQUATION ON NEGATIVELY CURVED MANIFOLDS

NALINI ANANTHARAMAN AND GABRIEL RIVIÈRE

Abstract. We study the time-dependent Schrödinger equation ı
∂u
∂t

= −

1
2
∆u, on a compact

riemannian manifold on which the geodesic flow has the Anosov property. Using the notion
of semiclassical measures, we prove various results related to the dispersive properties of the
Schrödinger propagator, and to controllability.

1. Introduction

Let M be a smooth compact riemannian manifold of dimension d (without boundary).
We denote by ∆ the laplacian on M . We are interested in understanding the regularizing
properties of the Schrödinger equation

ı
∂u

∂t
= −1

2
∆u, u⌉t=0 ∈ L2(M).

More precisely, given a sequence of initial conditions un ∈ L2(M), we investigate the asymp-
totic behaviour of the family of probability measures

(1) νn(dx) =

(
∫ T

0
|eıt∆/2un(x)|2dt

)

dVol(x)

(where Vol denotes the riemannian volume measure on M).
We want to relate this question to the behaviour of the geodesic flow, using results on

propagation of singularities. For that purpose, we reformulate the question using the notion
of semiclassical measures. We consider a sequence of states (u~)~→0+ normalized in L2(M)
(indexed by a parameter ~ > 0 going to 0, which plays the role of Planck’s constant in
quantum mechanics), and for every t ∈ R we define the following family of distributions on
the cotangent bundle T ∗M :

(2) ∀a ∈ C∞
o (T ∗M), µ~(t)(a) =

∫

T ∗M
a(x, ξ)dµ~(x, ξ) := 〈eıt∆/2u~|Op~(a)|eıt∆/2u~〉L2(M),

where Op~(a) is a ~-pseudodifferential operator of principal symbol a (see [8], or appendix B
for a brief reminder). This construction gives a description of a state in terms of position

and impulsion variables. Throughout the paper, we will denote U t := eıt∆/2 the quantum
propagator.

By standard estimates on the norm of Op~(a) (the Calderón-Vaillancourt theorem), the
map t 7→ µ~(t) belongs to L∞(R;D′ (T ∗M)), and is uniformly bounded in that space as
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2 NALINI ANANTHARAMAN AND GABRIEL RIVIÈRE

~ −→ 0+. Thus, one can extract subsequences that converge in the weak-∗ topology on
L∞(R;D′ (T ∗M)). In other words, after possibly extracting a subsequence, we have

µ~(a⊗ θ) =

∫

R

θ(t)a(x, ξ)µ~(t)(dx, dξ)dt −→
~−→0

∫

R

θ(t)a(x, ξ)µ(t)(dx, dξ)dt

for all θ ∈ L1(R) and a ∈ C∞
o (T ∗M). The main example to keep in mind is the case when θ

is the characteristic function of some interval [0, T ]. In that case we can write

µ~(a⊗ θ) =

∫ T

0
〈eıt∆/2u~|Op~(a)|eıt∆/2u~〉dt = ~

∫ T/~

0
〈eıt~∆/2u~|Op~(a)|eıt~∆/2u~〉dt.

In the last term we have just expressed everything in terms of the flow eıt~∆/2, which solves

the equation −~2

2 ∆v = ı~∂v
∂t with the time-parametrization of quantum mechanics. Thus, in

the time-scale of quantum mechanics, we are averaging over time intervals of order ~−1.
It follows from standard properties of Op~(a) that the limit µ has the following properties :

• for almost all t, µ(t) is a positive measure on T ∗M .
• the unitarity of U t implies that

∫

T ∗M µ(t)(dx, dξ) does not depend on t; from the
normalization of u~, we have

∫

T ∗M µ(t)(dx, dξ) ≤ 1, the inequality coming from the
fact that T ∗M is not compact, and that there may be an escape of mass to infinity.

• define the geodesic flow gs : T ∗M −→ T ∗M as the hamiltonian flow associated with

the energy p(x, ξ) = ||ξ||2x
2 . From the Egorov theorem, we have

∀s ∈ R, e−is~∆/2Op~(a)e
is~∆/2 = Oph(a ◦ gs) +Os,a(~)

for a ∈ C∞
o (T ∗M). At the limit ~ −→ 0+, this implies that µ(t) is invariant under gs,

for almost all t and all s.

These sequences of distributions were already studied by Macià [20]; we refer to that paper
for details about the facts mentioned above. Macià was mostly interested in describing the
properties of the measures µ(t) in the case where the geodesic flow on the manifold M was
not chaotic (Zoll manifolds for instance, or the flat torus [21, 3]).

In this paper, we are interested in a completely different situation where the geodesic flow
has the Anosov property (manifolds of negative curvature are the main example). In this
setting, the case where the initial states u~ are eigenfunctions of the laplacian, satisfying
−~2∆u~ = u~, has been much studied; in this particular situation µ~(t) does not depend on
t. The Shnirelman theorem (also called Quantum Ergodicity Theorem) says that for “most”
sequences of eigenfunctions u~, the limit µ is the Liouville measure on the unit cotangent
bundle S∗M ; see [30, 33, 7] for the precise statement. It is also known, by the work of
Anantharaman and Nonnenmacher, that for any sequence of eigenfunctions the limit µ has
positive entropy [1, 4]. The aim of this paper is twofold: extend the Shnirelman theorem to
the setting of the time dependent equation and prove lower bounds on the metric entropy of
the measures µ(t). We shall also show how these results apply to the controllability problem
for the Schrödinger equation.

2. Statement of the results

2.1. Semiclassical large deviations. Our first result is a generalization (and a reinforce-
ment in the case of Anosov geodesic flows) of the quantum ergodicity theorem. Recall that
the Shnirelman Theorem is a result on orthonormal bases of eigenfunctions of the laplacian.
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In order to state an analogue of it for solutions of the time dependent Schrödinger equation,
we introduce a notion of generalized orthonormal families.

2.1.1. Generalized orthonormal family. We fix α > 0 and a sequence I(~) := [a(~), b(~)]
of subintervals that are of length at least 2α~ for every ~ > 0. We also suppose that
lim~→0+ a(~) = lim~→0+ b(~) = 1. We denote N(I(~)) the number of eigenvalues λ2j of ∆

(counted with their multiplicities) satisfying ~2λ2j ∈ I(~). We assume that

(3) N(I(~)) =
Vol(M)

(2π~)d
Vol(Bd(0, 1))(b(~) − a(~))(1 + o(1))

(where Vol(M) is the riemannian volume of M , and Vol(Bd(0, 1)) is the volume of the unit
ball in Rd). According to [9], we know that the Weyl’s law (3) still holds in the case where
b(~) − a(~) = 2α~ if we suppose that the set of closed geodesics is of zero Liouville measure
on S∗M (this is the case for Anosov geodesic flows).

We introduce the notion of generalized orthonormal family localized in the energy window
I(~):

Definition 2.1. For ~ > 0, let (Ω~,P~) be a probability space and u~ : Ω~ → L2(M) a
measurable map. We say that (u~(ω))ω∈(Ω~,P~) is a generalized orthonormal family (G.O.F.)
of the spectral window I(~) if

• ‖u~(ω)‖L2(M) = 1 + o(1) as ~ tends to 0 (uniformly for ω in Ω~);

•
∥

∥

(

IdL2(M) − 1lI(~)
(

−~2∆
))

u~(ω)
∥

∥

L2(M)
= o(1) as ~ tends to 0 (uniformly for ω in

Ω~);
• for every B in L(L2(M)),

(4)

∫

Ω~

〈u~(ω)|B|u~(ω)〉L2(M)dP~(ω) =
1

N(I(~))
Tr
(

B1lI(~)(−~2∆)
)

.

We stress the fact that if (u~(ω))ω∈(Ω~ ,P~) is a G.O.F., then (U tu~(ω))ω∈(Ω~,P~) is also one
for every t. In section 4, we will provide two examples of G.O.F.

We will denote µ~,ω(t) the (time-dependent) distribution associated to u~(ω) by formula (2).

2.1.2. Semiclassical large deviations. We now state a generalization of the quantum ergodicity
theorem. This theorem says that, for a given orthonormal basis of eigenvectors of ∆, “most of”
the associated distributions on T ∗M converge to the Liouville measure on S∗M := {p = 1/2}.
This holds under the only assumption that the geodesic flow acts ergodically on S∗M endowed
with the Liouville measure. Here we aim for a more precise statement, and will assume that
the geodesic flow has the Anosov property (our result will, in particular, imply a reinforced
version of the usual Shnirelman theorem).

We recall that the Liouville measure on T ∗M is the measure given by dL = dxdξ in local
coordinates. In a region where the hamiltonian p has no critical point, one can find local
symplectic coordinates (x1, . . . , xd, ξ1, . . . , ξd) such that x1 = p, and the Liouville measure
can be decomposed into dL = dx1dLx1(x, ξ), where Lx1 is a smooth positive measure carried
by the energy layer {p = x1}. We shall restrict our attention to the unit cotangent bundle,
S∗M = {p = 1

2}, and will denote L = L 1
2
. This is the Liouville measure in S∗M .

Given a G.O.F. (u~(ω))ω∈(Ω~,P~), our result says that for “most” ω (in the sense of P~) the
distributions µ~,ω(t) are close to the Liouville measure L. We will use a large deviations result
due to Kifer [17] to give an estimate on the proportion of ω for which µ~,ω(t) is far away from
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L. To state our result, we need to introduce two dynamical quantities. First, we define the
maximal expansion rate of the geodesic flow on S∗M as

χmax := lim
t→±∞

1

t
log sup

ρ∈S∗M
‖dρgt‖.

This quantity gives an upper bound on the Lyapunov exponents over S∗M and it is linked to
the range of validity of the semiclassical approximation in the Egorov theorem [5]. We also
introduce, for every δ in R and every a in C∞

o (T ∗M,R) such that L(a) = 0,

H(δ) := inf
s∈R

{−sδ + P (sa+ ϕu)} ,

where f 7→ P (f) is the topological pressure of the continuous map f and ϕu is the infinitesimal
unstable jacobian (see section 3 for details). The map δ 7→ −H(δ) is the Legendre transform
of s 7→ P (sa+ϕu) which is a smooth and convex function on R. In particular, −H is a convex
map on R and it satisfies H(0) = 0 and H(δ) < 0 for all δ 6= 0 (see 3.3).

Theorem 2.2. Suppose (S∗M, (gt)) satisfies the Anosov property. We fix a generalized or-
thonormal families (u~(ω))ω∈(Ω~ ,P~) (with ~ → 0+). We fix two observables,

• an element θ in L1(R,R+) such that
∫

θ(t)dt = 1,
• an element a in C∞

o (T ∗M,R) such that
∫

S∗M adL = 0.

Then, we have, for any δ > 0,

lim sup
~→0

log P~ ({ω ∈ Ω~ : µ~,ω(a⊗ θ) ≥ δ})
| log ~| ≤ H(δ)

χmax
.

From this theorem and the properties of H(δ), one can deduce the following corollary :

Corollary 2.3. Suppose (S∗M, (gt)) satisfies the Anosov property. We fix a G.O.F. (u~(ω))ω∈(Ω~,P~)

(with ~ → 0+). Then, for every δ > 0, for every a ∈ C∞
o (T ∗M,C), and for every function θ

in L1(R,R+), we have

(5) P~

({

ω ∈ Ω~ :

∣

∣

∣

∣

µ~,ω(a⊗ θ)−
∫

S∗M
adL

∫

R

θ(t)dt

∣

∣

∣

∣

≥ δ

})

= Oa,δ,θ

(

~H̃(δ)
)

,

where H̃(δ) > 0 depends on a, θ and δ.

2.1.3. Comments. As already mentioned, this result reinforces the Shnirelman theorem in
the case of Anosov geodesic flows. The Shnirelman theorem (suitably adapted to the time
dependent Schrödinger equation) simply asserts that for an ergodic geodesic flow, and for
every δ > 0,

P~

({

ω ∈ Ω~ :

∣

∣

∣

∣

µ~,ω(a⊗ θ)−
∫

S∗M
adL

∫

R

θ(t)dt

∣

∣

∣

∣

≥ δ

})

= oa,δ,θ (1) .

Let us also recall the quantum variance conjecture [10]. This conjecture is usually formulated
for eigenfunctions of the laplacian, but translated in our context, it would predict that

∫

Ω~

∣

∣

∣

∣

µ~,ω (a⊗ θ)−
∫

S∗M
adL

∫

R

θ(t)dt

∣

∣

∣

∣

2

dP~(ω) =
V (a, θ)~d

b(~)− a(~)
(1 + o(1))

for some constant V (a, θ) that can be expressed in terms of the “dynamical variance” of a [29].
If this conjecture is true, it implies

P~

({

ω ∈ Ω~ :

∣

∣

∣

∣

µ~,ω(a⊗ θ)−
∫

S∗M
adL

∫

R

θ(t)dt

∣

∣

∣

∣

≥ δ

})

= Oa,δ,θ

(

~d

b(~)− a(~)

)

,
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which is stronger than our result.
Zelditch proved in [34] that

∫

Ω~

∣

∣

∣

∣

µ~,ω (a⊗ θ)−
∫

S∗M
adL

∫

R

θ(t)dt

∣

∣

∣

∣

p

dP~(ω) = O(| log ~|−p/2)

for all p ≥ 1 (see also [29]). Again, his proof is written for the eigenfunction problem, but
could easily be transposed to the time-dependent Schrödinger equation (see [26] – and note
that we have to make the extra assumption ‖u~(ω)‖L2 = 1 + O(| log ~|−1) uniformly in ω).
Using the Bienaymé-Chebyshev inequality, Zelditch’s result implies that

P~

({

ω ∈ Ω~ :

∣

∣

∣

∣

µ~,ω(a⊗ θ)−
∫

S∗M
adL

∫

R

θ(t)dt

∣

∣

∣

∣

≥ δ

})

= O(| log ~|−∞).

Our theorem – although it does not say anything about the quantum variance – improves

this aspect of Zelditch’s result, as we can replace O(| log ~|−∞) by O
(

~H̃(δ)
)

.

2.2. Entropy of semiclassical measures. Our second result is a lower bound on the
Kolmogorov-Sinai entropy of the measures µ(t). We will consider a sequence of normalized
states (u~)~→0+ in L2(M). We fix two energy levels 0 ≤ E1 < E2 and we suppose that the
family of states is localized in the energy window [E1, E2]. Precisely, we make the assumption
that

(6) lim
~→0+

∥

∥

(

IdL2(M) − 1l[E1,E2]

(

−~2∆
))

u~
∥

∥

L2(M)
= 0.

This assumption implies that each µ(t) is a probability measure carried by the set {E1 ≤
‖ξ‖2x ≤ E2} (it prevents escape of mass in the fibers of T ∗M). In addition, we recall that µ(t)
is invariant under the geodesic flow. Using the invariance of the energy under the geodesic
fow, we see that for Lebesgue a.e. t, µ(t)(dx, dξ) is of the form

∫

µt,E(dx, dξ)ν(dE), where ν
is a positive measure on the interval [E1, E2] and µt,E is a probability measure on {‖ξ‖2x = E}
invariant under the geodesic flow.

Remark. We underline the fact that the measure ν is independent of t. It is the weak
limit (after extraction of a subsequence) of the measures ν~ defined on R by ν~([E,E

′]) =
∥

∥1l[E,E′]

(

−~2∆
)

u~
∥

∥

2
.

In the following theorem, hKS(µ, (g
t)) denotes the entropy of the invariant probability

measure µ for the geodesic flow gt (its definition is recalled in section 3).

Theorem 2.4. Let M be a compact riemannian manifold of dimension d and constant cur-
vature ≡ −1. We fix two energy levels 0 ≤ E1 < E2 and we consider a sequence (u~)~→0+ in
L2(M) that satisfies:

• the energy localization lim~→0

∥

∥

(

IdL2(M) − 1l[E1,E2](−~2∆)
)

u~
∥

∥

L2(M)
= 0,

• lim~→0 ‖u~‖L2(M) = 1.

Consider µ(t)(dx, dξ) =
∫

µt,E(dx, dξ)ν(dE)dt an accumulation point of the corresponding
sequence of distributions µ~ defined by (2). Then, one has, Leb⊗ ν almost everywhere,

hKS(µt,E, g
t) ≥ d− 1

2

√
E.

For the sake of simplicity, we only state and prove the results in the case of constant
curvature. The methods from [1, 4] for general Anosov manifolds or from [25] for Anosov
surfaces could also be adapted in this setting.
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Remark. We note that
√
E is the speed of trajectories of gt on the energy layer {p = E

2 }. It

is also natural to consider the geodesic flow φt = gt/
√
E parametrized to have speed 1 on any

energy layer, and our results then reads hKS(µt,E , φ
t) ≥ d−1

2 .
If one wants, one can avoid assumption (6) and deal with the issue of escape of mass in a dif-

ferent manner : consider the space S0 of smooth functions a on T ∗M that are 0-homogeneous
outside a compact set. The distributions µ~ are bounded in L∞(R,S ′

0), and one can consider
convergent subsequences in the corresponding weak-∗ topology. The corresponding limits
µ ∈ L∞(R,S ′

0) are actually positive for almost all t, and each µ(t) defines a probability mea-

sure on T̂ ∗M , the cotangent bundle compactified by spheres at infinity. We note that the flow
φt can be extended to the spheres at infinity. We can then write µ(t) =

∫

µt,E(dx, dξ)ν(dE)

where now ν is a probability measure on [0,+∞]. Our result reads : hKS(µt,E , g
t) ≥ d−1

2

√
E

for 0 ≤ E < +∞, and hKS(µt,E, φ
t) ≥ d−1

2 for 0 < E ≤ +∞.

2.3. Application to controllability. Once Theorem 2.4 is known, it implies the following
observability inequality :

Theorem 2.5. Let M be a compact riemannian manifold of dimension d and constant cur-
vature ≡ −1. Let a be a smooth function on M , and define the closed gt-invariant subset of
S∗M ,

Ka = {ρ ∈ S∗M,a2(gt(ρ)) = 0 ∀t ∈ R}.
Assume that the Hausdorff dimension of Ka is < d. Then, for all T > 0, there exists CT,a > 0
such that, for all u :

(7) ‖u‖2L2(M) ≤ CT,a

∫ T

0
‖aeıt∆2 u‖2L2(M)dt.

We recall briefly in appendix A how to deduce Theorem 2.5 from Theorem 2.4. This follows
a classical argument due to Lebeau [18], who used it to prove the following fact : if M is an
arbitrary riemannian manifold, and if Ka = ∅, then (7) holds.

We can give an example where our assumption on Ka holds. Consider a closed geodesic
γ with a small tubular neigborhood of this geodesic that does not contain another complete
geodesic. We take a to be nonzero on the complementary of this neighborhood and 0 near the
closed geodesic. In this case, one has Ka = γ so that our condition holds. Another example,
in dimension d = 2, goes as follows : take a decomposition of the hyperbolic surface M into
“hyperbolic pairs of pants” (there are 2g− 2 pairs of pants if M has genus g). The boundary
of each pair of pants consists of 3 simple closed geodesics. Take a function a supported in a
neighbourhood of the union of these 3g − 3 simple closed geodesics, and assume that a does
not vanish on the union of these curves. Thus, any geodesic that avoids the support of a must
stay inside one of the pairs of pants. If the length of each of the 3g− 3 boundary components
is large enough, this will imply that Ka has dimension < d, and our condition will be satisfied.
The existence of a hyperbolic pants decomposition with boundary components of arbitrary
large lengths follows, for instance, from Proposition 2.2 in [24]. It would be interesting to find
a larger variety of geometric situations in which our assumption on Ka holds.

Following the Hilbert uniqueness method, one knowns that inequality (7) implies the fol-
lowing : for any u0, uT ∈ L2(M), for any T > 0, there exists f(t, x) ∈ L2([0, T ] ×M) such
that the solutions of

ı
∂u

∂t
+

∆

2
u = a(x)f(t, x)
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with initial condition u|t=0 = u0 satisfies u|t=T = uT . This is called the controllability
problem.

Organization of the paper. In section 3, we describe some background in dynamical sys-
tems that we will need at different points of the article. In section 4, we give two examples
of G.O.F. and apply Theorem 2.2 to them. In sections 5 and 6, we prove Theorems 2.2
and 2.4. Finally, in the appendices, we show how to derive an observability result from The-
orem 2.4 (appendix A) and we give a brief reminder on semiclassical calculus on a manifold
(appendix B).

3. Dynamical systems background

3.1. Anosov property. In this paper, we suppose thatM is a smooth, compact, riemannian
manifoldM of dimension d (without boundary). The geodesic flow on T ∗M is the hamiltonian

flow associated to the hamiltonian p(x, ξ) = ‖ξ‖2x
2 . We also assume that, for any E0 > 0, the

geodesic flow gt is Anosov on the energy layer p−1({E0
2 }) ⊂ T ∗M : for all ρ ∈ p−1({E0

2 }), we
have a decomposition

Tρp
−1 ({E0/2}) = Eu(ρ)⊕ Es(ρ)⊕ RXp(ρ),

where Xp is the hamiltonian vector field associated to p, Eu the unstable space and Es the
stable space [14]. We can introduce the infinitesimal unstable Jacobian as follows [6]:

ϕu(ρ) := − d

dt

(

det
(

dρg
t
|Eu(ρ)

))

t=0
.

3.2. Kolmogorov-Sinai entropy. Let us recall a few facts about Kolmogorov-Sinai (or
metric) entropy that can be found for example in [32]. Let (X,B, T, µ) be a measurable
dynamical system, and P := (Pα)α∈I a finite measurable partition of X, i.e. a finite collection
of measurable subsets that forms a partition. Each Pα is called an atom of the partition. With
the convention 0 log 0 = 0, one defines

(8) Hn(µ, T,P) = −
∑

|α|=n

µ(Pα0 ∩ · · · ∩ T−(n−1)Pαn−1) log µ(Pα0 ∩ · · · ∩ T−(n−1)Pαn−1).

This quantity satisfies a subadditivity property

(9) Hn+m(µ, T,P) ≤ Hn(µ, T,P) +Hm

(

µ, T, T−nP
)

= Hn(µ, T,P) +Hm(µ, T,P).

The first inequality is true even if the probability measure µ is not T -invariant, while the sec-
ond equality holds for T -invariant measures. A classical argument for subadditive sequences
allows to define the following quantity:

(10) hKS(µ, T,P) := lim
n→∞

Hn (µ, T,P)

n
.

It is called the Kolmogorov Sinai entropy of (T, µ) with respect to the partition P . The Kol-
mogorov Sinai entropy hKS(µ, T ) of (µ, T ) is then defined as the supremum of hKS(µ, T,P)
over all partitions P ofX. In the case of a flow (for instance the dynamical system (S∗M,gt, µ)),
we define the entropy hKS(µ, (g

t)) := hKS(µ, g
1). Entropy can a priori be infinite. However,

for a smooth flow on a compact finite dimensional manifold, entropy is bounded thanks to
the Ruelle inequality [28]

hKS(µ, (g
t)) ≤ −

∫

S∗M
ϕu(ρ)dµ(ρ).
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In the case of negatively curved manifolds, equality holds if and only if µ is the desintegration
L of the Liouville measure on S∗M .

Notation : In the rest of this paper, we will write hKS(µ) for hKS(µ, (g
t)), unless we want

to consider a flow different from (gt).

3.3. Topological pressure. To conclude this section, we introduce the topological pres-
sure of the dynamical system (S∗M,gt) as the Legendre transform of the Kolmogorov-Sinai
entropy [32], [22]:

∀f ∈ C0(S∗M,R), P (f) = P (f, (gt)) := sup

{

hKS(µ) +

∫

S∗M
fdµ : µ ∈ M(S∗M,gt)

}

,

where M(S∗M,gt) is the set of probability measures on S∗M invariant under the geodesic
flow. It can be verified that this defines a continuous and convex function on C0(S∗M,R) [32].

We shall be particularly interested in the behaviour of P (f) near f = ϕu. By the Ruelle
inequality, we have P (ϕu) = 0 (the sup defining P (ϕu) is achieved at µ = L). Moreover,
it can be proved that for any real-valued Hölder function f on S∗M , the function s 7→
P (ϕu + sf) is real analytic on R [6, 27] and its derivatives of order 1 and 2 can be computed
explicitly [22]. We have d

ds (P (ϕ
u + sf))|s=0 =

∫

S∗M fdL. If
∫

S∗M fdL = 0, the convex

function s 7→ P (ϕu + sf) achieves its minimum at 0.
Moreover, if

∫

S∗M fdL = 0, then we have:

d2

ds2
(P (ϕu + sf))|s=0 = σ2(f),

where σ2(f) := lim
T→+∞

1

T

∫

S∗M

(
∫ T

0
f ◦ gt(ρ)dt

)2

dL(ρ) is called the dynamical variance of

the function f . It is known that σ2(f) vanishes if and only if f is of the form f = d
dt(h◦gt)|t=0

for some function h. In this case, one says that f is a coboundary.

3.4. Kifer’s large deviation upper bound. We shall use the following result, due to Kifer
[17], and valid for more general Anosov flows :

(11) lim
T→∞

1

T
log

∫

S∗M
exp

(
∫ T

0
a ◦ gt(ρ)dt

)

dL(ρ) = P (a+ ϕu),

for all continuous a. In fact, we will only use the fact that the lim sup is uniform for a running
over compact sets (section 3 -Theorem 3.2 in [17]).

Remark. This result can be used to proved the following strengthened version of the Birkhoff
ergodic theorem. Fix a such that

∫

S∗M adL = 0, and fix δ > 0. Then,

lim sup
1

T
logL

({

ρ ∈ S∗M :
1

T

∫ T

0
a ◦ gt(ρ)dt > δ

})

≤ inf
s≥0

{−sδ + P (sa+ ϕu)}

= inf
s∈R

{−sδ + P (sa+ ϕu)} = H(δ).

Similarly, for δ < 0, one has lim sup 1
T logL({ρ ∈ S∗M : 1

T

∫ T
0 a ◦ gt(ρ)dt < δ}) ≤ H(δ). The

function −H, which is the Legendre transform of s 7→ P (ϕu + sa), is convex and is positive
for δ 6= 0 (it may be infinite).
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4. Examples of generalized orthonormal families

In this section, we provide two examples of G.O.F. and show how Theorem 2.2 applies
to them. Our examples are of distinct types: basis of eigenvectors of ∆ and truncated
Dirac distributions. In the first example, Theorem 2.2 provides a strengthened version of
Shnirelman’s theorem for Anosov flows.

4.1. Orthonormal basis of eigenvectors. Consider (ψn)n∈N an orthonormal basis of L2(M)
made of eigenfunctions of ∆, i.e. there exists a sequence 0 = λ0 < λ1 ≤ · · · ≤ λn ≤ · · · such
that for every n in N,

∆ψn = −λ2nψn.

For ~ > 0,we take Ω~ := {n ∈ N : ~2λ2n ∈ [1 − α~, 1 + α~]}, where α is some fixed positive
number. In this case, the probability measure is given by P~ := 1

|Ω~|
∑

n∈Ω~
δn and the

measurable map is given by u~(n) := ψn. Applying corollary 2.3 to this example, we find that

for every a in C∞
o (T ∗M), and for every δ > 0, there exists H̃(δ) > 0 such that

1

|Ω~|

∣

∣

∣

∣

{

n ∈ Ω~ :

∣

∣

∣

∣

µ~,n(a)−
∫

S∗M
adL

∣

∣

∣

∣

≥ δ

}
∣

∣

∣

∣

= Oa,δ(~
H̃(δ)).

Shnirelman theorem provides a oa,δ(1) and using the results from [34] on eigenfunctions of ∆,
one would obtain a Oa,δ,p(| log ~|−p) for arbitrarily large p.

4.2. Truncated Dirac distributions. The second class of examples we will consider is given
by families of vectors constructed from the Dirac distributions. For y in M , we denote δy the
Dirac distribution given by 〈δy, f〉 := f(y) (where f is in C∞(M)). To construct our G.O.F.,
we will project δy on L2(M). To do this, recall that we have defined I(~) := [a(~), b(~)],
where b(~) − a(~) ≥ 2α~ and that we have denoted N(I(~)) := |{n : ~2λ2n ∈ I(~)}|. Using
these notations, we can introduce a truncated Dirac distribution as follows:

δ~y :=

(

VolM (M)

N(I(~))

)
1
2

1lI(~)
(

−~2∆
)

δy.

According to (global and local) Weyl laws from [9] and from [31] (Theorem 1.2), we know
that in the Anosov case,

(

M,
VolM

VolM (M)
, δ~y

)

is a G.O.F. in the spectral window I(~).

Applying Corollary 2.3 to this example, we find that for every a in C∞
o (T ∗M), for every θ in

L1(R,R+) and for every δ > 0, there exists H̃(δ) > 0 such that

VolM

({

y ∈M :

∣

∣

∣

∣

µ~,y(a⊗ θ)−
∫

S∗M
adL

∫

R

θ(t)dt

∣

∣

∣

∣

≥ δ

})

:= Oa,θ,δ(~
H̃(δ)).

Thus, if we choose y randomly on M according to the volume measure, and consider the

solution of the Schrödinger equation eıt
∆
2 δ~y , our result says that we have convergence of the

associated semiclassical measure to the uniform measure, for most y (in the probability sense,
and with an explicit bound) as ~ tends to 0. Taking a subsequence (~n)n that tends to 0
fast enough, we can apply the Borel-Cantelli lemma and derive convergence for almost every
y [26]. An interesting question would be to understand more precisely for which subsequences
(~n) we have convergence for almost every y.
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4.3. Coherent states. Similar results could, in principle, apply to bases of coherent states
(e.g. gaussian states). Such bases can be constructed easily in euclidean situations; see [26]
for an application of Theorem 2.2 to the “cat-map” toy model. However, on an arbitrary
manifold, it seems difficult to construct bases of coherent states meeting all the requirements
of the definition of a G.O.F, which are actually quite strong.

5. Proof of theorem 2.2

In this section, we give a proof of Theorem 2.2: there are two steps. To begin with, we
combine the Bienaymé-Chebyshev inequality and the Egorov theorem to obtain a first bound
(§5.2). Then we apply a large deviations estimate due to Kifer [17] to obtain a bound in
terms of the topological pressure.
We fix θ an element of L1(R,R+) such that

∫

θ(t)dt = 1. Let a be an element in C∞
o (T ∗M,R)

that satisfies
∫

S∗M adL = 0. Recall that we defined

χmax := lim
t→±∞

1

t
log sup

ρ∈S∗M
‖dρgt‖.

As the states u~(ω) are uniformly microlocalized in a thin neighborhood of S∗M , we can
assume that a is compactly supported in a tubular neighborhood p−1

(

[12 − η, 12 + η]
)

of S∗M
(with η > 0 arbitrarily small). Letting χη = χmax

√
1 + 2η, we have

∀t ∈ R, ∀ρ ∈ T ∗M,∀α, ‖∂α(a ◦ gt)(ρ)‖ ≤ Ca,αe
χη |α||t|.

5.1. Long-time Egorov theorem. We fix c such that cχη <
1
2 . The positive quantization

Op+
~
procedure satisfies the following “long time Egorov property” :

(12) ∀|t| ≤ c| log ~|, ‖U−t~Op+
~
(a)U t~ −Op+

~
(a ◦ gt)‖L2(M)→L2(M) = Oa(~

1
2
−ν),

where ν := cχη (see [4]).

Lemma 5.1. Using previous notations, for every δ0 > 0, there exists ~0 (depending on a, θ
and δ0) such that for every ~ < ~0, we have for every |T | ≤ c| log ~|:

∥

∥

∥

∥

∫

θ(t)U−t

(

Op+
~
(a)− 1

2T

∫ T

−T
Op+

~
(a ◦ gs)ds

)

U tdt

∥

∥

∥

∥

L2(M)→L2(M)

≤ δ0.

Proof. The proof of this lemma relies on the application of the Egorov property (12). For
T a real number such that |T | ≤ c| log ~|, we have
∫

θ(t)U−t

(

1

2T

∫ T

−T
Op+

~
(a ◦ gs)ds

)

U tdt =
1

2T

∫ T

−T

∫

θ(t)U−t−s~Op+
~
(a)U t+s~dtds+Oa(~

1
2
−ν).

We make the change of variables t′ = t+ s~ and use the fact that ‖θ(.)− θ(.− τ))‖L1 −→
τ−→0

0

to conclude.�

5.2. Bienaymé-Chebyshev and Jensen’s inequality. For simplicity of notations, we will
denote the quantity we want to bound as follows:

P~(a⊗ θ, δ) := P~ ({ω ∈ Ω~ : µ~,ω(a⊗ θ) ≥ δ}) .
Our first step is to combine the previous lemma to the Bienaymé-Chebyshev inequality in

order to obtain a bound on P~(a⊗ θ, δ).
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Lemma 5.2. Let δ, δ0 > 0 be arbitrary positive numbers. For s ∈ R, denote

as(T (~), ρ) := exp

(

s

∫ T (~)

−T (~)
a ◦ gτ (ρ)dτ

)

,

where T (~) = c| log ~| (and c is such that cχη < 1/2). Then, given s > 0 and for ~ small
enough, one has

(13) P~(a⊗ θ, δ) ≤ 2
e(−2δ+3δ0)sT (~)

N(I(~))
Tr
[

1lI(~)(−~2∆)Op+
~
(as(T (~), •))

]

.

Proof. To prove this lemma, we fix s > 0. A direct application of the Bienaymé-Chebyshev
inequality allows us to write

P~(a⊗θ, δ) := P~ ({ω ∈ Ω~ : µ~,ω(a⊗ θ) ≥ δ}) ≤ e−2sδT (~)

∫

Ω~

exp (2sT (~)µ~,ω(a⊗ θ)) dP~(ω).

We can now use Lemma 5.1 to deduce that, for ~ small enough,

P~(a⊗θ, δ) ≤ e−2sδT (~)

∫

Ω~

exp

(

sµ~,ω

((

∫ T (~)

−T (~)
a ◦ gτdτ

)

⊗ θ

)

+ 2sδ0T (~)‖u~(ω)‖2
)

dP~(ω).

Using the fact that ‖u~(ω)‖ = 1 + o(1) uniformly for ω in Ω~, the quantity e2sδ0T (~)‖u~(ω)‖ is

uniformly bounded by e3sδ0T (~) for ~ small enough. The map x 7→ esx is convex and we can
use Jensen’s inequality to write

P~(a⊗θ, δ) ≤ es(−2δ+3δ0)T (~)

∫

Ω~

µ~,ω

(

exp

(

sµ~,ω(1⊗ θ)

(

∫ T (~)

−T (~)
a ◦ gτdτ

))

⊗ θ

)

dP~(ω)

µ~,ω(1⊗ θ)
.

Using again that ‖u~(ω)‖ = 1+o(1) uniformly for ω in Ω~, we find (using that θ is nonnegative
and of integral 1)

0 <
1

2
≤ µ~,ω(1⊗ θ) ≤ 1 +

δ0
‖a‖∞

,

uniformly for ~ small enough. All this can be summarized as follows:

P~(a⊗ θ, δ) ≤ 2es(−2δ+4δ0)T (~)

∫

Ω~

µ~,ω (as(T (~), •) ⊗ θ) dP~(ω).

Note that the function as(T (~), •) belongs to the class of symbols S0,k0
ν (T ∗M) where ν :=

cχη < 1/2 and k0 := 2cs‖a‖∞; moreover as(T (~), •) is constant in a neighborhood of infinity.
The previous inequality can be rewritten as :

P~(a⊗ θ, δ) ≤ 2e(−2δ+4δ0)sT (~)

∫

θ(t)

∫

Ω~

〈u~(ω)|U−tOp+
~
(as(T (~), •))U t|u~(ω)〉dP~(ω)dt.

We recall that if (u~(ω))ω∈(Ω~ ,P~) is a G.O.F. then for every t in R, (U tu~(ω))ω∈(Ω~,P~) is also
a G.O.F. Using point 3 of the definition of a G.O.F, we get the following bound for ~ small
enough:

(14) P~(a⊗ θ, δ) ≤ 2e(−2δ+4δ0)sT (~)

N(I(~))
Tr
[

1lI(~)(−~2∆)Op+
~
(as(T (~), •))

]

.

�
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5.3. Trace asymptotics. We now have to estimate (from above) the trace

(15) Tr
[

1lI(~)(−~2∆)Op+
~
(as(T (~), •))

]

.

We first underline that, for every ~ > 0, there exist energy levels E1 < · · · < EP (depending
on ~) such that

I(~) = [a(~), b(~)] ⊂
P
⊔

p=1

[Ep − α~, Ep + α~) ⊂ [a(~) − α~, b(~) + α~],

for some fixed positive α. Note that P = O((b(~) − a(~))/~). We decompose (15) into

P
∑

p=1

Tr
[

1l[Ep−α~,Ep+α~)(−~2∆)Op+
~
(as(T (~), •))

]

.

We shall bound each term of the previous sum (uniformly with respect to p), using standard
trace estimates, and then sum over p. We consider for instance the interval [1− α~, 1 + α~),
and recall how to determine the asymptotic behaviour of

Tr
[

1l[1−α~,1+α~)(−~2∆)Op+
~
(as(T (~), •))

]

.

Introduce a function f which is C∞, compactly supported in a small neighborhood of 1, equal
to 1 in a neighbourhood of 1 and taking values in [0, 1]. We shall also use a function χ in S(Rd)
whose Fourier transform is compactly supported in a small neighborhood of 0, containing no
period of the closed geodesics of (gt) on S∗M . We assume that χ ≥ 0 and that it is greater
than 1 on [−α,α]. Using the fact that the quantization is positive, we can bound the previous
quantity as follows:

(16) Tr
[

1l[1−α~,1+α~)(−~2∆)Op+
~
(as(T (~), •))

]

≤ Tr

[

f(−~2∆)χ

(−~2∆− 1

~

)

Op+
~
(as(T (~), •))

]

.

The study of this last quantity now follows well known lines. We use the Fourier inversion

formula, 2πχ

(

E − 1

~

)

=

∫

R

e
ı(E−1)

~
tχ̂(t)dt. As a consequence, the right-hand side of (16) can

be written as
1

2π

∫

R

e−
ı
~
tTr
(

Op+
~
(as(T (~), •))U2t~f(−~2∆)

)

χ̂(t)dt.

The asymptotic behaviour of the trace comes from an asymptotic expansion of the kernel
of the operator Op+

~
(as(T (~), •))U2t~f(−~2∆). This expansion is given by the theory of

Fourier integral operators [8] (chapter 11), [11] (chapter 10). The trace is then expressed as
the integral of the kernel over the diagonal, and the asymptotic behaviour of this integral is
determined thanks to the method of stationary phase ([8], chapter 11).

Lemma 5.3. For every integer N ≥ 1, we have

Tr

[

f(−~2∆)χ

(−~2∆− 1

~

)

Op+
~
(as(T (~), •))

]

=

1

(2π~)d−1

(

N−1
∑

n=0

~n
∫

S∗M
D2nas(T (~), ρ)dL(ρ) +Oa,χ,θ,N (~N(1−2ν)−βν−k0)

)

,
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where β > 0 depends only on the dimension of M , and where D2n is a differential operator
of order 2n on T ∗M (depending on the cutoff functions and on the choice of the quantization
Op+

~
).

There are many references for this kind of estimates. For instance, a very similar calculation
is done by Schubert in [29] (proposition 1; he stops at N = 1 but the stationary phase method
actually provides asymptotic expansions at any order).

Recall that ν = cχη < 1
2 . It is important here to note that as(T (~), •) belongs to the

class S0,k0
ν (T ∗M). We also underline the fact that the observable as(T (~), x, ξ) satisfies the

particular property that D2nas(T (~), ρ) is of the form as(T (~), x, ξ)b2n(x, ξ), with ‖b2n‖∞ =
O(|s|2n~−2nν). If s stays in a bounded interval, and if we choose N large enough accordingly,
this implies that

Tr

[

f(−~2∆)χ

(−~2∆− 1

~

)

Op+
~
(as(T (~), •))

]

≤

1

(2π~)d−1

(
∫

S∗M
as(T (~), ρ)dL(ρ)

)

(1 +O(~1−2ν)).

Combing this with Lemma 5.2, using the Weyl law (3), we finally have, for every N ≥ 1
and ~ small enough,

(17) P~(a⊗ θ, δ) ≤ Ce(−2δ+4δ0)sT (~)

(
∫

S∗M
as(T (~), ρ)dL(ρ)

)

(1 +O(~1−2ν)),

for some constant C that does not depend on ~.

5.4. A large deviations bound. To conclude, we use Kifer’s large deviations result (11).
For our proof, we only need an upper bound on the quantity

∫

S∗M
exp

(

s

∫ T

−T
a ◦ gt(ρ)

)

dL(ρ).

Compared with (11), there is a parameter s in the exponential that stays in a bounded
interval I. We use the upper bound (11), which shows that for every δ′ > 0 and any bounded
interval I in R+, there exists cδ′ > 0 and n(δ′, I) ∈ N such that for every n ≥ n(δ′, I) and
every s in I:

(18)

∫

S∗M
exp

(

s

∫ T

−T
a ◦ gt(ρ)

)

dL(ρ) ≤ cδ′e
Tδ′e2TP (sa+ϕu).

This last bound will allow us to conclude. In fact, combining this inequality to the bound (17)
on P~(a⊗ θ, δ), we find that:

P~(a⊗ θ, δ) ≤ Ce(−2δ+4δ0)sT (~)eT (~)δ′e2T (~)P (sa+ϕu),

where the constant C depends on the different parameters but not on ~. This implies

lim sup
~→0

log (P~(a⊗ θ, δ))

c| log ~| ≤ δ′ + (−2δ + 4δ0)s+ 2P (sa+ ϕu) .

This last inequality holds for any δ0 > 0 and any δ′ > 0. It implies that for every s > 0 in
the interval I:

∀c ∈
(

0,
1

2χmax

)

, lim sup
~→0

log (P~(a⊗ θ, δ))

c| log ~| ≤ −2sδ + 2P (sa+ ϕu) .
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In particular, we find that

∀δ ∈ R, lim sup
~→0

log (P~(a⊗ θ, δ))
| log ~|
2χmax

≤ 2 inf
s∈R+

{−sδ + P (sa+ ϕu)} .

Since δ > 0, we have infs∈R+ {−sδ + P (sa+ ϕu)} = infs∈R {−sδ + P (sa+ ϕu)} . This con-
cludes the proof of Theorem 2.2.�

6. Proof of Theorem 2.4

In this section, we fix two energy levels 0 ≤ E1 < E2 and consider a sequence (u~)~→0+ in
L2(M) that satisfies

lim
~→0

∥

∥

(

IdL2(M) − 1l[E1,E2](−~2∆)
)

u~
∥

∥

L2(M)
= 0.

Moreover, we suppose that ‖u~‖L2(M) = 1. The proof follows essentially the same lines as
in [4], and we refer the reader to that paper for a detailed account.

6.1. Quantum partitions. As usual when computing the Kolmogorov–Sinai entropy, we
start by decomposing the manifold M into finitely many pieces (of small diameter). Let
(Pk)k=1,...,K be a family of smooth real functions on M , with suppPk ⋐ Ωk, such that

(19) ∀x ∈M,

K
∑

k=1

P 2
k (x) = 1 .

Later on we will assume that the diameters of the supports of the Pk are small enough. We
shall denote P̂k the operator of multiplication by Pk(x) on the Hilbert space L2(M). We
denote the Schrödinger flow by U t = exp( ıt∆2 ). With no loss of generality, we will assume

that the injectivity radius ofM is greater than 2, and work with this propagator at time ~, U~.
This unitary operator is a Fourier integral operator associated with the geodesic flow taken
at time t = 1, g1. As one does to compute the Kolmogorov-Sinai entropy of an invariant
measure, we define a new quantum partition of unity by evolving and refining the initial
partition under the quantum evolution. For each time n ∈ N and any sequence of symbols
α = (α0, · · · , αn−1), αi ∈ [1,K] (we say that the sequence α is of length |α| = n), we define
the operators

(20) πα = P̂αn−1(n− 1)P̂αn−2(n− 2) . . . P̂α0 .

Throughout the paper we use the notation Â(t) = U−t~ÂU t~ for the quantum evolution of an

operator Â. From (19) and the unitarity of U , the family of operators {πα : |α| = n} obviously
satisfies the resolution of identity

∑

|α|=n παπ
∗
α = IdL2(M). We also have

∑

|α|=n π
∗
απα =

IdL2(M).

6.2. Quantum entropy, and entropic uncertainty principle. For each time n, and each
normalized φ ∈ L2(M), we define two quantities that are noncommutative analogues of the
entropy (8) :

h−n (φ) = −
∑

|α|=n

‖π∗αφ‖2 log
(

‖π∗αφ‖2
)

,(21)

h+n (φ) = −
∑

|α|=n

‖παφ‖2 log
(

‖παφ‖2
)

(22)
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In all that follows, the integer n is of order c̃| log ~| (with c̃ > 0 to be chosen later), and thus
the number of terms in the sum

∑

|α|=n is of order ~−K0 for some K0 > 0. The following is

proved in [4], using the entropic uncertainty principle of [19].

Proposition 6.1. Let χ be real-valued, smooth, compactly supported function on R. Define

(23) c(χ, n) := max
|α|=|α′|=n

(

‖πα′(n)πα χ(−~2∆)‖
)

.

Then for any ~ > 0, L > 0, for any normalized state φ satisfying ,

(24) sup
|α|=n

‖(I − χ(−~2∆))π∗αφ‖ ≤ ~L,

we have

h+n (U
n~φ) + h−n (φ) ≥ −2 log

(

c(χ, n) + hL−K0
)

.

Finally everything boils down to the main estimate :

Theorem 6.2. [1, 2, 4] If the diameters of the supports of the functions Pk are small enough,
the following holds.

Choose χ smooth, compactly supported in [E− ε,E + ε], and such that ‖χ‖∞ ≤ 1. For any
c̃ > 0, there exists ~c̃ > 0 such that, for all ~ < ~c̃, for n ≤ c̃| log ~|, and any pair of sequences
α, α′ of length n,

(25)
∥

∥πα′(n)πα χ(−~2∆)
∥

∥ ≤ C~−(d−1)/2 e−n(d−1)
√
E−ε.

(The constant C is an absolute constant).

We note that this result is an improvement of the estimate of [1] (where the prefactor was

only ~−d/2) and [4] (where the support of χ was assumed to shrink with ~). Proving Theorem
2.4 using the weaker results of [1] and [4] turned out to be more painful than reproving
Theorem 6.2 directly. This proof is provided in [2], section 5. In what follows, the integer n
will always be taken equal to ⌊c̃| log ~|⌋, where c̃ will be fixed in the next section. We assume

that L is large enough so that ~L−K0 is negligible in comparison with ~−(d−1)/2 e−n(d−1)
√
E−ε.

Under all these assumptions, we have :

Proposition 6.3. Let (φ~)~→0 be a sequence of normalized states satisfying the assump-
tions of proposition 6.1 with L large enough so that ~L−K0 is negligible in comparison with

~−(d−1)/2 e−n(d−1)
√
E−ε for n = ⌊c̃| log ~|⌋. Then, in the semiclassical limit, the entropies of

φ~ at time n = ⌊c̃| log ~|⌋ satisfy

(26)
h+n (U

n~φ~) + h−n (φ~)
2n

≥ (d− 1)
√
E − ε− (d− 1)

2c̃
+O(n−1).

6.3. Subadditivity until the Ehrenfest time. In this paragraph, we fix a sequence of
normalized states (φ~)~→0 satisfying (24) (χ is always assumed to be supported in [E−ε,E+
ε]). We fix some arbitrary δ > 0, and introduce the Ehrenfest time,

(27) nEhr(~, E, ε) :=

⌊

(1− δ)| log ~|√
E + ε

⌋

.

Remark. The Ehrenfest time is the largest time interval on which the (non-commutative)
dynamical system formed by the flow (U t~) acting on pseudodifferential operators (supported
in {‖ξ‖2 ∈ [E − ε,E + ε]}) is commutative, up to small errors going to 0 with ~.
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We take n = nEhr(~, E, ε) (in other words, we take c̃ = (1−δ)√
E+ε

), and we use a subadditivity

property of the entropies h+n and h−n to go from (26) for n = nEhr(~, E, ε) to a fixed, arbitrary,
integer n0. The proof of the next proposition is given in [4] in the case when φ~ is an
eigenfunction of ∆. It can easily be adapted to the case of an arbitrary φ~ and yields :

Proposition 6.4 (Subadditivity). Let E ≥ 0 and ε > 0. For δ > 0 arbitrary, define the
Ehrenfest time nEhr(~, E, ε) as in (27). Let (φ~)~→0 be a normalized family satisfying (24),
where χ is supported in [E − ε,E + ε], and L is chosen large enough.

For any n0 ∈ N, there exists a positive Rn0(~), with Rn0(~) → 0 as ~ → 0, such that for
any ~ ∈ (0, 1], any n0,m ∈ N with n0 +m ≤ nEhr(~), we have

h+n0+m(φ~) ≤ h+m(φ~) + h+n0
(Um~φ~) +Rn0(~) ,

h−n0+m(φ~) ≤ h−n0
(φ~) + h−m(Un0~φ~) +Rn0(~).

Let n0 ∈ N be fixed and n = nEhr(~, E, ε). Using the Euclidean division n = qn0 + r, with
r < n0, Proposition 6.4 implies that for ~ small enough,

h+n (φ~)

n
≤
∑q−1

k=0 h
+
n0
(Ukn0~φ~)

qn0
+
h+r (U

qn0~φ~)

n
+
Rn0(~)

n0

and

h−n (φ~)
n

≤
∑q−1

k=0 h
−
n0
(U (r+kn0)~φ~)

qn0
+
h−r (U

r~φ~)

n
+
Rn0(~)

n0
.

Note that h+r (U
qn0~φ~)+h−r (U

r~φ~) stays uniformly bounded (by log n0) when ~ → 0. Com-
bining the subadditivity property with Proposition 6.3, we find that
(28)
∑q−1

k=0

(

h+n0
(Ukn0~Un~φ~) + h−n0

(U (r+kn0)~φ~)
)

2qn0
≥ (d−1)

√
E − ε−(d− 1)

√
E + ε

2(1− δ)
−Rn0(~)

n0
+On0(1/n),

for n = nEhr(~, E, ε).

6.4. The conclusion. The interval [E1, E2] is fixed. Consider E in [E1, E2] and a sequence
of normalized states (u~)~→0 that satisfies (6). We may assume without loss of gener-
ality that 1l[E1,E2]

(

−~2∆
)

u~ = u~ (since the semiclassical limits associated with u~ and

1l[E1,E2]

(

−~2∆
)

u~ will be the same). We fix a function χ ∈ C∞
o (R), supported in [−1, 1] such

that
∑

k∈Z χ
2(x − k) ≡ 1. For N ∈ N, we denote ε = E2−E1

N , and χj(x) = χ
(

x−E1−jε
ε

)

(j = 0, . . . , N). We have u~ =
∑N

j=0 χ
2
j

(

−~2∆
)

u~ and thus ‖u~‖2 =
∑N

j=0 ‖χj

(

−~2∆
)

u~‖2.
We will denote uj = χj

(

−~2∆
)

u~ and ũj =
uj

‖uj‖ . For t ∈ R, we apply (28) to φ~ = U tũj and

obtain

(29)

∑q−1
k=0

(

h+n0
(Ukn0~Un~U tũj) + h−n0

(U (r+kn0)~U tũj)
)

2qn0

≥ (d− 1)
√

E1 + (j − 1)ε− (d− 1)

2(1− δ)

√

E1 + (j + 1)ε− Rn0(~)

n0
+On0(1/| log ~|),
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If we multiply by θ(t) (satisfying θ ∈ L1(R,R+) and
∫

θ = 1), integrate with respect to t, and
take into account the fact that (kn0 + r)~ −→ 0 and n~ −→ 0, we find that

(30)

∫

θ(t)
h+n0

(U tũj) + h−n0
(U tũj)

2n0
dt

≥ (d− 1)
√

E1 + (j − 1)ε − (d− 1)

2(1− δ)

√

E1 + (j + 1)ε+ on0,N (1).

We now use the fact that

N
∑

j=0

∥

∥παU
tuj
∥

∥

2
=
∥

∥παU
tu~
∥

∥

2
+ on0,N (1),

where the remainder is uniform for α of length n0, and for t ∈ R. This comes from the
fact that πα and χj

(

−~2∆
)

both belong to Ψ0,0(M), from which we have the commutator

estimate ‖[πα, χj

(

−~2∆
)

]‖ = O(~) (we also use the fact that
∑

χ2
j = 1).

If we combine this with the concavity of the map x 7→ −x log x, we can verify that as ~

tends to 0,
N
∑

j=0

‖uj‖2 h+n0

(

U tũj
)

≤ h+n0

(

U tu~
)

+ on0,N (1),

where the remainder is uniform for t in R. A similar inequality holds with h−n0
. Combined

with (30), this yields that

(31)

∫

θ(t)
h+n0

(U tu~) + h−n0
(U tu~)

2n0
dt

≥
N
∑

j=0

‖uj‖2
[

(d− 1)
√

E1 + (j − 1)ε − (d− 1)

2(1 − δ)

√

E1 + (j + 1)ε

]

+ on0(1).

We define the following averaged entropy

h−n (φ, θ) = −
∑

|α|=n

(
∫

θ(t)
∥

∥π∗αU
tφ
∥

∥

2
dt

)

log

(
∫

θ(t)
∥

∥π∗αU
tφ
∥

∥

2
dt

)

,(32)

h+n (φ, θ) = −
∑

|α|=n

(
∫

θ(t)
∥

∥παU
tφ
∥

∥

2
dt

)

log

(
∫

θ(t)
∥

∥παU
tφ
∥

∥

2
dt

)

.(33)

Using again the concavity of x 7→ −x log x, (31) implies

(34)
h+n0

(u~, θ) + h−n0
(u~, θ)

2n0

≥
N
∑

j=0

‖uj‖2
[

(d− 1)
√

E1 + (j − 1)ε − (d− 1)

2(1− δ)

√

E1 + (j + 1)ε

]

+ on0,N (1).

We can now take the limit ~ −→ 0. If the semiclassical measure associated with the family
(U tu~) decomposes as µt =

∫

µt,Edν(E), then ‖uj‖2 converges to
∫

χ2
j(E)dν(E). On the
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left-hand side of (34), h+n0
(u~, θ) and h

−
n0
(u~, θ) both converge to

−
∑

|α|=n

(
∫

θ(t)µt((P
2
αn−1

◦ gn−1) . . . (P 2
α1

◦ g1)P 2
α0
)dt

)

log

(
∫

θ(t)µt((P
2
αn−1

◦ gn−1) . . . (P 2
α1

◦ g1)P 2
α0
)dt

)

.

After taking the limit ~ −→ 0, we take the limit N −→ +∞ : on the right-hand side of
(34), this transforms the discrete lower bound

N
∑

j=0

[

(d− 1)
√

E1 + (j − 1)ε − (d− 1)

2(1 − δ)

√

E1 + (j + 1)ε

]
∫

χ2
j(E)dν(E)

into the integral d−1
2

∫
√
Edν(E) (after taking δ → 0).

Finally we let n0 −→ +∞, which allows to go from h±n0
on the left-hand side of (34) to the

Kolmogorov-Sinai entropy hKS; for this step, details can be found in [4] (paragraph 2.2.8).
At this stage, we obtain

hKS

(
∫

θ(t)µtdt

)

= hKS

(
∫

θ(t)µt,Edν(E)dt

)

≥ d− 1

2

∫ E2

E1

√
Edν(E).

If we use the same argument, replacing u~ by f(−~2∆)u~ (where f is a smooth function
on [E1, E2] such that

∫

f2(E)dν(E) = 1), we obtain by the same argument

hKS

(
∫

θ(t)µt,Ef
2(E)dν(E)dt

)

≥ d− 1

2

∫ E2

E1

√
Ef2(E)dν(E).

We finally use the fact that µ 7→ hKS(µ) is affine, to convert the last inequality into
∫

R

∫ E2

E1

θ(t)f2(E)

(

hKS(µt,E)−
d− 1

2

√
E

)

dtdν(E) ≥ 0;

this inequality holds for all θ in L1(R,R+) such that
∫

θ = 1 and f in C∞
o (R+,R) such that

∫

f2(E)dν(E) = 1. As a consequence, one has for Leb⊗ ν-almost every (t, E),

hKS(µt,E) ≥
d− 1

2

√
E.�

Appendix A. From entropy estimates to observability

In this short appendix, we explain how we can go from the entropy estimates of Theorem 2.4
to the observability estimate of Theorem 2.5. According to Lebeau [18], it is sufficient to prove
the following weak observability result to deduce Theorem 2.5:

Theorem A.1. Under the assumptions of Theorem 2.5, for all T > 0, there exists CT,a > 0
such that, for all u :

(35) ‖u‖2L2(M) ≤ CT,a

(
∫ T

0
‖aeıt∆2 u‖2L2(M)dt+ ‖u‖2H−1(M)

)

.

For the sake of completeness, we briefly recall the argument of Lebeau to deduce observ-
ability from a weak observability estimate at time T . First, for T ′ > T , we introduce the
subspace

N(T ′) :=
{

ϕ ∈ L2(M) : ∀0 ≤ t ≤ T ′, a(x)(eıt∆ϕ)(x) = 0
}

.

From weak observability and the compactness of the injection L2 ⊂ H−1, we can deduce that
for T ′ > T , this subspace is finite dimensional. One can also verify that for every T < T ′′ < T ′
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and for every ϕ in N(T ′), ∆ϕ belongs to N(T ′′) (by taking the limit of the sequence eıǫ∆ϕ−ϕ
ǫ ,

which belongs to N(T ′′) for ǫ small enough, and is bounded in H−2(M)).
This implies that ∆ is an operator from the finite dimensional subspace N(T ′) into itself.

As a is nontrivial, one can deduce the existence of an eigenfunction of the laplacian which is
equal to 0 on a nonempty open set. By Aronszajn-Cordes’ theorem [16] (section 17.2), this
eigenfunction is necessarly 0 and the subspace N(T ′) is reduced to {0}. By contradiction, we
can finally deduce that observability holds for T ′ > T .

In order to prove Theorem A.1, we proceed by contradiction and make the assumption that
there exist a sequence of normalized vectors (un)n∈N in L2(M) and T > 0 such that

(36) lim
n→+∞

(
∫ T

0
‖aeıt∆2 un‖2L2(M)dt+ ‖un‖2H−1(M)

)

= 0.

This implies that un converges to 0, weakly in L2. For every t in R, we introduce the
distribution

µn(t)(b) := 〈un|e−ıt∆
2 Op1(b)e

ıt∆
2 un〉L2(M),

defined for all b ∈ S0 (see the remark following Theorem 2.4). This distribution is the analogue
of (2) in the microlocal setting [12]. As before, the map t 7→ µn(t) belongs to L∞(R,S ′

0).
Thus, there exists a subsequence (unk

)k and µ in L∞(R,S ′
0) such that

∫

R×T̂ ∗M
θ(t)b(x, ξ)µnk

(t)(dx, dξ)dt −→
k−→+∞

∫

R×T̂ ∗M
θ(t)b(x, ξ)µ(t)(dx, dξ)dt

for all θ ∈ L1(R) and b ∈ S0. Besides, as above, µ(t) is a probability measure on the com-

pactified cotangent bundle T̂ ∗M , and is invariant under the normalized geodesic flow. As

un(t) = eıt
∆
2 un converges weakly to 0 for every t in R, each µ(t) is actually supported at

infinity, and may thus be identified with a probability measure on the unit sphere bundle
S∗M , invariant under the geodesic flow.

From Theorem 2.4 and the associated remark, we know that for almost every t in R,
hKS(µ(t)) ≥ d−1

2 . We will now use the fact that the Hausdorff dimension of Ka is less than
d. From [23] (Theorem 4.2), this implies that the topological entropy satisfies

htop(Ka, (g
t)) := sup

µ∈M(S∗M,gt)
{hKS(µ) : µ(Ka) = 1} < d− 1

2
.

Using property (36), we know that
∫

S∗M×[0,T ] a
2(x, ξ)µ(t)(dx, dξ)dt = 0. In particular, this

implies that µ(t)(S∗M\Ka) = 0 for almost every t in [0, T ] (as µ(t) is gs-invariant) and it
leads to a contradiction.�

Appendix B. Pseudo-differential calculus on a manifold

In this section, we recall some facts of pseudodifferential calculus; details can be found
in [11]. We define on R2d the following class of (semiclassical) symbols:

Sm,k(R2d) := {a = a~ ∈ C∞(R2d) : ∀K ⊂ Rd compact,

∀α, β,∃Cα,β ,∀(x, ξ) ∈ K × Rd, |∂αx ∂βξ a| ≤ Cα,β~
−k〈ξ〉m−|β|}.

Let M be a smooth compact riemannian d-manifold without boundary. Consider a finite
smooth atlas (fl, Vl) of M , where each fl is a smooth diffeomorphism from the open subset
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Vl ⊂ M to a bounded open set Wl ⊂ Rd. To each fl correspond a pull back f∗l : C∞(Wl) →
C∞(Vl) and a canonical map f̃l from T ∗Vl to T ∗Wl:

f̃l : (x, ξ) 7→
(

fl(x), (Dfl(x)
−1)T ξ

)

.

Consider now a smooth locally finite partition of identity (φl) adapted to the previous atlas
(fl, Vl). That means

∑

l φl = 1 and φl ∈ C∞
o (Vl). Then, any observable a in C∞(T ∗M) can

be decomposed as follows: a =
∑

l al, where al = aφl. Each al belongs to C
∞(T ∗Vl) and can

be pushed to a function ãl = (f̃−1
l )∗al ∈ C∞(T ∗Wl). As in [11], define the class of symbols of

order m and index k:

(37) Sm,k(T ∗M) :=
{

a = a~ ∈ C∞(T ∗M) : ∀α, β,∃Cα,β, |∂αx ∂βξ a| ≤ Cα,β~
−k〈ξ〉m−|β|

}

.

Then, for a ∈ Sm,k(T ∗M) and for each l, one can associate to the symbol ãl ∈ Sm,k(R2d) the
standard Weyl quantization:

Opw~ (ãl)u(x) :=
1

(2π~)d

∫

R2d

e
ı
~
〈x−y,ξ〉ãl

(

x+ y

2
, ξ; ~

)

u(y)dydξ,

where u ∈ C∞
o (Rd). Consider now a smooth cutoff ψl ∈ C∞

c (Vl) such that ψl = 1 close to the
support of φl. A quantization of a ∈ Sm,k(T ∗M) is then defined in the following way:

(38) Op~(a)(u) :=
∑

l

ψl ×
(

f∗l Opw~ (ãl)(f
−1
l )∗

)

(ψl × u) ,

where u ∈ C∞(M). According to the appendix of [11], the quantization procedure Op~ sends
Sm,k(T ∗M) onto the space of pseudodifferential operators of order m and of index k, denoted
Ψm,k(M). It can be shown that the dependence in the cutoffs φl and ψl only appears at order
2 in ~ and the principal symbol map σ0 : Ψ

m,k(M) → Sm,k/Sm,k−1(T ∗M) is then intrinsically
defined.

At various places in this paper, a larger class of symbols should be considered, as in [8]
or [11]. For 0 ≤ ν < 1/2:
(39)

Sm,k
ν (T ∗M) =

{

a = a~ ∈ C∞(T ∗M) : ∀α, β,∃Cα,β , |∂αx ∂βξ a| ≤ Cα,β~
−k−ν|α+β|〈ξ〉m−|β|

}

.

Results of [8] can be applied to this new class of symbols. For example, if M is compact, a

symbol of S0,0
ν gives a bounded operator on L2(M) (with norm independent of ~ ≤ 1).

Even if the Weyl procedure is a natural choice to quantize an observable a on R2d, it is
sometimes preferrable to use a quantization that satisfies the additional property : Op~(a) ≥ 0

if a ≥ 0. This can be achieved thanks to the anti-Wick procedure, see [15]. For a in S0,0
ν (R2d),

that coincides with a function on M outside a compact subset of T ∗M , one has

(40) ‖Opw~ (a)−OpAW
~ (a)‖L2 ≤ C

∑

|α|≤D

~
|α|+1

2 ‖∂αda‖,

where C and D are some positive constants that depend only on the dimension d. To get a
positive procedure of quantization on a manifold, one can replace the Weyl quantization by the
anti-Wick one in definition (38). We will denote Op+

~
(a) this new choice of quantization, well

defined for every element in S0,0
ν (T ∗M) of the form b(x)+c(x, ξ) where b belongs to S0,0

ν (T ∗M)

and c belongs to C∞
o (T ∗M) ∩ S0,0

ν (T ∗M). We underline the fact that Op+
~
(1) = IdL2(M).
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[26] G. Rivière Délocalisation des mesures semi-classiques pour des systèmes dynamiques chaotiques, PhD
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