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Abstract

We study the Maxwell-Bloch model, which describes the propagation of a laser through a
material and the associated interaction between laser and matter (polarization of the atoms
through light propagation, photon emission and absorption, etc.). The laser field is described
through Maxwell’s equations, a classical equation, while matter is represented at a quantum
level and satisfies a quantum Liouville equation known as the Bloch model. Coupling between
laser and matter is described through a quadratic source term in both equations. The model
also takes into account partial relaxation effects, namely the trend of matter to return to its
natural thermodynamic equilibrium. The whole system involves 6+N (N +1)/2 unknowns, the
six-dimensional electromagnetic field plus the N (N + 1)/2 unknowns describing the state of
matter, where N is the number of atomic energy levels of the considered material.

We consider at once a high-frequency and weak coupling situation, in the general case of
anisotropic electromagnetic fields that are subject to diffraction. Degenerate energy levels are
allowed. The whole system is stiff and involves strong nonlinearities.

We show the convergence to a nonstiff, nonlinear, coupled Schrödinger-Boltzmann model,
involving 3+N unknowns. The electromagnetic field is eventually described through its enve-
lope, one unknown vector in C3. It satisfies a Schrödinger equation that takes into account
propagation and diffraction of light inside the material. Matter on the other hand is described
through a N -dimensional vector describing the occupation numbers of each atomic level. It
satisfies a Boltzmann equation that describes the jumps of the electrons between the various
atomic energy levels, as induced by the interaction with light. The rate of exchange between
the atomic levels is proportional to the intensity of the laser field. The whole system is the
physically natural nonlinear model.

In order to provide an important and explicit example, we completely analyze the specific
(two dimensional) Transverse Magnetic case, for which formulae turn out to be simpler.

Technically speaking, our analysis does not enter the usual mathematical framework of
geometric optics: it is more singular, and requires an ad hoc Ansatz.
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1 Introduction

Maxwell-Bloch systems are of common use in Laser Physics (see the textbooks [8], [10], [16], [34],
[36], [37]). They modelize the evolution of an electromagnetic field, treated classically, and coupled
with an ensemble of identical atoms, which in turn are described by a quantum density matrix. This
model is relevant when atoms are far from the ionization energy (to possess discrete energy levels),
while they have sufficiently low density and the laser field is strong enough (which allows to describe
the field classically while matter is described in a quantum way – see [16]).
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In the Maxwell-Bloch model, the electromagnetic field satisfies Maxwell’s equations, whose un-
knowns are the electric and magnetic fields E ∈ R3 and B ∈ R3, where E = E(t, x, y, z) and
B = B(t, x, y, z) and t ∈ R is time while (x, y, z) ∈ R3 are the space coordinates. Matter is de-
scribed through a Bloch equation, whose unknown is the density matrix ρ = ρ(t, x, y, z), a quantum
variable which describes the atomic state at (t, x, y, z). We consider that the atoms only visit the
N lowest energy levels. The latter are the N first eigenstates of the free material system, in the
absence of fields. In this basis, the density matrix ρ = ρ(t, x, y, z) is an N ×N matrix, for each value
of (t, x, y, z). The diagonal entries ρ(t, x, y)(n, n) (called populations) give the proportion of matter
that lies in the n-th energy level (n = 1, . . . , N), while the off-diagonal entries ρ(t, x, y, z)(n, p) with
n 6= p, (called coherences) give the correlation between levels n and p. The complete Maxwell-Bloch
system takes into account the coupling between the laser field and the atoms via terms that are
quadratic, proportional to ρ×E, and which describe polarization of matter due to laser propagation.

We study the high frequency and weak coupling behaviour of the Maxwell-Bloch system, a situa-
tion in which the typical frequencies of the field and of the atoms’ oscillations are large and possibly
resonate, while the strength of laser-matter coupling is small.

For large frequencies, the electromagnetic field is expected to be asymptotically solution to a
nonlinear Schrödinger equation. This is the paraxial approximation. We refer to [18] and [26], as
well as [30] on these matters, when the sole laser field propagates (no coupling with matter). When
matter is actually coupled to the field, we refer to [9]. Here a high frequency Maxwell-Bloch system
is studied both physically and mathematically, for atoms that only possess 3 non-degenerate energy
levels. The analysis leads to a Schrödinger-Bloch approximation of the original system, in a spirit
similar to the present paper.

The weak coupling behaviour of matter is a bit more delicate to handle: to have a clean limit,
one needs to take thermodynamic fluctuations into account. For this reason we introduce, in a
standard fashion, phenomenological relaxation operators in the original Bloch system. These impose
a rapid decay of coherences, as well as a quick return to equilibrium of populations. We refer to
[3] for mathematical properties of the relaxation operators that are natural in this context. Due to
the relaxation effects, it is expected that Bloch’s equation is asymptotic to a Boltzmann equation,
sometimes called “Einstein’s rate equation” (cf. [33], [4]). It describes how the atoms jump between
the various energy levels under the action of the external field. When the driving high frequency
field is given (and the Bloch model is thus linear), we refer to the papers [6] and [7], which study
the actual convergence of Bloch’s equation to a Boltzmann model in the weak coupling regime. In
that case, a formula is found for the transition rates involved in the limiting Einstein rate equation,
which coincides with the one formally obtained in the Physics literature. Note however that the
question studied in [6] and [7] is a linear problem, and proofs strongly use ODE averaging techniques
as well as the positivity of relaxation operators (features that the present text does not share). We
also mention [5], where similar asymptotics are treated both for quantum and classical models. We
stress finally that many other works deal with the rigorous derivation of Boltzmann like equations
from (usually linear) models describing the interaction of waves/particles with external media. A
non-convergence result is given in [14] and [15]. Convergence in the case of an electron in a periodic
box is studied in [11], [12], [13], while the case of an electron in a random medium is addressed in
[22], [29], [38], [39], [40] – see also [35] for a semi-classical approach. In a nonlinear context, a partial
result is obtained in [2].

The above formal discussion suggests, in the present case, that the high-frequency Maxwell system
goes to a Schrödinger model for the envelope of the field, while the weakly coupled Bloch system
supposedly goes to a Boltzmann equation describing the jumps of electrons between the atomic levels.

3



This is the program we rigorously develop in the present paper. We fully prove convergence of
the coupled Maxwell-Bloch system to a coupled Schrödinger-Boltzmann model. We also prove that
the rate of exchange between the energy levels is proportional to the laser’s intensity. In doing so
we recover the physically relevant model. Our approach mainly uses three-scales geometric optics,
yet in a more singular context where the partial relaxation effects impose a specific treatment of
coherences.

2 Presentation of the results

2.1 The model

The Maxwell-Bloch system, whose unknowns are the electric field E = E(t, x, y, z) ∈ R3, the magnetic
field B = B(t, x, y, z) ∈ R3, together with the density matrix ρ = ρ(t, x, y, z) ∈ CN×N (the space of
N ×N complex matrices), reads

∂tB + curlE = 0, (1)

∂tE − curlB = −∂tP, with P = Tr (Γρ), (2)

∂tρ = −i[Ω −E · Γ, ρ] +Q(ρ), (3)

where Q(ρ) =W ♯ρd − γ ρod. (4)

In these equations, curl is the usual curl operator on vector fields in R3, Γ as well as Ω are given
matrices in CN×N , γ > 0 is a given positive constant, and whenever A and B are matrices in CN×N ,
the trace Tr (A) denotes the usual trace of A while the bracket [A,B] denotes the usual commutator
between matrices

[A,B] = AB − BA.

The term Q(ρ) = Q(ρ)(t, x, y, z) is the so-called relaxation matrix , an N×N matrix for each value of
(t, x, y, z). Its definition involves W ∈ CN×N , a given matrix with nonnegative entries W (n,m) ≥ 0,
while ρd and ρod denote the diagonal respectively off-diagonal parts of the density matrix ρ (they
correspond respectively to the populations and the coherences). They are N ×N matrices defined,
for each value of (t, x, y, z), by their entries

ρd(t, x, y, z)(n, p) = ρ(t, x, y, z)(n, p) 1[n = p],

ρod(t, x, y, z)(n, p) = ρ(t, x, y, z)(n, p) 1[n 6= p].

Equation (4) also uses the following notation, valid thoughout the present text : given any matrix
A with nonnegative entries we set





A ♯ ρd(n, n) =
N∑

k=1

[A(k, n) ρd(k, k)− A(n, k) ρd(n, n)] ,

A ♯ ρd(n, p) = 0 when n 6= p.

(5)

The meaning of operator Q(ρ) in (3) is the following. The term −γ ρod induces exponential relaxation
to zero for the coherences, while the termW ♯ρd acts on the populations only, and induces exponential
relaxation of the populations towards some thermodynamical equilibrium that depends on the values
of the W (n, p)’s. As in conventional kinetic theory of gases, relation (5) asserts that along time
evolution, atoms may leave with probabilityW (k, n) the kth eigenstate to populate the nth eigenstate

4



(this is the so-called gain term
∑N

k=1W (k, n) ρd(k, k)), while some atoms may conversely leave with
probability W (n, k) the nth state to populate some other kth state (this is the so-called loss term
−
∑N

k=1W (n, k) ρd(n, n)).
Theoretically, the Maxwell-Bloch system needs to be supplemented with the Ampère and Faraday

laws,
divB = 0, div(E + P ) = 0. (6)

These constraints (6) are anyhow transported as soon as they are satisfied by the initial data, hence
we shall skip them in the sequel.

Note that the above equations are readily given in the convenient dimensionless form that suits
our purpose. The precise scaling under study is discussed later.

We now comment on these equations, and on all involved quantities.
The density matrix ρ(t, x, y, z) is Hermitian and positive. It describes the state of matter at

(t, x, y, z).
The constant matrix Ω is the free Hamiltonian of the material system, written in the natural

eigenbasis. It is a fixed physical constant associated with the considered atomic species. It reads

Ω = diag (ω(1), . . . , ω(N)), (7)

where 0 < ω(1) ≤ · · · ≤ ω(N) are the atomic energies. For later convenience, we readily introduce
the differences between energy levels, as

ω(n, k) = ω(n)− ω(k). (8)

The constant matrix Γ is called the dipolar operator. It is a hermitian matrix. It has the value
Natomic×γatomic, where Natomic is the number of atoms per unit volume, while γatomic is a fixed physical
constant (a matrix) associated with the considered atomic species.

The entries of so-called dipolar momentum E · Γ are defined for any m,n = 1, . . . , N , as (E ·
Γ)(t, x, y, z)(m,n) = E(t, x, y, z) · Γ(m,n), where a · b denotes the componentwise product of two
vectors in C3, namely

(E · Γ)(t, x, y, z)(m,n) = Ex(t, x, y, z)Γ(m,n)x + Ey(t, x, y, z)Γ(m,n)y + Ez(t, x, y, z)Γ(m,n)z,

and the subscripts x (resp. y, resp. z), denote the x (resp. y, resp. z) components of the relevant
vectors (note the absence of complex conjugation).

The non-negative transition coefficients W (n, k) ≥ 0 are known as the Pauli coefficients, see [10].
They satisfy a micro-reversibility relation at temperature T , i.e. W (n, k) =W (k, n) exp (ω(k, n)/T ).
In that perspective the relaxation operator Q(ρ) translates the fact that the atoms tend to relax
towards the thermodynamical equilibrium given by ρod ≡ 0 and ρd(n, n) ≡ exp (−ω(n)/T ). Both the
off-diagonal relaxation term γ and the Pauli coefficients W (n, k) are physical data. Contrary to Γ
or Ω, their relation with given physical constants attached with the specific atomic species at hand
is unclear.

The Bloch equation (3) relies on the so-called dipolar approximation : the coupling between light
and matter is taken into account through the simplest [E ·Γ, ρ] term, which is quadratic (proportional
to ρ × E) and local (it only depends on the value of E and ρ and the same point (t, x, y, z)). This
approximation implicitely assumes that the wavelength of the field is larger than the typical spatial
extension of the atom, hence can be taken constant over the whole domain occupied by each given
atom.
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2.2 The scaling

Let us introduce the physical scales in the model, which transform all constants (Γ, Ω, γ, W ) and
unknowns (E, B, ρ) into quantities of order one in the regime we wish to study.

Firstly, concerning the time variations, we study a high frequency regime. Calling 1/ε the di-
mensionless parameter measuring typical values of the frequencies, i.e. the ratio between the time
scale of observations and the time scale of the variations of E, B and ρ, all time derivatives ∂t then
become ε∂t in the scaled version of (1)-(4).

Secondly, we want to study a situation where constructive interference occurs between the time
oscillations of the electromagnetic field and the ones of the atom (giving rise to atomic absorption
and emission of photons). For that reason, the time variations of E, B, and ρ should all take place
at similar frequencies. For that reason Ω is naturally a quantity of order one in the scaled model.

Thirdly, the typical strength of the coupling between light and matter is entirely determined
by the physical constant Γ. Since weak coupling is realized when the polarization operator has an
effect of the order one on the chosen time scale, it turns out that we need to prescribe Γ = O(

√
ε).

Mathematically, this means we shall replace Γ by
√
εΓ in the scaled model. Indeed, the electric dipole

momentum then becomes |E ·(√εΓ)|2 = O(ε) which, integrated over macroscopic time scales O(1/ε),
results in an energy contribution of order one as desired. Physically, since Γ = Natomic×γatomic where
Natomic is the number of atoms per unit volume and γatomic is the polarizability of one atom, this
means that the atomic density is here tuned to be of order O(

√
ε), so as to observe order one effect

of coupling over this scale.
Fourthly, concerning the space variables, the hyperbolic nature of the Maxwell equations (1)-(2)

suggests to rescale space so that ∂x, ∂y, ∂z become ε∂x, ε∂y, and ε∂z, respectively, due to the scaling
∂t 7→ ε∂t and to finite propagation speed: the laser visits space scales O(1/ε) over time scales O(1/ε).
This simple scaling would in fact be easily described along lines similar to the present analysis. We
wish to investigate physically richer situations where diffraction occurs. To this end, as in [9], [19]
and [20], we impose anisotropy and introduce a third scale: on the one hand, we choose one direction
of propagation, say the x direction, meaning that at the microscopic scale, the fields vary with x
but not with (y, z); on the other hand, we restrict our attention to fields that slowly vary over the
scale 1/ε in the x direction (or, in other words, that have spatial extension 1/ε in x), while they
slowly vary over the scale 1/

√
ε in the (y, z) direction (or, in other words, that have spatial extension

1/
√
ε in (y, z)). The typical shape of the laser beam is thus that of a “light cigar”, as in [17]. In

macroscopic scales, this provides fields that strongly oscillate at frequency 1/ε in x (and only in this
direction), while they have support of size 1 in x, and support of size

√
ε in (y, z). All this imposes

to rescale ∂x as ε ∂x, and (∂y, ∂z) as (
√
ε ∂y,

√
ε ∂z) in the above equations. We stress that this is a

definite choice of shape of the kind of laser beams we wish to study. It is also a choice of polarization:
these beams are shot in the x direction only.

Fifthly, consider relaxations Q(ρ). In order for the diagonal relaxation W ♯ρd to have an O(1)
effect at times t of order O(1), we take the coefficients in W of size ε, and write εW (n, k) instead of
W (n, k). The off-diagonal relaxation −γρod on the other hand is supposed to have a much shorter
time scale, which we choose to be of order O(ε). This corresponds to an off-diagonal relaxation
−γ ρod that remains unscaled. In fact, there is no theoretical description of the relaxation time as
a function of ε. In [6] and [7], the off-diagonal relaxation is scaled as −γεµρod with an extra free
parameter µ that is constrained to satisfy 0 ≤ µ < 1 (to have a clean limit, off-diagonal relaxation
should be strong enough with respect to the chosen time scale). For technical reasons, in these
papers, µ is actually restricted to 0 ≤ µ < 1/4. In the present paper, the formal analysis could be
performed for 0 ≤ µ < 1, yet our main stability result (Theorem 5.2) requires the stronger constraint
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µ = 0.

After rescaling all variables and physical constants accordingly, the system (1)-(4) becomes






∂tB
ε + curlεE

ε = 0,

∂tE
ε − curlεB

ε =
i√
ε
Tr (ΓΩγ C

ε)− iTr (Γ[Eε · Γ,Cε +Nε])−
√
εTr (Γ W ♯Nε) ,

∂tC
ε = − i

ε
Ωγ C

ε +
i√
ε
[Eε · Γ,Cε +Nε]od,

∂tN
ε =

i√
ε
[Eε · Γ,Cε]d +W ♯Nε.

(9)

Here and in the sequel, we adopt for convenience the notation Cε and Nε for coherences ρod and
populations ρd, respectively. Besides, throughout the sequel, subscripts “d” and “od” shall always
refer to diagonal and off-diagonal parts of the considered N ×N matrices. Lastly, we also denote by
curlε the curl operator associated with our scaling, i.e.

curlεE =

(
1√
ε
∂yEz −

1√
ε
∂zEy,

1√
ε
∂zEx − ∂xEz, ∂xEy −

1√
ε
∂yEx

)
, (10)

and Ωγ is a shorthand notation for adΩ−iγ,

Ωγ C = [Ω,C]− iγC, i.e. (Ωγ C) (n, p) = ω(n, p)C(n, p)− iγC(n, p). (11)

2.3 Description of the results

Main result: profiles, separation of scales, and obtention of an approximate solution.
Maxwell-Bloch’s system (9) is a nonlinear hyperbolic symmetric system, singular in ε, that we may
write symbolically

L

(
∂t, ∂x,

1√
ε
∂y,

1√
ε
∂z

)
Uε = F ε(Uε).

Its unknown is
Uε = (uε,Cε,Nε),

where uε stands for the sole electromagnetic field

uε = (Bε, Eε).

We are interested in solving a Cauchy problem associated with (9) for initial data that are smooth,
but high frequency, of order O(1/ε). The typical difficulty is to ensure existence of the whole family
(Uε)ε∈]0,ε0] on some time interval [0, t⋆], independent of ε.

This enters the framework of 3-scales diffractive optics (see [18], [30], and the surveys [27], [21]).
To this end, our analysis uses a WKB analysis, based on profiles that we expand in successive powers
of ε. An important original point yet is, we consider amplitudes that are even higher (namely O(1))
than the ones allowed by transparency properties (namely O(ε) – see [28]). We show these larger
amplitudes are eventually compensated by the partial relaxation: remember the sole equation on
the coherences Cε carries the relaxation term −γCε/ε in (9). We refer to remark 3.2 below on this
important point.
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We start with a given a wavevector

k =
(
k1, . . . , kd

)
∈ Rd,

and initial data of the form

Uε
ini(x, y, z) = U0

(
x, y, z,

kx

ε

)
+ δε

(
x, y, z,

kx

ε

)
. (12)

The profiles U0(x, y, z, θ0), δ
ε(x, y, z, θ0) ∈ C∞(R× Td) that are periodic in θ0 ∈ Rd and we assume

that
δε−→

ε→0
0

in every Sobolev space Hs. We also assume that U0 is submitted to polarization conditions, namely
that the electromagnetic field u0 has the usual directional constraints, see (35), and that some
preferred components C0(m,n) vanish, see (36).

We build for all ε > 0 an approximate solution Uε
app to (9), defined on some time interval [0, t⋆],

and with initial valuesU0(x, y, z, kx/ε). Our construction uses a leading profileU0 and two correctors
U1, U2, and Uε

app is of the form

Uε
app(t, x, y, z) =

2∑

j=0

√
ε
j
Uj(t, x, y, z, T, σ, θ0, θ1)

∣∣∣∣∣
T=t/

√
ε, σ=γt/ε,(θ0,θ1)=(kx/ε,−kt/ε)

. (13)

Correctors U1, U2, are introduced so as to ensure consistancy of this Ansatz, namely

L

(
∂t, ∂x,

1√
ε
∂y,

1√
ε
∂z

)
Uε

app − F ε(Uε
app) = O(

√
ε). (14)

One main point in our analysis is the separation of scales, and the crucial introduction of the fast
variables T , σ and θ1 in (13). Explanations on this point are postponed to the next paragraph.

Once the approximate solution is constructed, we prove Theorem 5.2. It asserts that, for ε0 > 0
small enough, there is a unique solution Uε to system (9) with initial value Uε

ini, which is well
approximated by Uε

app, namely

∀µ ∈ N3, ‖∂µx,y,z
(
Uε −Uε

app

)
‖L∞([0,t⋆]×R3)−→

ε→0
0. (15)

On top of that, we are able to completely describe the dynamics of the dominant termU0. It provides
an o(1) approximation of the original dynamics of Uε. The function U0 satisfies a coupled, nonlinear,
Schrödinger-Bloch system, which we describe later.

This result is achieved via a singular system method (see [25]), where the unknown is a profile
(thus with non-singular initial data). The difficulty comes from the “supersingular” nature of the
system, and the fact that relaxations are only partial ones (acting on a part of the dependent variables
only). This problem is overcome thanks to the structure of the approximate solution.

Describing the asymptotic dynamics (1) - oscillations and initial layer. In the chosen
Ansatz (13), we assume that each profile Uj may be decomposed into modes Uj,κ

α , as

Uj(t, x, y, z, T, σ, θ) =
∑

α∈Z2d

∑

κ∈N
Uj,κ

α exp (i α · θ) exp (−κσ) . (16)
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This defines the quantities Uj,κ
α = Uj,κ

α (t, x, y, z, T ), for which α ∈ Z2d is seen as a Fourier mode,
while κ ∈ N is seen as an exponentially decaying mode. We introduce in passing and for later
convenience the notation

Uj
α =

∑

κ∈N
Uj,κ

α exp (−κσ) , (17)

a function of (t, x, y, z, T, σ), as well as

Uj,κ =
∑

α∈Z2d

Uj,κ
α exp (i α · θ) , (18)

a function of (t, x, y, z, T, θ). For κ > 0, the decomposition (16) encodes an exponential mode in
the σ = γt/ε variable, representative of the initial layer induced by off-diagonal relaxations, while
Fourier modes α = (α0, α1) reflect oscillations in the variable (θ0, θ1) = (kx/ε,−kt/ε).

This choice of Ansatz is motivated by the following. The oscillations in kx/ε are anyhow present
in the initial data, and the hyperbolic feature of the equations ensures they are propagated into
oscillations in the variable (kx/ε,−kt/ε). Nonlinear interaction of waves next makes sure that all
harmonics are created along time evolution in (9). To be more precise, we show that all oscillations
that are characteristic for the Maxwell-Bloch system are propagated. They are given, for fields and
populations, by the characteristic set

C := C+ ∪ C− ∪ C0,

where we define

C± =
{
α = (α0, α1) ∈ Z2d\{0} | α1 = ±α0

}
and C0 =

{
α = (α0, α1) ∈ Z2d\{0} | α1 = 0

}
, (19)

corresponding respectively to the waves propagating to the left and to the right, and to purely
spatial oscillations. The reader should be cautious about the fact that the Fourier mode α = 0 is not
considered as a part of this characteristic set. These sets essentially correspond to the characteristic
variety of the linear Maxwell part of the equations. For coherences, we show the characteristic
frequencies are those which resonate with some transition energy ω(m,n). They are given, for any
wavenumber k ∈ Zd, by the resonant set

R(k) = {(m,n, α0, α1) ∈ {1, . . . , N}2 × Z2d | k · α1 = ω(m,n)}. (20)

Describing the asymptotic dynamics (2) - Rectification effects. The rectification phe-
nomenon is the creation of non-oscillating terms through the nonlinear interaction of oscillating
terms. This phenomenon is typical of quadratic systems such as (9).

It is the reason for our introduction of the intermediate time scale T = t/
√
ε in (16). This

scale captures the evolution of the system between the macroscopic length |x| = O(1) and the
wavelength O(ε). The first need for the intermediate scale T is, the non-oscillating terms induce a
secular growth of the necessary corrector terms (see [31]). In that circumstance, it turns out that
imposing a sublinearity condition,

1

T
‖Uj‖L∞

t,x,y,z,σ,θ
−→

T→+∞
0 for j = 1, 2, (21)

ensures smallness of correctors in (13), namely
√
εUj(t, x, y, z, t/

√
ε, σ, θ) = o(1) when ε → 0 as

desired (j = 1, 2). A second reason for the introduction of the scale T is that, already in the less

9



singular regime of diffractive optics, the leading profile U0 obeys some linear, constant coefficients
hyperbolic evolution system with respect to time T , and the T -sublinearity condition for correctors
provides a unique way of determiningU0 (see [26], [30], and [19], [20] for the variable coefficients case),
via a detailed analysis of wave interactions at the scale T (see Section 4.3). A similar phenomenon
occurs in the present situation as well.

More precisely, the above mentioned system at scale T here takes the following form. Separating
the average part and the oscillating part as (we use the notation introduced in (16)-(18))

u0 = u0
0 + u0

osc, (which defines u0
osc ≡ u0 − u0

0),

we prove that u0
0 satisfies a system of the form

∂Tu
0
0 +M2(0, ∂y, ∂z)u

0
0 = 0, (22)

where M2(0, ∂y, ∂z) is a matrix -coefficient differential operator of size 3× 3. Eventually, our analysis
shows that (22) has to be solved together with the one giving the corrector u1

0, namely

∂Tu
1
0 +M2(0, ∂y, ∂z)u

1
0 = −M1(∂t, ∂x)u

0
0, (23)

where M1(∂t, ∂x) is another matrix differential operator. We establish that equation (23) possesses
a unique solution u1

0 provided T -sublinearity of the right-hand-side is imposed. It turns out that the
same “secular growth” analysis is also necessary for u0

osc and N0.

Remark 2.1. In the particular case of profiles that do not depend on T , the coupled system (22),
(23) is actually overdetermined (see Remark 6.1). Solvability is only recovered provided the matrix
operators M1(∂t, ∂x) and M2(0, ∂y, ∂z) commute. This very particular and important situation occurs
in the Transverse Magnetic case (see below), where these operators are all scalar. In the general case,
rectification enforces the introduction of time T to make the set of profile equations solvable.

Describing the asymptotic dynamics (3) - the coherences. For coherences, we establish the
relation

C0 ≡ C0,1 e−σ =

(
∑

α∈Z2d

C0,1
α eiα·θ

)
e−σ.

In other words, at dominant order coherences decay as exp(−γt/ε). Besides, the coefficients C0,1
α are

shown to satisfy (see (46))

∀(m,n, α) ∈ R(k), ∂TC
0,1
m,n,α = i [E0 · Γ,C0,1]m,n,α. (24)

The set R(k) is defined in (20). The other components C0,1
m,n,α, for which (m,n, α) /∈ R(k), are shown

to vanish (and E0 is determined independently: see the paragraph “Field dynamics” below).
Now the resolution of (24) cannot rely on the above mentioned sublinearity condition, due to

the fact that a generic solution to (24) grows like exp(KT ) or so at least, for some constant K > 0.
Similarly, the analogous equations on the correctorsC1 andC2 cannot be solved using the sublinearity
condition neither. As a consequence, the evolution of C0 remains a priori undetermined. The key
point now comes from the off-diagonal relaxations. Indeed, we do prove that C0,1 satisfies a bound
of the form

∀µ ∈ N5+2d,
∣∣∂µt,T,x,y,z,θC0,1(T )

∣∣ ≤ K1e
K2T ,

10



for some K1, K2 > 0, so that the product (C0,1 exp(−σ))
∣∣
T=t/

√
ε,σ=−γt/ε

has size O
(
exp(K2t/

√
ε)×

× exp(−γt/ε)
)
, hence is negligible when ε → 0, as desired. We notice a posteriori that the lack of

knowledge in the evolution of C0 is harmless, since coherences live during an initial layer of size O(ε)
only. We also show that the correctors C1 and C2 are negligible thanks to estimates in the same
vein (see Section 4.3.2).

Describing the asymptotic dynamics (4) - the electromagnetic field. First, we show that
u0 ≡ u0,0, so that the electromagnetic field does not undergo the same decay as coherences. Next,
we prove that u0, conveniently decomposed into its average and its oscillatory part, may be written

u0 = u0
0,0 + u0

0,+ + u0
0,−︸ ︷︷ ︸

=u0
0

+u0
time + u0

space︸ ︷︷ ︸
=u0

osc

, (25)

where we define the purely spatial oscillations, and temporal oscillations1, as

u0
space =

∑

α∈C0

u0
α e

i α·θ, u0
time =

∑

α∈C+∪C−

u0
α e

i α·θ.

The three mean terms u0
0,0, u0

0,+ and u0
0,− are defined in the course of the analysis. The above

decomposition entails the fact that we have u0
α = 0 whenever α /∈ C0∪C+∪C−. This is a polarization

condition, as usual in optics. Besides, there are algebraic projectors π0, π+ and π−, such that for any
α ∈ Cι, we have πιu

0
α = u0

α (ι = 0,+,−).
We also show that functions u0

0,0, u
0
space, u

0
0,+, u

0
0,− do not depend on the slow time t, i.e.

∂tu
0
0,0 = 0, u0

space = 0, ∂tu
0
0,± = 0, (26)

and they satisfy, from (22),

∂Tu
0
0,0 = 0, ∂Tu

0
space = 0,

(
∂T ±

√
D2

y +D2
z

)
u0
0,± = 0. (27)

The latter is a two-dimensional (non local) transport equation at time scale T . The time oscillations
u0
time satisfy

∀α ∈ C±, ∂Tu
0
α = 0, and (28)

(∂t ± ∂x)u
0
α ∓ i

2k · α0

∆y,zu
0
α = π±

(
0, iTr

(
Γ(Ωγ(Ωγ −k · α1)

−1 − 1)[E0
time · Γ,N0]α

) )
, (29)

a nonlinear Schrödinger equation with respect to time t, describing diffraction in the transverse
variable (y, z), and quadratic coupling between light and matter. Technically, a standard Diophantine
hypothesis ensures that k · α0 is “not to small” in (29) – see Hypothesis 3.3.

Describing the asymptotic dynamics (5) - the populations. As for the electromagnetic field,
the dominant term N0 ≡ N0,0 in the populations does not decay in time at first order. In addition,
we show that N0 only possesses spatial oscillations, thanks to the identity

N0 = N0
0 +N0

space.

1to be accurate, these oscillations, namely u
0

time
, involve both time and space variables - we neertheless keep the

denomination ”time” for this part of the oscillations.
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This is a polarization property. Furthermore, N0 does not depend on the intermediate time T ,

∂TN
0 = 0. (30)

Lastly, at the macroscopic time scale t, populations evolve according to a Boltzmann-type equation,
with transition rates that are the sum of the linear rates W (see (5)), and of nonlinear rates that
depend quadratically on E0 and change with the frequency θ. Precisely, we get the relation

∂tN
0 =W ♯N0 −

[
(E0

osc + E0
0,0) · Γ, (i Ωγ −k · ∂θ1)−1[(E0

osc + E0
0,0) · Γ,N0]od

]

d,space

−
[
(E0

osc + E0
0,0) · Γ, (i Ωγ −k · ∂θ1)−1[(E0

osc + E0
0,0) · Γ,N0]od

]
d,0
. (31)

We refer to (69) below. In practice, this equation is of the form

∂tN
0
α =W ♯N0

α +
∑

α′+α′′=α

∑

β

W (α′, α′′, E0
α′, E0

α′′−β) ♯ N0
β,

for some Pauli coefficients W (α′, α′′, E0
α′ , E0

α′′−β) that depend on the Fourier indices α′ ∈ Z2d, α′′ ∈
Z2d, β ∈ Z2d, as well as linearly on each variable E0

α′ and E0
α′′−β.

An illustrative example : the Transverse Magnetic (TM) case. We detail here the above
analysis in the classical TM case (see [34]), for which formulae become more explicit, and the geometry
of the problem is a bit simpler. The TM case is a 2-dimensional case, for which in addition fields
have the particular polarization

B = B(t, x, y) =




Bx

By

0



 , E = E(t, x, y) =




0
0
E



 .

Firstly, we give the explicit profile equations in this specific situation. Secondly, we show that the
introduction of the intermediate time T is not necessary in that case (see Remark 2.1). Finally, we
perform the analysis for prepared data, i.e. when coherences vanish at leading order. Eventually, we
show that the approximation is better than in (15), in that Theorem 6.3 asserts

∀µ ∈ N2, ‖∂µx,y
(
Uε −Uε

app

)
‖L∞([0,t⋆]×R2) = O(

√
ε).

2.4 Outline of the paper

In Section 3, we describe the Ansatz (13), the choice of scales and phases. We also discuss the needed
Diophantine hypothesis 3.3 on the wave numbers (k1, . . . , kd) ∈ Rd involved in (12). In Section 4,
we proceed with the construction of an approximate solution Uε

app = Uε
app(t, x, y, z, T, θ) that is

consistant with Maxwell-Bloch’s system (9). Sections 4.1 and 4.2 contain the fast scale analysis,
i.e. the analysis in the variable θ. This is a Fourier analysis, leading to the usual characteristic sets
and group velocity of geometric optics. Section 4.3 is devoted to the intermediate scale analysis of
the resulting profile equations at the time scale T . The sublinearity condition (21) is involved (in
Section 4.3.1), that allows to treat wave interactions. We also perform (in Section 4.3.2) the ad hoc
analysis for the coherences Cε

app, which have exponential growth in T and violate the sublinearity
condition. In Section 4.4, we eventually solve the Cauchy problem for profile equations in all variables
t, T , and θ. To complete the analysis, Section 5 provides the proof of our main result, namely that
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Uε
app indeed approximates the true solution Uε to the Maxwell-Bloch system (9), see equation (15)

above. The precise form of our result is given in Theorem 5.2. Lastly, Section 6 goes again through
the whole analysis, yet in the simpler Transverse Magnetic case, and for prepared initial data. The
corresponding result is given in Theorem 6.3.

Our main theorems are Theorem 5.2 and Theorem 6.3.

3 Formulating the Ansatz

We solve the Cauchy problem associated with (9) (with unknown Uε = (uε,Cε,Nε), uε = (Bε, Eε))
for rapidly oscillating initial data of the form

Uε
ini(x, y, z) =

∑

β∈Zd

φε
β(x, y, z) exp

(
i (β · k) x

ε

)
, (32)

where the wave vector k is k = (k1, . . . , kd) ∈ Rd for some d ∈ N⋆, its coordinates are chosen Q-
independent, and the scalar product β ·k in (32) denotes β ·k = β1k1+· · ·+βdkd. The Q-independence
of k’s coordinates ensures that for β ∈ Zd, relation β · k = 0 holds if and only if β = 0. The vector k
collects the independent oscillations (in x) carried by the initial signal (Bε, Eε, ρε)ini (x, y, z), while
the integer βj ∈ Z numbers the various harmonics corresponding to the phase kj x/ε (j = 1, . . . , d).
We choose an initial signal that carries all possible harmonics. This harmless choice is motivated
by the fact that the original, nonlinear, Maxwell-Bloch system anyhow generates nonlinear wave
interaction, which implies that any initial oscillation creates the associated harmonics along wave
propagation.

The off-diagonal relaxation term −γCε/ε in (9) enforces exponential decay of coherences Cε, so
that, at first order, we expect only the fields uε = (Bε, Eε) and the populations Nε to propagate.
Hence space and time oscillations are expected to be generated from the initial spatial ones only
through Maxwell’s equations and through the equation for the populations. In a similar spirit,
since our scaling postulates that variations in the transverse variables (y, z) only occur at the scale√
ε (and not ε), we also expect that oscillations will not occur in the (y, z) variables. In other

words, the relevant Maxwell equations for oscillations are expected to be 1D in the x direction. The
corresponding characteristic variety, in Fourier variables, reads

CMaxwell ∪ Cpopulations =
{
(τ, ξ) ∈ R2\{0} | τ = 0 or τ 2 = ξ2

}
.

Eventually, propagation of space and time oscillations are expected to occur via the collection of
phases

kj x− ωj t, with ωj = 0 or ωj = ± kj (j = 1, . . . , d).

More precisely, the relevant oscillations in our analysis are expected to be all the harmonics β · (k x−
ω t), as the multi-index β runs in Zd, and the j-th coordinate of ω is either 0, kj or −kj . An instant
of reflexion shows that this ensemble coincides with the collection of phases (α1 · k) x − (α0 · k)t as
α0 and α1 run in Zd. This motivates the following

Notation 3.1. For any multi-index α = (α1, . . . , α2d) ∈ Z2d, we decompose

α := (α0, α1), with α0 = (α1, . . . , αd) ∈ Zd, and α1 = (αd+1, . . . , α2d) ∈ Zd.
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Accordingly, any (smooth enough) function V(θ) defined over the torus T2d may be decomposed in
Fourier series as

V(θ) =
∑

α∈Z2d

Vα exp (i α · θ) =
∑

α∈Z2d

Vα exp (i (α0 · θ0 + α1 · θ1)) .

With this notation, resonances are identified by the characteristic set C = C0 ∪ C+ ∪ C−, where
C0, C+, and C− have been defined in (19).

Due to the fast decay of coherences, another set of phases needs to be introduced. Namely, the
off-diagonal relaxation term −γCε/ε in (9) leads to introduce the complex phases exp(−γt/ε) as well
as all its harmonics exp(−κγt/ε), where κ ∈ N.

With all these considerations in mind, we can now define the approximate solution we seek, as

Uε
app = (uε

app,C
ε
app,N

ε
app), uε

app = (Bε
app, E

ε
app), where

Uε
app(t, x, y, z) =

2∑

j=0

√
ε
j
Uj(t, x, y, z, T, σ, θ0, θ1)

∣∣∣∣∣
T=t/

√
ε,σ=γt/ε,(θ0,θ1)=(kx,−kt)/ε

, (33)

and for any j = 0, 1, 2, and any σ ≥ 0, T ≥ 0, θ ∈ T2d, we set

Uj(t, x, y, z, T, σ, θ) =
∑

α∈Z2d

∑

κ∈N
Uj,κ

α (t, x, y, z, T ) exp (iα · θ) exp(−κσ).

Remark 3.2. (discussion of the chosen profiles).
(i) Coming back to the original scales of the problem, we may represent the solution Uε under the
form

Uε(t, x, y, z) = Ũε(t, x,
√
εy,

√
εz),

where the function Ũε has variations in ỹ =
√
εy and z̃ =

√
εz at scale

√
ε, and solves (9) with the

operator curlε replaced with curl, while the associated initial datum is of the form

Ũε
|t=0

(x, ỹ, z̃) = Uε
|t=0

(
x,

ỹ√
ε
,
z̃√
ε

)
=: Uε

|t=0

(
x,

ỹ√
ε
,
z̃√
ε
,
x

ε

)
.

This is the 3-scales setting of [20] (where only the case of quasilinear, non-dispersive systems is
adressed). It leads to a profile representation of the form

Ũε(t, x, ỹ, z̃) = Ũε

(
t, x, ỹ, z̃,

ψ√
ε
,
φ

ε

)
.

where φ = φ(t, x, ỹ, z̃) is the collection of the two phases kx and −kt, while ψ = ψ(t, x, ỹ, z̃) is
a collection of “intermediate phases” (in (33), Ũε does not depend explicitly on ỹ, z̃, so that ψ =
(t, ỹ, z̃)). When non-oscillating terms are present at first order (Ũ0

0 6= 0), it is in general necessary
to put in this collection ψ an intermediate time t in order to solve the profile equations via the analysis
of Section 4.3. This is the reason why the variable T = t/

√
ε is present in (33) (it may be unnecessary:

see [20], Remark 1.4, and the Transverse Magnetic case below, Section 6, for which ψ = ỹ). This
intermediate time T captures the evolution of intermediate scales

√
ε, between “macroscopic length”

O(1) and wavelength ε.
(ii) The consistancy of the chosen Ansatz requires that

√
εU1 ≪ U0 whenever σ = γt/ε, T = t/

√
ε,

θ = (kx/ε,−kt/ε). This requirement enforces T -sublinearity of the non-exponentially decaying part
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(corresponding to κ = 0) of the correctors Uj,κ (j ≥ 1), see (61). The exponentially decaying
correctors (κ ≥ 1) may be of the same order as the first profile U0,κ: they anyhow lead to o(

√
ε) error

terms, see Section 4.3.2.
(iii) The analogy with [20] shows that we could treat the same problem with curved (i.e. nonlinear)
phases φ. This situation arises in particular when dealing with inhomogeneous media, where variable
coefficients (i.e. variable electric and magnetic permittivity) are involved in the Maxwell-Bloch system.
(iv) We emphasize the fact that in the present work, we deal with large population variations, of order
one.

In [28] (long time diffraction, p. 248), with no relaxation terms, transparency allows to trans-
form the original Maxwell-Bloch system, via a change of dependent variables, into a dispersive and
quadratic system of the form L(ε∂)U = ε2f(U), with U = (U I , U II), where (B,E,C) = εU I , and
N = ε2 U II . The system is considered over times of order 1/ε. Taking relaxations into account, we
consider here a similar system, at the same space and time scales (oscillations have frequency 1/ε,
and propagation is considered over times of order 1/ε), yet in a situation where (B,E,N,C) are
larger, of order 1, and the quadratic coupling term f(U) is stronger, of size ε, namely

{
ε∂tC

ε = −i[Ω,Cε]od + iε[Eε · Γ,Cε]od + iε[Eε · Γ,Nε]od − γCε,

ε∂tN
ε = iε[Eε · Γ,Cε]d + ε2W ♯Nε.

Of course, the stronger quadratic interaction term is balanced by the off-diagonal relaxations: note
however that relaxation only affects part of the unknowns (the coherences), and one key aspect of our
analysis precisely relies in the analysis of the stronger interaction term.

Such large population variations are also considered in [9], without relaxation, yet for waves that
are polarized in a specific way, and in the case of a three-level Bloch system only (i.e. N = 3 in our
notation). In that case, additional conservation properties are at hand. On top of that, [9] considers
a weaker coupling term of size ε2. The limiting system obtained in [9] is of Schrödinger-Bloch type.

Since small divisor estimates naturally enter the analysis below, we readily formulate the usual
Diophantine assumption we shall need on the wave-vector k. It will be used in order to invert the
differential operators acting in the θ variable on the various (smooth) profiles Uj,κ(t, x, y, z, T, θ). We
refer for instance to [24].

Hypothesis 3.3. The wave vector k ∈ Rs from (32) is Diophantine, namely

∃C, a > 0, ∀β ∈ Zd\{0}, |β · k| ≥ C|β|−a.

Remark 3.4. The above assumption is harmless. Indeed, the following fact is well-known. Pick any
exponent a > d− 1. Then, the set

{k ∈ Rd | ∃C > 0, ∀β ∈ Zd\{0}, |β · k| ≥ C|β|−a}

has full measure in Rd. In other words, almost any k ∈ Rd (for the Lebesgue measure) has the
Diophantine property.

4 Formal expansions and approximate solution

Notation 4.1. Denote by M(∂t, ∂x, ∂y, ∂z) the order 1 differential operator in Maxwell’s equations,

M(∂t, ∂x, ∂y, ∂z) =

(
0 curl

− curl 0

)
= ∂t + Ax∂x + Ay∂y + Az∂z,
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where the Aj’s are 6× 6 real symmetric matrices. Set also

M1(∂t, ∂x) =M(∂t, ∂x, 0, 0) = ∂t + Ax∂x, M2 (∂T , ∂y, ∂z) =M(∂T , 0, ∂y, ∂z) = ∂T + Ay∂y + Az∂z .

With this notation at hand, plugging the Ansatz (33) into the Maxwell-Bloch system (9), we get
that Uε

app satisfies the original Maxwell-Bloch equations up to a residual rε that is given as follows
(here we use the notation (11) for Ωγ)

Proposition 4.2. The residual

rε := L

(
∂t, ∂x,

1√
ε
∂y,

1√
ε
∂z

)
Uε

app − F ε(Uε
app)

has the profile representation

rε(t, x, y, z) = Rε(t, x, y, z, T, σ, θ)

∣∣∣∣∣
T=t/

√
ε,σ=γt/ε,(θ0,θ1)=(kx,−kt)/ε

,

where

Rε =

3∑

j=−2

∑

κ≥0

√
ε
j
rj,κ(t, x, y, z, T, θ) exp(−κσ),

and the first terms (−2 ≤ j ≤ 0) are (see Section 5.1 for the others)

r−2,κ =




M1(−γκ− k · ∂θ1 , k · ∂θ0)u0,κ

(i Ωγ −γκ− k · ∂θ1)C0,κ

(−γκ− k · ∂θ1)N0,κ


 ,

r−1,κ =




M1(−γκ− k · ∂θ1 , k · ∂θ0)u1,κ +M2 (∂T , ∂y, ∂z)u
0,κ − (0, iTr (ΓΩγ C

0,κ))

(i Ωγ −γκ− k · ∂θ1)C1,κ + ∂TC
0,κ − i [E0 · Γ,C0 +N0]κod

(−γκ− k · ∂θ1)N1,κ + ∂TN
0,κ − i [E0 · Γ,C0]κd


 ,

r0,κ =




M1(−γκ− k · ∂θ1 , k · ∂θ0)u2,κ +M2 (∂T , ∂y, ∂z)u
1,κ

+M1(∂t, ∂x)u
0,κ +

(
0,−iTr (ΓΩγ C

1,κ) + iTr (Γ[E0 · Γ,C0 +N0]κ)
)

(i Ωγ −γκ− k · ∂θ1)C2,κ + ∂TC
1,κ + ∂tC

0,κ

−i [E0 · Γ,C1 +N1]κod − i [E1 · Γ,C0 +N0]κod

(−γκ− k · ∂θ1)N2,κ + ∂TN
1,κ + ∂tN

0,κ − i [E0 · Γ,C1]κd − i [E1 · Γ,C0]κd −W ♯N0,κ




.

With this computation at hand, we wish to construct the first profile U0,κ = (u0,κ,C0,κ,N0,κ),
in C0([0, t⋆]t, C0([0,+∞[T , H

∞(R3 × T2d))) for some t⋆ > 0, together with correctors (uj ,Cj,Nj)
(j = 1, 2), in such a way that the residual rε is small (cf. Section 5.2). More precisely, we shall
impose r−2 = r−1 = r0 = 0, and show that this procedure completely determines U0. This is
obtained by decomposing successively (with increasing j) the equations obtained for the Uj ’s, and
separating characteristic and noncharacteristic modes (α, κ). The necessary linear algebra tools are
developed in the next paragraph.
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4.1 Rapid modes and algebraic projectors

• Tools needed to deal with the electromagnetic field. The Fourier series representation, in
the θ variable, of the first equation stemming from [r−2,κ = 0] is (according to notation 4.1)

M1(−γκ− ik · α1, ik · α0)u
0,κ
α = 0, ∀α ∈ Z2d.

For each α, this is a system of linear equations in C6, with matrix

M1(−γκ− ik · α1, ik · α0) = ik · α1 + i(k · α0)Ax,

which may be singular only if κ = 0. To deal with this equation, we need the following classical
definitions and lemmas ([32], [24], [18], [26]).

Definition 4.3. For each α ∈ Z2d, let πα be the orthogonal projection in R6 onto the kernel of
M1(−ik · α1, ik · α0),. Denote by M1(−ik · α1, ik · α0)

−1 the inverse of M1(−ik · α1, ik · α0), when
restricted to the space orthogonal to its kernel, namely M1(−ik · α1, ik · α0)

−1 acts on Ran(1 − πα).
Finally, define the projector Π on the space of Fourier series,

Π

(
∑

α∈Z2d

uαe
i α·θ

)
:=

∑

α∈Z2d

παuαe
i α·θ.

A straightforward computation establishes the

Lemma 4.4. For each α ∈ Z2d, the projector πα is a homogeneous function of α of degree zero. It
takes a constant (matrix) value πι on each component Cι of the characteristic set (ι = +,−, 0), the
value one (or identity) for α = 0, and vanishes else. In particular, we have the identity

Π

(
∑

α∈Z2d

uαe
i α·θ

)
:= u0 +

∑

α∈C+

π+uαe
i α·θ +

∑

α∈C−

π−uαe
i α·θ +

∑

α∈C0

π0uαe
i α·θ. (34)

In any circumstance, for any Fourier series u =
∑

α∈Z2d

uαe
i α·θ, we have

M1(−k · ∂θ1 , k · ∂θ0) u = 0 ⇐⇒ Π u = u.

Next, the following two lemmas are classical for geometric and diffractive optics with smooth
characteristic varieties ([32], [24], [18], and also [41] for an elegant unified version). They express
that the operators acting on the oscillating part of the fields are in diagonal form.

Lemma 4.5 (group velocity).

For any Fourier series u =
∑

α∈Z2d\{0}

uαe
i α·θ, containing no mean term, we have, with v(α) = ι for

α ∈ Cι (ι = 0,+,−), the relations

ΠAyΠ u = ΠAzΠ u = 0, and ΠAxΠ u =
∑

α∈C
v(α)παuαe

i α·θ =: v(Dθ)Π u.
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Lemma 4.6 (diffraction).

For any Fourier series u =
∑

α∈Z2d\{0}

uαe
i α·θ, containing no mean term, we have

ΠM2 (0, ∂y, ∂z)M1(−k · ∂θ1 , k · ∂θ0)−1M2 (0, ∂y, ∂z) Π u

= i
∑

α∈C+∪C−

a(α)∆y,zπαuαe
i α·θ =: i a(Dθ)∆y,zΠ u,

where a(α) = ± 1

2k · α0
for α ∈ C± and a(α) = 0 for α ∈ C0.

Proof. By the definition of the operators involved, for each α, one has

παM2 (0, ∂y, ∂z)M1(−k · α1, k · α0)
−1M2 (0, ∂y, ∂z) πα =

∑

j,k∈{y,z}
παAjM1(−k · α1, k · α0)

−1Akπα∂j∂k.

Now, πα and M1(−k · α1, k · α0)
−1 are the evaluations, at ξ = (k · α0, 0, 0), of the spectral projector

P (τ(ξ), ξ) resp. of the pseudo-inverseM−1(τ(ξ), ξ) of the complete Maxwell symbolM(τ(ξ), ξ). Here
and in the sequel, we use the notation

τ±(ξ) = ∓|ξ| for α ∈ Cι,± := Cι ∩ {k · α1 ≷ 0}, ι = ±,

together with

τ(ξ) = 0 for α ∈ C0.

The quantities τ±(ξ) and τ(ξ) are naturally the eigenvalues of the Maxwell symbol M(τ(ξ), ξ). On
the other hand, we have the identity, valid for any j, k ∈ {x, y, z}, see [24] or [41],

∂2τ

∂ξj∂ξk
(ξ)P (τ(ξ), ξ)

= P (τ(ξ), ξ)AjM
−1(τ(ξ), ξ)Ak P (τ(ξ), ξ) + P (τ(ξ), ξ)AkM

−1(τ(ξ), ξ)Aj P (τ(ξ), ξ).

Using now the obvious relation

(
∂2τ±
∂ξj∂ξk

(ξ)

)

i,j

= ∓ 1

|ξ|

(
id− ξ ⊗ ξ

|ξ|2
)

= ∓ 1

|k · α0|
Diag (0, 1, 1) for ξ = (k · α0, 0, 0),

inspection of the five cases α ∈ Cι,± (ι = ±), and α ∈ C0, leads to the lemma. �

Lastly, in order to distinguish between propagated and non-propagated parts of the profiles,
we introduce the following splitting, refering to the “oscillating” part of the fields, to the “time”
oscillations of the density matrix, or to its “space” oscillations.

Definition 4.7. For any Fourier series U =
∑

α∈Z2d Uαe
i α·θ, we set

Uosc :=
∑

α6=0

Uαe
i α·θ, Uspace :=

∑

α∈C0

Uαe
i α·θ, Utime :=

∑

α∈C+∪C−

Uαe
i α·θ.

18



• Tools needed to deal with the coherences. For each mode (α, κ), the second equation from
[r−2,κ

α = 0] reads
∀m,n, (i(ω(m,n)− k · α1) + γ(1− κ))C0,κ

m,n,α = 0.

Here, only κ = 1 is of interest. This justifies the introduction of the resonant set R(k) we defined in
(20).

Remark 4.8. In [9], the wave vector k is precisely chosen so that R(k) be nonempty.

• Tools needed to deal with the populations. The populations are scalar variables, and the
characteristic frequencies are simply the (α, κ)’s belonging to C0×{0}. No additional tool is needed.

4.2 Profile equations, fast scale analysis

4.2.1 The residual r−2

According to the notation above, the equation [r−2 = 0] is equivalent to the polarization conditions

u0 = u0,0, ∀κ > 0, u0,κ = 0, and u0 = Πu0, (35)

C0 = C0,1 e−σ, and ∀(m,n, α) /∈ R(k), C0,1
m,n,α = 0, (36)

N0 = N0,0, and N0 = N0
0 +N0

space. (37)

In order not to overweight notation, we shall from now on systematically refer to u0 and N0 in
the sequel, keeping in mind they do coincide with u0,0 and N0,0.

4.2.2 The residual r−1

Equations on the field. We first deal with the mode κ = 0. Separating the mean term (α = 0)
and the other Fourier modes, we find

∂Tu
0
0 +M2(0, ∂y, ∂z)u

0
0 = 0, (38)

∂Tu
0
osc = 0. (39)

Obtaining the second equation requires to use (35) and Lemma 4.5, which imply ΠM2(0, ∂y, ∂z)Π = 0
and u0

osc = Πu0
osc. The next order profile u1,0 is then seen to satisfy

(1− Π)u1,0
osc = −M1(−k · ∂θ1 , k · ∂θ0)−1M2 (0, ∂y, ∂z)u

0
osc. (40)

Secondly, when κ ≥ 1, the operator M1(−γκ − k · ∂θ1 , k · ∂θ0) is invertible, and we get the two
values

u1,1 =M1(−γκ− k · ∂θ1 , k · ∂θ0)−1 (0, iTr (ΓΩγ C
0,1)), (41)

∀κ > 1, u1,κ = 0. (42)
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Equations on the coherences. We first note that whenever κ 6= 1 the operator (i Ωγ −γκ−k ·∂θ0)
is invertible. Thanks to (35), (36) and (37), this gives the two values

C1,0 = i (i Ωγ −k · ∂θ1)−1[E0 · Γ,N0]od, (43)

∀κ > 1, C1,κ = 0. (44)

When κ = 1, we need to distinguish between resonant and non-resonant triples (m,n, α), to
obtain

∀(m,n, α) /∈ R(k), C1,1
m,n,α = −(ω(m,n)− k · α1)

−1[E0 · Γ,C0,1]m,n,α, (45)

∀(m,n, α) ∈ R(k), ∂TC
0,1
m,n,α = i [E0 · Γ,C0,1]m,n,α. (46)

Equations on the populations. Here we need to distinguish between the values κ = 0 and κ 6= 0,
as well as between the modes α ∈ C0 ∪ {0} and the other Fourier modes. In that way we obtain,
taking κ = 0 and restricting to modes α ∈ C0 ∪ {0}, the relation

∂TN
0 = 0, (47)

together with the following polarization conditions and spectral properties for N1 (here we use (37))

∀α /∈ C0 ∪ {0}, N1,0
α = 0, N1,1 = i (−γ − k · ∂θ1)−1[E0 · Γ,C0,1]d, ∀κ > 1, N1,κ = 0. (48)

4.2.3 The residual r0

Equations on the field. When κ = 0, we have (using (43) and (36))

0 =M1(−k · ∂θ1 , k · ∂θ0)u2,0 +M2 (∂T , ∂y, ∂z)u
1,0 +M1(∂t, ∂x)u

0,0 (49)

+
(
0, iTr (Γ[E0,0 · Γ,N0,0])− iTr (ΓiΩγ(iΩγ −k · ∂θ1)−1[E0,0 · Γ,N0,0]od)

)
.

Again, we separate oscillating and nonoscillating parts in the above equation. In the nonoscillating
case, the two nonlinear contributions are seen to compensate each other and we obtain

M2 (∂T , ∂y, ∂z)u
1,0
0 = −M1(∂t, ∂x)u

0
0, (50)

On the other hand, the Π-polarized part of oscillating modes turns out to satisfy the relation, using
(39), (40), (43) and Lemma 4.5, and writing M2(∂T , ∂y, ∂z) = ∂T +M2(0, ∂y, ∂z),

∂TΠu
1,0
osc = −ΠM1(∂t, ∂x)u

0
osc +ΠM2 (0, ∂y, ∂z)M1(−k · ∂θ1 , k · ∂θ0)−1M2 (0, ∂y, ∂z)u

0
osc

+Π
(
0, iTr

(
Γ(i Ωγ(i Ωγ −k · ∂θ1)−1 − 1)[E0 · Γ,N0]osc

) )
.

Thanks to Lemma 4.5 and Lemma 4.6, this is rewritten, using u0
osc = Πu0

osc,

∂TΠu
1,0
osc =− (∂t + v(Dθ))u

0
osc + i a(Dθ)∆y,zu

0
osc

+Π
(
0, iTr

(
Γ(i Ωγ(i Ωγ −k · ∂θ1)−1 − 1)[E0 · Γ,N0]osc

) )
. (51)

Lastly, applying (1−Π) to the oscillating part of equation (49), we also recover (using the fact that
∂T ((1−Π)u1,0

osc) = 0, deduced from equation (40) together with the identity ∂Tu
0
osc = 0),

(1− Π)u2,0
osc =−M1(−k · ∂θ1 , k · ∂θ0)−1

(
M2 (0, ∂y, ∂z)u

1,0
osc +M1(∂t, ∂x)u

0
osc

+
(
0, iTr

(
Γ(i Ωγ(i Ωγ −k · ∂θ1)−1 − 1)[E0 · Γ,N0]osc

)) )
. (52)
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When κ = 1, using (41), (35), (37), we get in the same way

u2,1 = −M1(−γ − k · ∂θ1 , k · ∂θ0)−1
[
M2 (∂T , ∂y, ∂z)M1(−k · ∂θ1 , k · ∂θ0)−1

(
0, iTr

(
Γ(i Ωγ C

0,1)
))

−
(
0, iTr (ΓΩγ C

1,1)
)
+ iTr

(
[E0 · Γ,C0,1]

) ]
. (53)

Finally, for greater values of κ, using (42), (35), (44), (36), (37), we have

∀κ > 1, u2,κ = 0. (54)

Equations on the coherences. When κ 6= 1, we may invert directly

C2,κ = −(i Ωγ −γκ− k · ∂θ1)−1
(
∂TC

1,κ+ ∂tC
0,κ − i [E0 ·Γ,C1+N1]κod − i [E1 ·Γ,C0+N0]κod

)
, (55)

which vanishes for κ > 2, thanks to (44), (36), (48), (37).
For κ = 1, using (36), (37), (44), (48) and (42), nonresonant triples (m,n, α) lead to the similar

formula,

∀(m,n, α) /∈ R(k), C2,1
m,n,α =− (i ω(m,n) + γ − ik · α1)

−1
(
∂TC

1,1
m,n,α − i [E0 · Γ,C1,1 +N1,1]m,n,α

(56)

− i [E1,0 · Γ,C0,1]m,n,α − i [E1,1 · Γ,N0]m,n,α

)
,

whereas for resonant triples we obtain

∀(m,n, α) ∈ R(k), ∂TC
1,1
m,n,α =− ∂tC

0,1
m,n,α + i [E0 · Γ,C1,1 +N1,1]m,n,α

+ i [E1,0 · Γ,C0,1]m,n,α + i [E1,1 · Γ,N0]m,n,α. (57)

Equations on the population. For κ = 0, using (35), (36), (37), (44) and (48), we have

∀α ∈ C0 ∪ {0}, ∂TN
1,0
α = −∂tN0

α + i [E0 · Γ,C1,0]d,α +W ♯N0
α, (58)

∀α /∈ C0 ∪ {0}, N2,0
α = (i k · α1)

−1
(
∂TN

1,0
α + ∂tN

0
α − i [E0 · Γ,C1,0]d,α −W ♯N0

α

)
. (59)

Similarly, κ > 0 leads to a polarization relation (using (37)), namely

∀κ > 0, N2,κ = (γκ + k · ∂θ1)−1
(
∂TN

1,κ − i [E0 · Γ,C1]κd − i [E1 · Γ,C0]κd

)
, (60)

which vanishes as soon as κ > 2.

4.3 Profile equations, intermediate scale analysis

The next step in the analysis consists in obtaining a closed system determining the first profiles
u0, N0 and C0. To achieve this, and in order to ensure consistancy of the Ansatz, we need impose
that the corrector terms u1, N1 and C1 are small compared with the first profiles u0, N0 and C0.
Concerning the field and the populations, this means we need impose T -sublinearity of the correctors

21



u1,0 and N1,0 (as in [23], [26], [30]) while solving equations (50), (51), (58), and we shall prescribe
the following requirement

∀σ ∈ N3+2d,
1

T
sup

t∈[0,t⋆]
‖∂σx,y,z,θ(u1,0, N1,0)‖L2 −→

T→+∞
0. (61)

Concerning coherences, i.e. while solving (57), we cannot impose the same constraint on C1,1.
However, and as explained before, this corrector produces in the approximate solution a term√
εC1,1(t, x, y, z, T, θ)|T=t/

√
ε
e−γt/ε, so that the possible growth in T of C1,1 is eventually compen-

sated by the factor exp(−γt/ε). This is proved in section 4.3.2.

4.3.1 Analysis of fields and populations: average operators

The key observation for solving equations (50), (51), and (58) on u1,0
0 , Πu1,0

osc, and N1,0
0 , while keeping

T -sublinear solutions u1,0
0 , Πu1,0

osc, and N1,0
0 , is that the source terms in these equations have a precise

stucture in terms of propagation at the intermediate scale T .

Let us make our point precise. Our analysis is in three steps.

Firstly, equations (50), (51), and (58) are of the form

∂TΠu
1,0
osc = · · · , ∂TN

1,0
0 = · · · , ∂Tu

1,0
0 +M2(0, ∂y, ∂z)u

1,0
0 = · · · ,

where the right-hand sides only depend on the lower order terms u0 and N0. Besides, for (η, ζ) ∈
R2\{0}, the symmetric matrix M2(0, η, ζ) has the spectral decomposition

M2(0, η, ζ) =
∑

k=0,+,−
λk(η, ζ)pk(η, ζ), (62)

where the eigenvalues λk are smooth on R2\{0} and homogeneous of degree 1, with values

λ0(η, ζ) = 0, λ+(η, ζ) =
√
η2 + ζ2, λ−(η, ζ) = −

√
η2 + ζ2, (63)

and the projectors pk are smooth on R2\{0} and homogeneous of degree 0, with the following values

p0 is the orthogonal projector onto Span

((
0
Z

)
,

(
Z
0

))
,

p± is the orthogonal projector onto Span

((
±|Z|ex
Z⊥

)
,

(
Z⊥

±|Z|ex

))
,

where Z =



0
η
ζ


 , Z⊥ =




0
−ζ
η


 , ex =



1
0
0


 .

Using Fourier transform, this allows to state the

Lemma 4.9. Take uin ∈ H∞(R2,C6).
Then, the unique solution u ∈ C(R, H∞) to the Cauchy problem

∂Tu+M2(0, ∂y, ∂z)u = 0, u|T=0
= uin,
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is given by

u =
∑

k=0,+,−
uk,

where each uk = pk(Dy,Dz)u is characterized by

(∂T + iλk(Dy,Dz))uk = 0, uk|T=0
= pk(Dy,Dz)u

in.

In passing, Lemma 4.9 implies equation (38) induces for u0
0 the splitting

u0
0 = u0

0,0 + u0
0,+ + u0

0,−,

with
u0
0,k = pk(Dy,Dz)u

0
0, (∂T + iλk(Dy,Dz))u

0
0,k = 0 (k = 0,+,−). (64)

Lemma 4.9 also implies that equations (50), (51), and (58) have the form

(∂T + iλk(Dy, Dz)) u
1,0
0,k = · · · (k = 0,+,−),

(∂T + iλ0(Dy, Dz)) Πu
1,0
osc = · · · , (∂T + iλ0(Dy, Dz)) N

1,0
0 = · · · ,

where the various right-hand-sides only depend on u0 and N0.

With this observation in mind, the next step consists in analyzing the above equations using
the average operators introduced in [30]. They allow to describe nonlinear interactions between the
various modes 0,+,− in the equations at hand.

For each k = 0,+,−, and u ∈ C([0, t⋆]t×RT , H
∞(R3

x,y,z×T2d
θ )), we define (omitting the dependence

upon t, x and θ)

GS
ku(T, y, z) :=

1

S

∫ S

0

F−1
(
ei sλk(η,ζ)û(T + s, η, ζ)

)
ds,

with F the Fourier transform in variables y, z. We also define the limit (if it exists),

Gku(T, y, z) := lim
S→+∞

GS
ku(T, y, z).

The average operator Gk performs the average along the bicharacteristic curves of the operator
(∂T + iλk(Dy,Dz)). Naturally, G0 coincides with the usual average with respect to T , due to λ0 = 0.

The following properties of the average operators Gk are useful.

Proposition 4.10 (borrowed from [30]). Let k ∈ {0,+,−}.
(i) If u ∈ C([0, t⋆]t × RT , H

∞(R3
x,y,z × T2d

θ )) satisfies2 (∂T + iλk(Dy,Dz))u = 0, then Gku = u.

(ii) If f ∈ C([0, t⋆]t × RT , H
∞(R3

x,y,z × T2d
θ )) satisfies Gkf = 0, then any solution u to (∂T +

iλk(Dy,Dz))u = f is T -sublinear.

(iii) If u ∈ C1([0, t⋆]t×RT , H
∞(R3

x,y,z×T2d
θ )) is T -sublinear, then we have Gk(∂T +iλk(Dy,Dz))u = 0.

(iv) Let a collection (uℓ) 0≤ℓ≤L ⊂ C([0, t⋆]t × RT , H
∞(R3

x,y,z × T2d
θ )) satisfy (∂T + iλkℓ(Dy,Dz))uℓ = 0

with kℓ ∈ {0,+,−} for all ℓ, and set u := u0 · · ·uL.
Then, if kℓ = k for all ℓ, we have Gku = u, else, if kℓ 6= k for some index ℓ, we have Gku = 0.

2Here, solutions to equations of the form (∂T + iλk(Dy ,Dz))u = f are meant in the mild sense, see remark 4.13.
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Our last step consists in applying all above considerations. Indeed, Proposition 4.10 (ii)-(iii)
asserts that equation (∂T + iλk(Dy,Dz))u = f possesses a T -sublinear solution if and only if Gkf = 0,
while Proposition 4.10 (iv) allows to explicitely compute Gkf when f is a product of solutions to
(∂T + iλkℓ(Dy,Dz))uℓ = 0.

Concerning equation (50), with the wave structure given by (38), we conclude that equation (50)
possesses a T -sublinear solution u1,0

0 if and only if

pk(Dy,Dz)M1(∂t, ∂x) pk(Dy,Dz)u
0
0,k = 0 (k = 0,+,−).

These three systems in fact reduce to the trivial condition

∂tu
0
0,0 = 0, ∂tu

0
0,+ = 0, ∂tu

0
0,− = 0, (65)

thanks to the following Lemma whose proof is a straightforward computation.

Lemma 4.11. Take k ∈ {0,+,−} and (η, ζ) ∈ R2\{0}. Then, we have

pk(η, ζ)Axpk(η, ζ) = 0.

Concerning equation (51), the right-hand-side of this equation only involves (products of) solu-
tions to (∂T + iλkℓ(Dy,Dz))uℓ = 0, amongst which only the parts u0

osc, u
0
0,0 and N0 are associated

with the characteristic speed λ0 = 0, thanks to relations (39) and (47), and thanks to the definition
of u0

0,0 in (64). Therefore, equation (51) possesses a T -sublinear solution u1,0
osc if and only if

(∂t + v(Dθ) ∂x)u
0
osc − i a(Dθ)∆y,zu

0
osc = (66)

Π
(
0, iTr

(
Γ(i Ωγ(i Ωγ −k · ∂θ1)−1 − 1)

[(
E0

0,0 + E0
osc

)
· Γ,N0

]
osc

))
.

This equation may be transformed further. Indeed, when α ∈ C0, we know from Lemma 4.5 and
Lemma 4.6 that v(α) = 0 and a(α) = 0. Besides, we already know that the populations N0 only
carry temporal oscillations, according to (37). As a consequence, we recover by a direct computation
that equation (66) implies

∀α ∈ C0, ∂tu
0
α = 0. (i.e. ∂tu

0
space = 0). (67)

(This comes from the fact that the factor i Ωγ(i Ωγ −k · ∂θ1)−1 − 1) vanishes when acting on a
frequency α ∈ C0). When α ∈ C± at variance, equation (66) provides, using Lemma 4.5 and Lemma
4.6, the relation

∀α ∈ C±, (∂t ± ∂x)u
0
α∓i

1

2k · α0

∆y,zu
0
α = (68)

Π
(
0, iTr

(
Γ(Ωγ( Ωγ −k · α1)

−1 − 1)
[(
E0

0,0 + E0
osc

)
· Γ,N0

]
α

))
.

Lastly, concerning equation (58), the right-hand-side involves in the similar fashion only products
of the profiles N0

α, E
0, and C1,0, which, considering the relation (43), reduces to products of the

profiles N0 and E0. Amongst these profiles, only the parts N0, E0
osc, and E0

0,0 are associated with
the characteristic speed λ0 = 0. Therefore, equation (58) possesses a T -sublinear solution N1,0

α if and
only if (here we plug relation (43))

∀α ∈ C0 ∪ {0},
∂tN

0
α = W ♯N0

α −
[(
E0

0,0 + E0
osc

)
· Γ, (i Ωγ −k · ∂θ1)−1

[(
E0

0,0 + E0
osc

)
· Γ,N0

]
od

]
d,α
. (69)

24



Eventually, we have now obtained the set of equations (65), (67), (68), and (69) as a set of
necessary and sufficient conditions to be able to find T -sublinear solutions to (50), (51), and (58),
respectively. This completes our effort in finding a system that completely determines the dominant
profiles u0 and N0. Note in passing that equation (68) in fact reduces to

∀α ∈ C±, (∂t ± ∂x)u
0
α∓i

1

2k · α0
∆y,zu

0
α = (70)

Π
(
0, iTr

(
Γ(Ωγ( Ωγ −k · α1)

−1 − 1)
[
E0

time · Γ,N0
]
α

) )
,

due to the fact that N0
α = 0 whenever α /∈ C0 ∪ {0}.

In conclusion, we have recovered equations (24), (26), (27), (28), (29), (30), (31) that had been
announced in the introductory part of this paper.

4.3.2 Analysis of coherences: exponential growth

The above analysis is not possible in the case of (57) : equation (46), ruling the evolution of C0,1 as
a function of T , is not a constant coefficient system. Instead, we consider it as a non-autonomous
system of linear ODE’s, parametrized by t, x, y, z, θ, with smooth and bounded coefficients. This
point of view provides the simple

Lemma 4.12. Let (u0,N0) ∈ C([0, t⋆]t×RT , H
∞(R3

x,y,z×T2d
θ )) be a mild solution to (38), (39), (47),

(65), (66), (69). Then,

(i) (u0,N0) ∈ C∞
b ([0, t⋆]t ×RT , H

∞(R3
x,y,z ×T2d

θ )) is smooth and bounded uniformly with respect to
all variables, as well as all its derivatives.

(ii) associated with these values of (u0,N0), take any solution C0,1 to (46) with an initial data
belonging to C∞ ([0, t⋆]t, H∞(R3

x,y,z × T2d
θ )
)
. Then, for any multi-index µ ∈ N5+2d, there are

constants K1, K2 > 0 such that, uniformly on [0, t⋆]t × RT × R3
x,y,z × T2d

θ , we have
∣∣∂µt,T,x,y,z,θC0,1(T )

∣∣ ≤ K1e
K2T .

Remark 4.13. All equations that are referred to here are either of the form ∂tv = f(v,Dv,D2v),
or of the form ∂Tv = f(v,Dv,D2v), where v is assumed to have H∞ smoothness in (x, y, z, θ),
where the symbol D means differentiation with respect to (x, y, z, θ), and f is a possibly non-linear
function that depends on the equation. The notion of mild solution is then the standard one : we
mean a solution to the integral equation v(t) = v|t=0 +

∫ t

0
f(v,Dv,D2v)(s) ds or to v(T ) = v|T=0 +∫ T

0
f(v,Dv,D2v)(S) dS.

Proof. Boundedness and smoothness of (u0,N0) with respect to (x, y, z, θ) is obvious. Concerning
the variables t and T , we exploit the fact that t belongs to a compact set. We also exploit the structure
of the relevant equations. More precisely, u0

0 satisfies (∂T +M2(0, ∂y, ∂z))u
0
0 = 0 and ∂tu

0
0 = 0. This,

together with Lemma 4.9, provides boundedness and smoothness of u0
0 with respect to t and T . Next,

N0 satisfies ∂TN
0 = 0 together with equation (69), an equation of the form ∂tN

0 = f(u0,N0) where
f is smooth. This provides boundedness and smoothness ofN0 with respect to t and T . We have used
here the Diophantine Hypothesis 3.3 to conclude that f is smooth. Lastly, u0

osc satisfies ∂Tu
0
osc = 0

together with equation (66), an equation of the form ∂tu
0
osc = f (u0

osc, Dθu
0
osc, D

2
θu

0
osc,u

0
0,N

0), where
f is smooth. This provides boundedness and smoothness of u0

osc with respect to t and T .
Point (ii) now comes from the Gronwall lemma, together with the fact that equation (46) has

the form ∂TC
0,1 = f (E0,C0,1) where f is bilinear. �
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Remark 4.14. Under the assumptions of the above Lemma, pushing the analysis further, we may
consider a solution C1,1 to (57), and look for the available estimates on C1,1. This function is
associated with a solution N1,1 to (48). In view of the above Lemma, the latter obviously satisfies an
exponential bound of the form

∣∣∂µt,T,x,y,z,θN1,1(T )
∣∣ ≤ K1 e

K2T , where K1 and K2 depend on σ but not

on T . Hence C1,1 satisfies similarly
∣∣∂µt,T,x,y,z,θC1,1(T )

∣∣ ≤ K1 e
K2T . As a consequence, we recover

∣∣√εC1,1
(
t, x, y, z, t/

√
ε, θ
)
e−γt/ε

∣∣ ≤ K1

√
εe(K2−γ/

√
ε) t/

√
ε = O(

√
ε). (71)

4.4 Solving the profile equations

4.4.1 Computing the dominant profile U0.

The first profile U0 = (u0,C0,N0) is constrained by the polarization conditions (35), (36), (37).
Besides, its components are propagated in various ways. The average u0

0 does not depend on the
slow time t (equation (65)), and it satisfies the linear hyperbolic equation (∂T +M2(0, ∂y, ∂z))u

0
0 = 0

with respect to the intermediate time T (equation (64)). The oscillating part u0
osc, and the populations

N0, do not depend on T (equations (39), (47)), and they satisfy nonlinear evolution equations with
respect to time t (equations (66), (69)). Coherences C0 are only constrained to satisfy the nonlinear
ODE (46) in time T , and the slow time t only acts as a parameter here.

We are now in position to state the

Theorem 4.15. Let s > (3 + 2d)/2. Take a function3

U0 ≡ U0(x, y, z, θ0),

which belongs to Hs(R3
x,y,z × Td

θ0
). Assume that the component C0 of U0 satisfies the following

polarization condition

∀(m,n) ∈ Z2d satisfying (m,n, α) /∈ R(k) for all α ∈ Z2d, we have C0
m,n = 0. (72)

Then, there is t⋆ > 0 and a unique function

U0 = (u0,C0,1e−σ,N0) ∈ C([0, t⋆]t × [0,+∞[T×[0,+∞[σ, H
s(R3

x,y,z × T2d
(θ0,θ1)

)),

solution to the polarization conditions (35), (36), (37), and which satisfies equations (64), (65) for
the average field u0

0, equations (39), (66) for the oscillatory field u0
osc, equations (47), (69) for the

populations N0, and equation (46) for the coherences C0,1. Uniqueness and existence is guaranteed
provided we impose U0 satisfies besides the two initial constraints4

U0
|t=T=σ=0,θ1=0

= U0, and C0,1
|T=0

is independent of t. (73)

If in addition we take an integer ℓ ∈ N and assume that s > (3+2d)/2+ℓ(a+2), where the positive
real a is the one entering the Diophantine Hypothesis 3.3, then we recover the higher regularity

U0 ∈ Cℓ
(
[0, t⋆]t × [0,+∞[T×[0,+∞[σ, H

s−ℓ(a+2)
(
R3

x,y,z × T2d
(θ0,θ1)

))
.

3The reader should be cautious about the fact that the initial datum only depends on θ0, and not on θ1. Recall
that eventually θ0 will be replaced by kx/ε while θ1 takes the value −kt/ε.

4Due to the fact that the coherences only need to satisfy an evolution equation in the intermediate time T , note
that the slow time t needs to be treated separately here, including in terms of initial data. Note also that the initial
data is not decomposed into modes, contrary to the solution itself.
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Proof.
First step : identifying the initial values of the profiles.
The first and most important step consists in understanding the polarization conditions, and how

they generate the relevant initial data for the different modes. The data U0(x, y, z, θ0) is the value
of the solution U0,κ at t = T = σ = 0 and θ1 = 0. We prove that it defines the value of U0,κ at
t = T = 0 for all values of θ1 ∈ Td.

Firstly, concerning the fields, the polarization constraint (35) provides, for the (to be defined)
solution u0, the relations u0 = u0,0 and Πu0 = u0. On the other hand, we may write down the
Fourier transform of u0 in the sole variable θ0, together with the Fourier transform of u0 in (θ0, θ1),
and obtain

u0(x, y, z, θ0) =
∑

β∈Zd

u0
β(x, y, z)e

iβ·θ0, u0(t, T, σ, x, y, z, θ0, θ1) =
∑

α∈C∪{0}
u0
α(t, T, x, y, z)e

iα·(θ0,θ1).

Taking t = T = σ = 0, θ1 = 0 in the second equation, and equating Fourier coefficients, then provides

∀β ∈ Zd \ {0}, u0
β =

(
u0
(β,β) + u0

(β,−β) + u0
(β,0)

) ∣∣∣
t=T=0

, u0
0 = u0

(0,0)

∣∣∣
t=T=0

,

where u0
(β,β) = π+ u0

(β,β), and u0
(β,−β) = π− u0

(β,−β), and u0
(β,0) = π0 u0

(β,0), thanks to the polarization

conditions and using the value of Π (see (34)). Hence, applying successively the three operators π+,
π−, π0 on both sides of the first equality, and using the obvious orthogonality relations π+π− = 0
and so on, we recover the necessary relations

u0
(0,0)

∣∣∣
t=T=0

= u0
0, and, when β 6= 0,

u0
(β,β)

∣∣∣
t=T=0

= π+ u0
β, u0

(β,−β)

∣∣∣
t=T=0

= π− u0
β, u0

(β,0)

∣∣∣
t=T=0

= π0 u0
β.

This terminates the analysis of the initial conditions for the fields.
Secondly, concerning the populations, the polarization constraint (37) provides the simpler re-

lations N0 = N0,0 and N0
α = 0 whenever α /∈ C0 ∪ {0}. Writing down the Fourier transforms of

N0 and N0 as in the previous paragraph then provides N0(x, y, z, θ0) =
∑

β∈Zd

N0
β(x, y, z)e

iβ·θ0, and

N0(t, T, σ, x, y, z, θ0, θ1) =
∑

β∈Zd N0
β(t, T, x, y, z)e

iβ·θ0. Specifying t = T = σ = 0, θ1 = 0, and
equating Fourier coefficients, gives the simple value

∀β ∈ Zd, N0
β

∣∣∣
t=T=0

= N0
β.

This terminates the analysis of the initial conditions for the populations.
Lastly, concerning the coherences, the polarization conditions (36) asserts C0,1

m,n,α = 0 whenever

(m,n, α) /∈ R(k). Writing down the natural expansions of C0 = C0,1 e−σ and C0, we recover for
each value of m and n the identities C0

m,n(x, y, z, θ0) =
∑

β∈Zd C
0
m,n,β(x, y, z)e

iβ·θ0, together with

C0
m,n(t, T, σ, x, y, z, θ0, θ1) =

(∑
α∈Z2d C0,1

m,n,α(t, T, x, y, z)e
iα·(θ0,θ1)

)
e−σ. Specifying t = T = σ = 0,

θ1 = 0, gives using the polarization conditions

∀β ∈ Zd, C0
m,n,β =

∑

α1∈Zd

C0,1
m,n,(β,α1)

. (74)

Now, two cases occur, depending on the value of (m,n).
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• First case : for any α ∈ Z2d, we have (m,n, α) /∈ R(k).
In that case, equation (74) is automatically satisfied since the right-hand-side vanishes due to the

polarization constraint on C0,1, while the left-hand-side is assumed to vanish thanks to the additional
constraint (72) we have set on the initial function C0.

• Second case : there exists an α ∈ Z2d, such that (m,n, α) ∈ R(k).
In that case, the solution α̃1 ∈ Zd to the equation ω(m,n) = k · α̃1 is unique, thanks to the

Q-independence of the coordinates of the wave-vector k. Recall that this equation defines the set
R(k). Therefore, given any β ∈ Zd, equation (74) reduces to

C0,1
m,n,(β,α̃1)

= C0
m,n,β, and ∀α1 6= α̃1, C0,1

m,n,(β,α1)
= 0.

This terminates the analysis of the initial conditions for the coherences.

Second step : solving the evolution equations.
We now consider the evolution problem with respect to the times t and T , with the above derived

initial data.
The field average u0

0 decouples and may be determined first starting from the initial value u0
0|t=T=0

,

by using (∂T +M2(0, ∂y, ∂z))u
0
0 = 0 and ∂tu

0
0 = 0.

Next, we may solve the equations on (u0
osc,N

0). The evolution with respect to T is trivial since
∂T (u

0
osc,N

0) = 0. There remains to solve the coupled nonlinear system (66), (69), an evolution
equation in t. To do so, we use a standard iterative scheme (see for example [1]), and introduce the
iteration

(∂t + v(Dθ) ∂x)u
0,(n+1)
osc − ia(Dθ)∆y,zu

0,(n+1)
osc =

Π
(
0, iTr

(
Γ(Ωγ (Ωγ −k · ∂θ0)−1 − 1)[E0,(n)

osc · Γ,N0,(n)]osc
) )
,

∂tN
0,(n+1) =W ♯N0,(n+1) −

[
(E0,(n)

osc + E0
0,0) · Γ, (i Ωγ −k · ∂θ0)−1[

(
E0,(n)

osc + E0
0,0

)
· Γ,N0,(n)]od

]
d,space

−
[
(E0,(n)

osc + E0
0,0) · Γ, (i Ωγ −k · ∂θ0)−1[

(
E0,(n)

osc + E0
0,0

)
· Γ,N0,(n)]od

]
d,0
,

with initial data
(
(u0

osc)|t=T=0
,N0

|t=T=0

)
, and an initial ”guess” set to, say, (u

0,(0)
osc ,N0,(0)) = const =

(
(u0

osc)|t=T=0
,N0

|t=T=0

)
for any t (and T ). For this linearized scheme, usual energy estimates are

available in any Sobolev space Hs, to which the skew-symmetric operators v(Dθ) ∂x and i a(Dθ)∆y,z

do not contribute. They are

∥∥U0,(m+1)(t)− U0,(n+1)(t)
∥∥
Hs ≤

∫ t

0

eC(t−s)
∥∥F (U0,(m))(s)− F (U0,(n))(s)

∥∥
Hs ds,

where F (U0(n)) stands for the right-hand-side in the above iteration. Now, standard nonlinear tools
assert that the function F acts in a locally Lipschitz fashion on Hs = Hs(R3 × T2d) provided
s > (3 + 2d)/2. The existence and uniqueness of a solution (u0

osc,N
0) to (66), (69) on some time

interval [0, t∗] then follows.
Concerning the coherences C0,1, the statement of our Theorem imposes to choose them indepen-

dent of t at time T = 0. This constraint is only a (pratical) way to fix the value of C0,1 on the set
{T = 0} (recall that C0,1 satisfies an evolution equation in time T only). Equation (46) then asserts

∂TC
0,1 = i [E0 · Γ,C0,1].
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This equation is enough to uniquely determine C0,1 for any t and T , starting from its known values
on {T = 0}.

The polarization conditions (35), (36), (37) commute with equations (64), (65) for the average
field u0

0, with equations (39), (66) for the oscillatory field u0
osc, with equations (47), (69) for the

populations N0, and with equation (46) for the coherences C0,1. Hence by uniqueness of the solutions
to these propagation equations, polarizations are preserved along the evolution.

There remains to study the higher regularity of the solutions we have exhibited. The equations
on the mean field, the equations on the populations, and the equations on the coherences clearly
do not induce any loss of smoothness, i.e. provided u0

osc is H∞, the derivatives ∂t(u
0
0,C

0,1,N0)
and ∂T (u

0
0,C

0,1,N0) have the same Hs smoothness as (u0
0,C

0,1,N0). The loss of smoothness comes
from the Schrödinger-like equation (66) on u0

osc. When differentiating this equation with respect

to t indeed, an additional factor a(α)∆y,z = ± 1

2k · α0
∆y,z comes into play which causes, from the

Diophantine Hypothesis 3.3, a loss of s0 = a + 2 derivatives (two derivatives are lost due to the
Laplacian, while a derivatives are lost due to small divisors, seen in Fourier space). This argument
explains why U0 ∈ C1(Hs−s0) and, more generally, why U0 ∈ Cℓ(Hs−ℓ s0). �

4.4.2 Computing the correctors U1 and U2.

The first corrector U1 = (u1,C1,N1) is built up in the following way. On the one hand, we have

u1 = u1,0 + u1,1 e−σ, C1 = C1,0 +C1,1 e−σ, N1 =
(
N1,0

0 +N1,0
space

)
+N1,1 e−σ, (75)

thanks to (42) , (44) , (48) . Besides, the contributions (1 − Π)u1,0
osc, u

1,1, C1,0, C1,1
m,n,α 1(m,n,α)/∈R(k),

N1,1, are prescribed as functions of the dominant profile U0 through the polarization conditions (40),
(41), (43), (45), (48), respectively. They are thus known and smooth functions of U0. Let us write
these relations symbolically as

(
(1−Π)u1,0

osc,u
1,1,C1,0,C1,1

m,n,α 1(m,n,α)/∈R(k),N
1,1
)
= φ

(
U0
)
. (76)

The remaining terms

u1,0
0 , Πu1,0

osc, C1,1
m,n,α 1(m,n,α)∈R(k), N1,0

0 +N1,0
space,

are then determined through linear evolution equations in T , namely through (50), (51), (57), (58),
respectively. These equations read, after some simplifications,

(∂T +M2(0, ∂y, ∂z))u
1,0
0 = −Ax∂xu

0,0
0 , ∂TΠu

1,0
osc = 0,

∀α ∈ C0 ∪ {0}, ∂TN
1,0
α = −

[
E0 · Γ, (i Ωγ −k · ∂θ0)−1[E0 · Γ,N0]od

]
d,α

+
[
(E0

osc + E0
0,0) · Γ, (i Ωγ −k · ∂θ0)−1[(E0

osc + E0
0,0) · Γ,N0]od

]

d,α
,

∀(m,n, α) ∈ R(k), ∂TC
1,1
m,n,α = −∂tC0,1

m,n,α + i [E0,0 · Γ,C1,1 +N1,1]m,n,α

+ i [E1,0 · Γ,C0,1]m,n,α + i [E1,1 · Γ,N0,0]m,n,α. (77)

Note that the right-hand-side of the above system only involves known functions of U0 at this stage.
In order to solve this system, there remains to impose as we did for C0,1,

(
u1,0
0 ,Πu1,0

osc,N
1,0
α 1α∈C0∪{0},C

1,1
m,n,α 1(m,n,α)∈R(k)

) ∣∣∣
T=0

is independent of t. (78)
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This completely determines U1 as a function of U0.
The second corrector U2 = (u2,C2,N2) is built up in the following way. On the one hand, we

have

u2 = u2,0 + u2,1 e−σ, C2 = C2,0 +C2,1 e−σ +C2,2 e−2σ, N2 = N2,0 +N2,1 e−σ +N2,2 e−2σ, (79)

thanks to (54) , (55) , (60). Besides, the contributions (1−Π)u2,0
osc, u

2,1, C2,0, C2,1
m,n,α 1(m,n,α)/∈R(k), C

2,2,
N2,0

α 1α/∈C0∪{0}, N
2,1, N2,2, are prescribed as functions on the two first profiles U0 and U1 through

the polarization conditions (52), (53), (55), (56), (55), (59), (60), (60), respectively. They are thus
known, smooth functions of U0 and U1. Some parts of the corrector are free and may be chosen
arbitrarily, namely u2,0

0 , Πu2,0
osc, C

2,1
m,n,α 1(m,n,α)∈R(k), N

2,0
α 1α∈C0∪{0}. We make the most simple choice

to set these contributions to zero. Let us write all these relations symbolically as

U2 = ψ
(
U0,U1

)
. (80)

All these considerations, in conjunction with Theorem 4.15, lead to the

Proposition 4.16. For all ℓ ∈ N, there exists s̃(ℓ, a) such that the following holds.
Take an s > s̃ + (3 + 2d)/2. Take an initial data U0 in Hs(R3

x,y,z × Td
θ0
) which satisfies the

constraint (72). Take the profile U0 associated with these data through Theorem 4.15. Take two
initial data U1 in Hs(R3

x,y,z × Td
θ0
) and U2 in Hs(R3

x,y,z × Td
θ0
). Then, there are unique correctors

U1 =




u1,0 + u1,1e−σ

C1,0 +C1,1 e−σ
(
N1,0

0 +N1,0
space

)
+N1,1e−σ


 , U2 =




u2,0 + u2,1e−σ

C2,0 +C2,1e−σ +C2,2e−2σ

N2,0 +N2,1e−σ +N2,2e−2σ




in Cℓ([0, t⋆]t× [0,+∞[T×[0,+∞[σ, H
s−s̃(R3

x,y,z×T2d
(θ0,θ1)

)), which satisfy the constraints (76), (78) for

the first corrector, the constraints (80) for the second corrector, and the evolution equation (58) for
the first corrector, together with the initial constraint

U1
∣∣∣
T=t=σ=0,θ1=0

= U1 U2
∣∣∣
T=t=σ=0,θ1=0

= U2.

Proof. The initial constraint U1
∣∣∣
T=t=σ=0,θ1=0

= U1 reads

(
u1,0 + u1,1,C1,0 +C1,1,

(
N1,0

0 +N1,0
space

)
+N1,1

) ∣∣∣
T=t=0,θ1=0

= U1.

This, together with (76) written at time T = t = 0, prescribes the value of

(
(1− Π)u1,0

osc,u
1,1,C1,0,C1,1

n,m,α 1(m,n,α)/∈R(k),N
1,1
) ∣∣∣

T=t=0
= φ

(
U0
)
.

Hence, taking the difference, we recover the value of

(
u1,0
0 +Πu1,0

osc,
∑

α

C1,1
n,m,α 1(m,n,α)∈R(k) e

iα0·θ0,N1,0
0 +N1,0

space

)∣∣∣
T=t=0,θ1=0

,
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an explicit, linear function of U0 and U1. Fourier transforming U0 and U1 in the variable θ0, and
Fourier transforming

(
u1,0
0 +Πu1,0

osc,
∑

α

C1,1
n,m,α 1(m,n,α)∈R(k) e

i(α0·θ0+α1·θ1)),N1,0
0 +N1,0

space

)

in the variable (θ0, θ1) then allows to deduce, as we did in the proof of Theorem 4.15, the value of(
u1,0
0 ,Πu1,0

α ,C1,1
m,n,α′,N

1,0
α′′

) ∣∣∣
T=t=0

, whenever α ∈ Z2d \ {0}, (m,n, α′) ∈ R(k), and α′′ ∈ C0 ∪ {0}. The
requirement (78) then gives the value of

(
u1,0
0 ,Πu1,0

α ,C1,1
m,n,α′,N

1,0
α′′

)
on the whole set {T = 0}∪{t = 0}.

Equation (58) in turn provides the value of
(
u1,0
0 ,Πu1,0

α ,C1,1
m,n,α′,N

1,0
α′′

)
for any value of T and t. The

remaining part of U1, namely the value of
(
(1− Π)u1,0

osc,u
1,1,C1,0,C1,1

n,m,α 1(m,n,α)/∈R(k),N
1,1
)
for all

values of T and t, is next given by φ (U0). This terminates the computation of U1 for all values of
T and t. The relation U2 = ψ (U0,U1), see (80), prescribes U2 for al values of T and t.

Let us come to regularity issues. Thanks to the constraint (76), the Cℓ(Hs−s̃(ℓ,a)) smoothness
of (1 − Π)u1,0

osc, u
1,1, C1,0, C1,1

m,n,α 1(m,n,α)/∈R(k), N
1,1 is simply the consequence of the Cℓ(Hs−s̃(ℓ,a))

smoothness of U0. For u1,0
0 , Πu1,0

osc, N
1,0
α 1α∈C0∪{0} and C1,1

m,n,α 1(m,n,α)∈R(k), the C0(Hs−s̃(0,a)) regularity
stems from the classical smoothness of solutions to linear hyperbolic systems with source terms lying
in C0(Hs−s̃(0,a)). Note that in the last equation in (58), the regularity of the source term ∂tC

0,1 is
a simple consequence of the regularity of solutions to ODE’s depending on a parameter (here t).
Note also that the overall loss s̃(0, a) comes from both the involved derivatives of U0 appearing in
the source terms, and from small divisors (ω(m,n) − k · α1)

−1 and M1(−k · α1, k · α0)
−1 acting on

U0, that appear in the source term as well. Differentiating (77) and (76) with respect to T and t,
and applying the same argument, eventually provides the Cℓ(Hs−s̃(ℓ,a)) smoothness of U1. Relation
U2 = ψ (U0,U1) provides the Cℓ(Hs−s̃(ℓ,a)) smoothness of U2. �

Remark 4.17. One can prove that for any ℓ we have U1 ∈ Cℓ(Hs−max(3a+1,a+2)−ℓ(a+2)), and U2 ∈
Cℓ(Hs−max(4a+2,3a+3)−ℓ(a+2)).

5 Convergence

5.1 The residual

Writing down the full profile representation of the residual

rε(t, x, y, z) = L

(
∂t, ∂x,

1√
ε
∂y,

1√
ε
∂z

)
Uε

app − F ε(Uε
app),

we have, using Proposition 4.2,

rε(t, x, y, z) = Rε(t, x, y, z, T, σ, θ)

∣∣∣∣∣
T=t/

√
ε,σ=γt/ε,(θ0,θ1)=(kx,−kt)/ε

,

with Rε =
3∑

j=−2

∑

κ≥0

√
ε
j
rj,κ(t, x, y, z, T, θ) exp(−κσ).
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We now find how r1, r2 and r3 depend on the profiles U1, U2 and U3. Symbolically, introducing
first order differential operators L1 and L2, a matrix L0, and some bounded, symmetric, bilinear
operators BE , B(C,N) (with values on the E- and (C,N)-components, respectively), we have

r1 = L2(∂T , ∂y, ∂z)U
2 + L1(∂t, ∂x)U

1 + 2BE(U
0,U1) + 2B(C,N)(U

0,U2) +B(C,N)(U
1,U1) + L0U

1,

r2 = L1(∂t, ∂x)U
2 + 2BE(U

0,U2) +BE(U
1,U1) + 2B(C,N)(U

1,U2) + L0U
2,

r3 = 2BE(U
1,U2) +B(C,N)(U

2,U2).

Naturally, once C∞ profiles have been built thanks to Theorem 4.15 and Proposition 4.16, regularity
of these residual profiles is clear. The question we now need to face is to evaluate the size of these
residuals as the intermediate time T grows unboundedly.

Concerning the dominant profileU0, the components u0 andN0 are bounded uniformly in T , while
the component C0 has exponential growth, i.e. C0 and all its derivatives have size K1 exp(K2 T ) as
T increases, see Lemma 4.12.

Concerning the first corrector U1, the components u1,0
0 , Πu1,0

osc and N1,0
0 + N1,0

space are precisely
constructed so as to be sublinear in T , see Section 4.3. This is the key point. On top of that,
the component (1− Π)u1,0

osc is bounded, thanks to (40), the component u1,1 has exponential growth,
thanks to (41), the component N1,1 has exponential growth, thanks to (48), the component C1,0 is
bounded, thanks to (43), and the component C1,1has exponential growth, thanks to (45) and (57)
in conjunction with the Gronwall Lemma.

Concerning the second corrector U2, we know from (80) that U2 is an explicit, linear function
of U0 and U1, functions that have at most exponential growth. Hence U2 has at most exponential
growth in T . The only difficulty may then come from the component U2,0, whose exponential growth
will not be eventually compensated by a decaying term e−σ or so. In that direction, we observe that
u2,0
0 , Πu2,0

osc, andN2,0
α 1α∈C0∪{0} are conventionally chosen to vanish. On the other hand, the component

(1−Π)u2,0
osc is bounded thanks to (52) and to the boundedness of (u0,N0,u1,0

osc), the component C2,0

is bounded thanks to (56), to the boundedness of C1,0, u0, N0, and to the sublinearity of N1,0, while
the component N2,0

α 1α/∈C0∪{0} is bounded thanks to (59), to the boundedness of C1,0, u0, N0, and to
the sublinearity of N1,0.

As a conclusion, we have now established the

Lemma 5.1. Given the C∞ profiles provided by Theorem 4.15 and Proposition 4.16 with the choice
s = +∞, the following result holds.

For all µ ∈ N5+2d, there are constants K1, K2 > 0 such that, uniformly on [0, t⋆]t×RT×R3
x,y,z×T2d

θ ,
for all κ ∈ N⋆, j = 1, 2, 3, we have

∣∣∂µt,T,x,y,z,θ rj,κ(T )
∣∣ ≤ K1e

K2T , and
1

T

∣∣∂µt,T,x,y,z,θ rj,0(T )
∣∣ −→
T→+∞

0.

As a consequence, we get for the residual

∀µ ∈ N3+d, sup
t∈[0,t⋆]

∥∥∥∂µx,y,z,θ0R
ε|T=t/

√
ε,σ=γt/ε,θ1=−kt/ε

∥∥∥
L2
x,y,z

−→
ε→0

0,

5.2 Stability

In this section, we prove our main Theorem.
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Theorem 5.2. Let the profiles U0, U1, U2 ∈ C∞([0, t⋆]× [0,+∞[2, H∞(R3×T2d)) be given by Theo-
rem 4.15 and Proposition 4.16. They provide us with the approximate solution Uε

app = Uε
app(t, x, y, z)

given by equation (33).
Then, for any s > (3+2d)/2 and any familly (δε)ε>0 ⊂ Hs(R3×Td) such that ‖δε‖Hs −→

ε→0
0, there

is ε0 > 0 such that for ε ∈]0, ε0], the Cauchy problem




L

(
∂t, ∂x,

1√
ε
∂y,

1√
ε
∂z

)
Uε = F ε(Uε),

Uε
|t=0

= Uε
app|t=0

+ δε(x, y, z, kx/ε),

(81)

for the Maxwell-Bloch system (9) has a unique (mild) solution Uε which belongs to C([0, t⋆], Hs(R3)).
Besides, for all µ ∈ N3 such that s− |µ| > (3 + 2d)/2, we have

‖∂µx,y,z
(
Uε −Uε

app

)
‖L∞([0,t⋆]×R3)−→

ε→0
0.

Proof. Standard results for symmetric hyperbolic systems ensure that, for ε > 0 fixed, a unique
mild solution Uε ∈ C([0, tε], Hs(R3)) exists for some tε > 0. The difficulty lies in bounding tε from
below.

We use a singular system method (cf. [25]), and look for Uε under the form of a profile, namely
look for Uε such that

Uε(t, x, y, z) = Uε(t, x, y, z, kx/ε),

where Uε = Uε(t, x, y, z, θ0) corresponds to the following initial data, which is non-singular in ε (this
is a key point)

Uε(0, x, y, z, θ0) =

(
2∑

j=0

√
ε
j
Uj(t, x, y, z, T, σ, θ0, θ1) + δε(t, x, y, z, θ0)

)

|t=T=σ=0,θ1=0

.

It is then sufficient, for Uε to be a solution to (9), that Uε satisfies

L

(
∂t, ∂x +

1

ε
∂θ0 ,

1√
ε
∂y,

1√
ε
∂z

)
Uε = F ε(Uε).

To go on with the analysis, we now set

Uε
app(t, x, y, z, θ0) =

2∑

j=0

√
ε
j
U j(t, x, y, z, T, σ, θ)|T=t/

√
ε,σ=γt/ε,θ1=kt/ε

.

Note in passing that the at-most-exponential growth in T of the various profiles Uj,κ implies that
the family (Uε

app)ε is bounded in C([0, t⋆], Hs(R3 × Td)). We evaluate the difference

∆ε = Uε − Uε
app.

In the next few lines, we may sometimes write ∆ε = (∆ε
u
,∆ε

C
,∆ε

N
), refering to the u, C and N

components of ∆ε, respectively. In any circumstance, we have ∆ε ∈ C([0, tε], Hs(R3×Td)), its initial
value is ∆ε

|t=0
= δε, and ∆ε satisfies

L

(
∂t, ∂x +

1

ε
∂θ0 ,

1√
ε
∂y,

1√
ε
∂z

)
∆ε = F ε(Uε

app +∆ε)− F ε(Uε
app)−Rε

|T=t/
√

ε,σ=γt/ε,θ1=kt/ε
. (82)
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Hence standard Hs estimates provide

1

2

d

dt
‖∆ε‖2Hs ≤ 〈F ε(Uε

app +∆ε)− F ε(Uε
app)|∆ε〉Hs + ‖Rε‖Hs ‖∆ε‖Hs .

Now, the evaluation of the scalar product 〈F ε(Uε
app + ∆ε) − F ε(Uε

app)|∆ε〉Hs involves various terms
that may be ordered in powers of 1/

√
ε as seen by inspection of the bilinear function F ε in (9). The

term carrying the weight 1/ε is

1

ε
〈−i [Ω,∆ε

C
]− γ∆ε

C
|∆ε〉Hs = −γ

ε
〈∆ε

C
|∆ε〉Hs = −γ

ε
‖∆ε

C
‖2Hs ,

where the first equality comes from the fact that the operator [Ω, .] is skew-symmetric. To estimate
the other terms, it is useful to keep in mind that Uε

app is uniformly bounded inHs on the interval [0, t∗],

so there is a constant C, independent of f and ε, such that for any t and ε we have
∥∥Uε

app(t)
∥∥
Hs ≤ C.

Using this piece of information, the term carrying the weight 1 in 〈F ε(Uε
app +∆ε)− F ε(Uε

app)|∆ε〉Hs

is clearly bounded by

C ‖∆ε‖2Hs ,

for some constant C independent of t and ε, while the term carrying the weight
√
ε in is clearly

bounded by
√
ε ‖∆ε‖2Hs ,

The more difficult term is the one carrying the weight 1/
√
ε. Carefully treating apart all occurences

of the two terms ∆ε
C
and Cε

app, all terms being majorized in the most simple fashion, we recover that
this contribution is upper-bounded by

C√
ε

(
‖∆ε

C
‖2Hs + ‖∆ε

C
‖Hs ‖∆ε‖Hs +

∥∥Cε
app

∥∥
Hs ‖∆ε‖2Hs +

∥∥Cε
app

∥∥
Hs ‖∆ε

C
‖Hs ‖∆ε‖Hs

)
.

All in all we have eventually proved, gathering some terms for convenience,

d

dt
‖∆ε‖2Hs ≤ −γ

ε
‖∆ε

C
‖2Hs +

C√
ε

(
‖∆ε

C
‖2Hs + ‖∆ε

C
‖Hs ‖∆ε‖Hs

)

+
C√
ε

∥∥Cε
app

∥∥
Hs

(
‖∆ε

C
‖Hs ‖∆ε‖Hs + ‖∆ε‖2Hs

)

+ C ‖∆ε‖2Hs +
√
ε ‖∆ε‖2Hs + ‖Rε‖Hs ‖∆ε‖Hs .

Hence, there is an ε0 such that for any ε ≤ ε0 we have,

d

dt
‖∆ε‖2Hs ≤ − 1

C ε
‖∆ε

C
‖2Hs +

C√
ε
‖∆ε

C
‖Hs ‖∆ε‖Hs +C

∥∥Cε
app

∥∥
Hs√

ε
‖∆ε‖2Hs + ‖Rε‖Hs ‖∆ε‖Hs . (83)

Now, the two crucial ingredients are

sup
t∈[0,t∗]

‖Rε‖Hs →
ε→0

0, (84)

thanks to Lemma 5.1 , and
∫ t∗

0

‖Cε
app(t)‖Hs

√
ε

dt ≤ C
√
ε, (85)

34



for some C independent of ε. This crucial piece of information comes from the fact that

Cε
app(t) = C0,1

∣∣
T=t/

√
ε
e−γt/ε +

√
εC1,1

∣∣
T=t/

√
ε
e−γt/ε +O(ε),

which, in conjunction with the at-most-exponential growth of C0,1 and of C1,1 (see e.g. Lemma 4.12
and estimate (71)), provides

‖Cε
app(t)‖Hs ≤ exp

(
− t

C ε

)
+ C ε,

for some C independent of t ∈ [0, t∗] and ε.
At this stage, an easy argument using the Gronwall Lemma allows to deduce from (83), (84),

and (85), that ‖∆ε‖Hs is bounded independently of ε over the whole interval [0, t∗]. Repeting the
Gronwall argument next shows that ‖∆ε‖Hs actually satisfies

‖∆ε‖Hs ≤ ‖δε‖Hs exp

(
C

∫ t

0

(∥∥Cε
app

∥∥
Hs√

ε
+ ‖Rε‖Hs

)
dt′

)
−→
ε→0

0, uniformly on [0, t∗]. (86)

We skip the whole Gronwall-like argument. Estimate (86) now induces, by Sobolev’s injection, L∞

convergence to zero for profiles ∆ε = Uε − Uε
app, and thus L∞ convergence to zero for the original

functions U−Uε
app, since ‖U−Uε

app‖L∞
t,x,y,z

= ‖Uε − Uε
app‖L∞

t,x,y,z,θ0
. �

6 The Transverse Magnetic case

6.1 The system

In this section, we present the previous WKB in the particular Transverse Magnetic case, when fields
take the form

B =



Bx

By

0


 = B(t, x, y), E =




0
0
E


 = E(t, x, y),

with the additional common assumption (cf. [34]) that the polarization operator Γ has entries parallel
to E, namely

∀m,n ∈ {1, . . . , N}, Γ(m,n) =




0
0

Γ(m,n)



 .

Maxwell-Bloch system then reads

∂tB
ε
x +

1√
ε
∂yE

ε = 0,

∂tB
ε
y +

1√
ε
∂xE

ε = 0,

∂tE
ε − ∂xB

ε
y + ∂yB

ε
x =

i√
ε
Tr (ΓΩγ C

ε)− iEεTr (Γ[Γ,Cε +Nε])−
√
εTr (ΓW ♯Nε) ,

∂tC
ε = − i

ε
Ωγ C

ε +
i√
ε
Eε[Γ,Cε +Nε]od, (87)

∂tN
ε =

i√
ε
Eε[Γ,Cε]d +W ♯Nε.
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6.2 The Ansatz

As stressed in Remark 3.2, the introduction of an intermediate time T = t/
√
ε is not necessary here

(see also Remark 6.1 below). In order to simplify computations, we also restrict here our attention
to the case of prepared data, which corresponds to the case when

Cε
∣∣
t=0

= 0.

This second simplification allows us not to use the variable σ = γt/ε in the sequel. In a nutshell, we
here consider the simplified Ansatz

Uε
app(t, x, y) =

2∑

j=0

√
ε
j
Uj(t, x, y, θ)|θ=(kx/ε,−kt/ε

, Uj(t, x, y, θ) =
∑

α∈Z2d

∑

κ∈N
Uj

α(t, x, y) e
iα·θ. (88)

The characteristic sets C0, C+, C− and the resonant set R(k) are the same as before.

6.3 WKB expansions

In this setting, vanishing of the terms r−2, r−1 and r0 from Proposition 4.2 reduces to





−k · ∂θ1B0
x = 0,

−k · ∂θ1B0
y − k · ∂θ0E0 = 0,

−k · ∂θ1E0 − k · ∂θ0B0
y = 0,

(i Ωγ −k · ∂θ1)C0 = 0,

−k · ∂θ1N0 = 0,

(89)





−k · ∂θ1B1
x + ∂yE

0 = 0,

−k · ∂θ1B1
y − k · ∂θ0E1 = 0,

−k · ∂θ1E1 − k · ∂θ0B1
y + ∂yB

0
x = 0,

(i Ωγ −k · ∂θ1)C1 = i E0[Γ,C0 +N0]od,

−k · ∂θ1N1 = i E0[Γ,C0]d,

(90)





−k · ∂θ1B2
x + ∂yE

1 + ∂tB
0
x = 0,

−k · ∂θ1B2
y − k · ∂θ0E2 + ∂tB

0
y − ∂xE

0 = 0,

−k · ∂θ1E2 − k · ∂θ0B2
y + ∂yB

1
x + ∂tE

0 − ∂xB
0
y = iTr (ΓΩγ C

1)− i E0Tr (Γ[Γ,C0 +N0]),

(i Ωγ −k · ∂θ1)C2 + ∂tC
0,κ = i E0[Γ,C1 +N1]od + i E1[Γ,C0 +N0]od,

−k · ∂θ1N2 + ∂tN
0 = i E0[Γ,C1]d + i E1[Γ,C0]d +W ♯N0.

(91)

According to (89), the polarization conditions from equations (35)–(37) become, with the nota-
tions from Definition 4.7

B0
x,time = 0, (92)

∀α /∈ C+ ∪ C− ∪ {0}, B0
y,α = E0

α = 0, (93)

∀α ∈ C+ ∪ C−, B0
y,α = ∓E0

α, (94)

C0 = 0, (95)

N0
time = 0. (96)
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Here, the projector Π from Definition 4.3 is given explicitly, and the “prepared data” condition is
coherent with the vanishing of C0.

From (90), we get for the average u0
0 a version of the evolution equation at intermediate scale

(38) under the form
∂yE

0
0 = ∂yB

0
x,0 = 0,

which leads to polarization consitions, instead of evolution equations, namely

E0
0 = B0

x,0 = 0. (97)

The oscillating part of (90) produces the following transcription of the polarization condition (40)
for the first corrector u1





∀α /∈ C ∪ {0}, u1
α = 0,

∀α ∈ C0, E1
α = 0, B1

y,α = 1
ik·α0

∂yB
0
x,α,

∀α ∈ C±, B1
x,α = 1

ik·α1
∂yE

0
α, B1

y,α = ∓E1
α.

(98)

For coherences and populations, equation (43) is unchanged,

C1 = i (i Ωγ −k · ∂θ1)−1E0[Γ,N0]d, (99)

and equation (48) becomes
N1

time = 0. (100)

Next, the average of fields equations in (91) is equivalent to

∂yE
1
0 = 0, i.e. E1

0 = 0 (101)

(a polarization condition, again, instead of evolution as in equation (50)),

∂tB
0
y,0 = 0, (102)

(playing the role of equation (65)), and

∂yB
1
x,0 − ∂xB

0
y,0 = −i(E0Tr (Γ[Γ,N0]))0,

which reduces to
∂yB

1
x,0 − ∂xB

0
y,0 = 0, (103)

thanks to polarizations conditions and spectral properties (93), (96) and (97).

Remark 6.1. Since B0
y,0 does not depend on time t (according to equation (102)), we may impose (as

in equation (103)) that ∂xB
0
y,0 be the y-derivative of an Hs function for all times, simply by requiring

this condition be satisfied at t = 0. But in the general three-dimensional framework, ∂tB
0
y,0 =

0 is not given a priori, and we need the addition of the intermediate variable T to perform the
analysis of Section 4.3. Omitting this intermediate time leads, in the three-dimensional case, to the
overdetermined (and ill-posed) system (38), (50)

M2 (0, ∂y, ∂z)u
0
0 = 0, M2 (0, ∂y, ∂z)u

1
0 = −M1(∂t, ∂x)u

0
0.
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Oscillations in (91) are analyzed as follows. The polarization (52) for u2
osc splits into

B2
x,time = (k · ∂θ1)−1∂yE

1
time, (104)

and





∀α ∈ C±, 2 i (B2
y,α ±E2

α) =
1

ik · ∂θ1
∂2yE

0
α − iTr (ΓΩγ C

1
α) + i(E0Tr (ΓΩγ N

0)α,

∀α /∈ C+ ∪ C− ∪ {0},
(
B2

y,α

E2
α

)
=

i

(k · α0)2 − (k · α1)2
×

×
(
k · α1 −k · α0

−k · α0 k · α1

)(
0

∂yB
1
x,α + iTr (ΓΩγ(E

0N0 −C1)α)

)
,

(105)

where B1
x,α vanishes for α /∈ C (because of (98)), and may be chosen arbitrarily when α ∈ C0. The

coherence C1 is given by equation (99). Then, the evolution equation (66) with respect to the slow
time t corresponds to

∂tB
0
x,space = 0, together with ∂tB

0
x,0 = 0, (106)

and, using (99), to

∀α ∈ C±, 2(∂t ± ∂x)E
0
α +

1

ik · α1
∂2yE

0
α = iTr (ΓΩγ C

1
α)− i (E0Tr (Γ[Γ,N0]))α,

or (with C1
α from (99)), in other words

2(∂t + v(Dθ)∂x)E
0 + ∂−1

θ1
∂2yE

0 = iTr (Γ(i Ωγ(i Ωγ −k · ∂θ1)−1 − 1)(E0[Γ,N0])), (107)

(in place of equation (51)), with v(Dθ) given in Lemma 4.5.
For coherences, we get

C2 = i (i Ωγ −k · ∂θ1)−1(E1[Γ,N0]od + E0[Γ,C1 +N1]od), (108)

and for populations, we have

N2
time = −i (k · ∂θ1)−1(E0[Γ,C1]od)time, (109)

and
∂tN

0 =W ♯N
0 + i (E0[Γ,C1]d)space + i (E0[Γ,C1]d)0,

i.e.

∂tN
0 = W ♯N

0 − (E0[Γ, (i Ωγ −k · ∂θ1)−1(E0[Γ,N0]od)]d)space (110)

− (E0[Γ, (i Ωγ −k · ∂θ1)−1(E0[Γ,N0]od)]d)0.

6.4 Conclusion in the TM case

The above computations provide us with a set of profile equations leading to a local in time, smooth
approximate solution Uε

app as in (88):
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• The leading profile (u0,C0,N0) is given by polarizations (92), (93), (94), (95) (C0 = 0), (96),
as well as (97) (for average of fields, instead of an evolution at the intermediate scale). They also
satisfy an evolution with respect to time t, given by the trivial equations (102) and (106), namely

∂tB
0
y,0 = ∂tB

0
x,sp = 0,

by a nonlinear Schrödinger equation (107), and by the Boltzmann equation (110). As quoted in
Remark 6.1, this a priori overdetermined set of equations is in fact well-posed because of its scalar
structure. We stress the fact that no rectification occurs for fields at leading order: the only non-
vanishing average B0

y,0 is constant in time.
• Correctors are partially determined by polarizations, namely (98), (101), (103) for u1, (99) for C1,
(100) for N1, (104), (105) for u2, (108) for C2, and (109) for N2. Parts of the correctors that are not
submitted to these constraints may be chosen equal to zero.

The Ansatz
Uε

app(t, x, y) = Uε
app(t, x, y, θ)|θ=(k/ε,−kt/ε)

is consistant with system (87). We easily prove the

Lemma 6.2. Given the C∞ profiles above, define the residual Rε as in Proposition 4.2. Then, for
all µ ∈ N2+d, there is K > 0 such that:

sup
t∈[0,t⋆]

∥∥∥∂µx,y,θ0R
ε|θ1=−kt/ε

∥∥∥
L2
x,y

≤ K
√
ε.

Note that for prepared data, no initial layer is created at leading order, so that we get a O(
√
ε)

estimate instead of the o(1) in Lemma 5.1.
By the same technique as in Section 5.2, we get finally

Theorem 6.3. Given the smooth profiles above on [0, t⋆], for s > (2+d)/2 and any familly (δε)ε>0 ⊂
Hs(R2 × Td) such that ‖δε‖Hs = O(

√
ε), there is ε0 > 0 such that for ε ∈]0, ε0], the Cauchy problem

for Transverse Magnetic Maxwell-Bloch system (87), with initial data Uε
app|t=0

+ δε(x, y, kx/ε), has

a unique solution Uε ∈ C([0, t⋆], Hs(R2)), and for all µ ∈ N2 such that s − |µ| > (2 + d)/2, there is
K > 0 such that

‖∂µx,y
(
Uε −Uε

app

)
‖L∞([0,t⋆]×R2) ≤ K

√
ε.
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