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The Bethe-Peierls asymptotic approach which models pairwise short-range forces by contact con-
ditions is introduced in arbitrary representation for spatial dimensions less than or equal to three.
The formalism is applied in various situations and emphasis is put on the momentum representation.
In presence of a transverse harmonic confinement, dimensional reduction toward 2D or 1D physics
is derived within this formalism. The energy theorem relating the mean energy of an interacting
system to the asymptotic behavior of the one-particle density matrix illustrates the method in its
second quantized form. Integral equations that encapsulate the Bethe-Peierls contact condition for
few-body systems are derived. In 3D, for three-body systems supporting Efimov states, a nodal
condition is introduced in order to obtain universal results from the Skorniakov Ter-Martirosian
equation and the Thomas collapse is avoided. Four-body bound states eigenequations are derived
and the 2D ’3+1’ bosonic ground state is computed as a function of the mass ratio.

PACS numbers: 03.65.Nk,03.65.Ge,21.45.-v,34.50.-s

The non-perturbative zero-range limit of a pairwise in-
teraction was first introduced by Bethe and Peierls in
the context of Nuclear Physics for the description of the
deuteron [1–3]. In this modeling, the finite range pairwise
interacting potential was replaced by a zero range poten-
tial and a peculiar asymptotic behavior was imposed on
the wave function as the two interacting particles ap-
proach towards each other. More than sixty years af-
ter this pioneering work, the Bethe-Peierls approach ap-
peared to be especially relevant for modeling pairwise
interaction in few- and many-body systems of ultra-cold
atoms where details of the interaction are useless for un-
derstanding a large class of low energy process [4–17].
This remarkable simplicity follows essentially from two
features: -first, the temperature in these systems is suffi-
ciently low that s-wave scattering is the dominant process
in two-body collisions [18]; -second, the 3D s-wave scat-
tering length (denoted hereafter by a3) in the two-body
scattering can be tuned by use of a magnetic Feshbach
Resonance (FR) toward an arbitrary large value with re-
spect to the range of the interatomic forces, denoted in
what follows by b3 [19, 20] and which is of the order of
the van der Waals radius:

b3 ∼
(

µC6

~2

)1/4

, (1)

where C6 is the van der Waals coefficient of the inter-
atomic potential and µ is the reduced mass of the two
interacting particles. In the vicinity of a broad FR the
two-body scattering cross-section 4πa23 is very large with
respect to the non-resonant cross section (∼ 4πb23) and
this justifies the use of the 3D Bethe-Peierls approach
parameterized by the 3D scattering length only.
Ultra-cold atomic systems can be trapped in very

anisotropic harmonic potentials leading to a D-
dimensional behavior where D = 1 (quasi-1D systems)
or D = 2 (quasi-2D systems) [21]. In an ideal D-

dimensional atomic wave guide, non interacting atoms
move freely alongD direction(s) while they remain frozen
in the lowest state of the transverse zero-point motion
characterized by a length denoted hereafter by atrans.
The associated energy Etrans = ~

2/(2µa2trans), where µ
is the reduced mass of the interacting pair, defines the
limit of energy beyond which higher transverse states
are populated and a 3D-like behavior is progressively
recovered for increasing energies. In the actual experi-
mental state-of-the-art, atomic waveguides have a trans-
verse atomic length which is large as compared to the 3D
potential radius (b3). Therefore for low energy process
i.e. for collisional energies E such that |E| ≪ ~

2/(µb23),
the short-range pairwise interacting potential can be de-
scribed through the 3D Bethe-Peierls approach. For col-
lisional energies much smaller than Etrans the transverse
excited states of the trap are populated only via virtual
process while for large interatomic separation r such that
r ≫ atrans, only the ground transverse state is occupied.
In this regime of collisional energies and in the free D-
dimensional subspace, scattering process can be deduced
from a D-dimensional effective pairwise interaction char-
acterized by a finite range hereafter denoted by bD, which
is of the order of the transverse length atrans. Hence for
low energyD-dimensional process where |E| ≪ ~

2/(µb2D)
the effective low-dimensional interaction can be analo-
gously to the 3D case, replaced by a zero-range force.
Therefore in each dimension D less or equal to three,
a D-dimensional Bethe-Peierls approach can be relevant
and useful as a tool for exploring few- and many-body
shallow states properties. The dimensional reduction of
the effective interaction from 3D to 1D has been first
achieved in Ref. [4] and from 3D to 2D in Ref. [5].

One of the purpose of this paper is to show that the
zero-range potential approach can be handle in a very
simple and unified way in any dimension D ≤ 3. The
key tool used along these lines is introduced in section-I
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of the paper. It consists in the general expression of the
Bethe-Peierls asymptotic condition which can be used
in any representation for all dimension D. Substitution
of the δ-source terms of the zero range approach by a
family of well behaved functions of vanishing but finite
support, allows one to avoid technical problems concern-
ing double limit calculations (i.e. evaluation of infinite
series in the zero range limit). While used usually in the
configuration space, the zero-range approach can thus
be implemented directly in the momentum representa-
tion for translation invariant systems. The link between
this formulation of the Bethe-Peierls approach and the Λ-
potential introduced in Ref. [22] is analyzed. The method
is illustrated in section-II with the example of the dimen-
sional reduction issue from 3D towards 1D and 2D. The
Bethe-Peierls contact condition is directly expressed in
the functional basis which diagonalizes the free Hamilto-
nian and known results are obtained in a simple manner.
For N -body systems, integral equations which encapsu-
late the Bethe-Peierls contact condition are obtained in
section-III. It is also shown how to express this zero-range
force approach in a second quantized representation. As
an example, energy theorems [23–26] are derived by us-
ing this last formulation. Section-IV of the paper is de-
voted to the three- and four-body shallow bound state
issue. For three identical bosons in 3D, the original Skor-
niakov Ter-Martirosian (STM) equation [27] appears as a
straightforward application of the results of the preceding
section. A nodal condition is imposed on the three-body
wave function in order to avoid the Thomas collapse [28]
while keeping the simplicity of the zero-range approach
[29]. Known results of universal theory [30] are recovered
from the regularized STM equation. For two-mass com-
ponent fermionic systems in 3D, critical mass ratios for
the Efimov threshold are given in each partial wave by us-
ing the STM equation. In 2D, the eigenenergy equation
for two-mass component tetramers is studied numerically.
Energy of the ground s-wave of ’3+1’ bosonic tetramers
in the zero-range limit is computed as a function of the
mass ratio.
In this paper the norm of any vector v is denoted by

v. For a uni-dimensional system (D = 1), v is algebraic
and v = |v| is the absolute value of v.

I. ISOTROPIC CONTACT FORCES

A. Two-body transition matrix and scattering

amplitude

This section reviews basic notions of two-body scat-
tering in D-dimensional spaces which are useful in the
formulation of the Bethe-Peierls approach.
Two colliding particles are described in their center

of mass frame by the relative particle of reduced mass µ
and relative momentum k. They are supposed to interact
through a short range potential V , and the Hamiltonian
for the relative particle is H = H0 + V , where H0 is the

free Hamiltonian. In what follows, as a consequence of
the small collisional energy, scattering is supposed to oc-
cur in the s-wave channel of the relative particle only. For
an incoming atomic wave of momentum k0 and of colli-
sional energy E = ~

2k20/2µ (measured from the contin-
uum threshold), the scattering state |Ψk0

〉 of the relative
particle verifies the Lippmann-Schwinger equation:

|Ψk0
〉 = |k0〉+

1

E + i0+ −H0
V |Ψk0

〉. (2)

We now turn to the k-representation with the convention
〈r|k〉 = exp(ik · r):

〈r|Ψ〉 =
∫

dDk

(2π)D
〈k|Ψ〉 exp(ik · r). (3)

In the k-representation, the scattering states in Eq. (2)
can be written as a function of the half on-shell transition
matrix (or t-matrix) defined by:

〈k|T (E + i0+)|k0〉 = 〈k|V |Ψk0
〉, (4)

so that:

〈k|Ψk0
〉 = (2π)Dδ(k− k0) +

〈k|T (E + i0+)|k0〉
E + i0+ − ~2k2

2µ

. (5)

The pairwise interaction is supposed to be short range
with a typical radius denoted by bD. For a small energy
|E| ≪ ~

2/µb2D and momentum |k|bD ≪ 1, the half on-
shell t-matrix depends on the collisional energy E only
and coincides with the low energy on-shell t-matrix. In
what follows this function is denoted by TD:

〈k|T (E + i0+)|k0〉 ≃ TD(E + i0+). (6)

At the lowest order in energy (implying that |k0|b ≪ 1),
the expression of TD can be parameterized by the D-
dimensional scattering length aD only. It can be written
as [31, 32]:

TD(E + i0+) =
ΩD~

2

2µ
×



































a3
(1 + ia3k0)

; (D = 3)

−1
ln(−ia2k0e

γ/2)
; (D = 2)

−ik0
(1 + ia1k0)

; (D = 1)

,

(7)
where ΩD is the full D-dimensional space angle:

Ω3 = 4π, Ω2 = 2π, and Ω1 = 2. (8)

In Eq. (7) for the two-dimensional case, γ is the Euler’s
constant, and the 2D scattering length a2 is always pos-
itive. The transition matrices in Eq. (7) are the basic
objects for describing low energy scattering process in
D-dimensional few- and many-body systems. Scattering
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properties can be equivalently described through the D-
dimensional scattering amplitudes defined by:

f3(k0) = −a3/(1 + ik0a3); (9)

f2(k0) = 1/ ln(−ik0a2e
γ/2); (10)

f1(k0) = −1/(1 + ik0a1). (11)

The notion of scattering amplitude is often used in config-
uration space where the scattering states for large relative
coordinates (r ≫ bD) are deduced from Eq. (7) with:

〈r|Ψk0
〉 = eik0·r + fD(k0)×



























eik0r

r ; (D = 3)

iπ
2 H

(1)
0 (k0r); (D = 2)

eik0r; (D = 1)

.

(12)
In Eq. (12), for D = 2 the outgoing scattering wave func-

tion H
(1)
0 is the Hankel’s function of order zero [33]; for

D = 1, f1 is also called the even scattering amplitude [4].

B. Bethe-Peierls asymptotic approach in arbitrary

representation

Surprisingly the zero-range approximation has been
essentially used in the configuration space while other
representations can yield substantial simplifications. For
example, as a consequence of translation invariance, the
momentum representation is very well suited for solving
the few-body problem in homogeneous space. In this sec-
tion, it is shown how the zero-range approximation can
be formulated in arbitrary representation.
While for finite range forces Eq. (6) is valid for a small

relative momentum k only (i.e. for kbD ≪ 1), in the
zero-range potential approximation this equality is ex-
tended for arbitrary large values of k. That way, the
short range pairwise potential V is replaced by a for-
mal zero-range potential such that the scattering states
in this approximation coincide with Eq. (5) in the small
relative momentum limit (kbD ≪ 1) or with Eq. (12) for
large interparticle distances (r ≫ bD). The simplest way
to implementing the zero-range approximation is to fol-
low the Bethe-Peierls method [1], where for any state |Ψ〉
described by the Hamiltonian H0 + V , the pairwise short
range potential V is replaced by a delta-source term |δD〉
with an amplitude SΨ:

V |Ψ〉 −→ SΨ|δD〉, (13)

and SΨ is deduced from an asymptotic condition on the
state |Ψ〉. In Eq. (13), |δD〉 is such that the usual δ-
distribution is obtained in the configuration space:

〈r|δD〉 = δ(r), (14)

and |δD〉 is also denoted by the formal ket of zero relative
coordinates |0r〉. From Eq. (5) the scattering state |Ψk0

〉

is written in the zero-range potential approach as:

|Ψk0
〉 = |k0〉+

TD(E + i0+)

E + i0+ −H0
|δD〉. (15)

Injecting Eq. (13) in the Lippmann-Schwinger equa-
tion (2) gives:

|Ψk0
〉 = |k0〉+

SΨk0

E + i0+ −H0
|δD〉. (16)

Identifying Eq. (15) and Eq. (16) shows that the
source amplitude associated with a scattering state
|Ψk0

〉 is nothing but the on-shell transition matrix:
SΨk0

= TD(E + i0+). In configuration space, scattering

states in Eq. (15) or in Eq. (12) are singular for van-
ishingly small interparticle distances. As shown in what
follows, this singular behavior defines the Bethe-Peierls
asymptotic condition. From Eq. (15) one finds that all
the scattering states for a given dimension D have the
same singular behavior which reduces to:

〈r|Ψ〉 =
r→0

A×



































(

1

a3
− 1

r

)

+O(r); (D = 3)

ln

(

r

a2

)

+O(r); (D = 2)

(r − a1) + O(r); (D = 1)

. (17)

In Eq. (17) A is a function of the energy E but does not
depend on r. It is important to note that Eq. (17) is ob-
tained in the center of mass frame, meaning that the limit
r → 0 is taken at fixed value of the center of mass of the
two colliding particles. Conversely, for a given dimension
D, Eq. (17) is the sufficient asymptotic condition which
permits to obtain the source amplitude SΨk0

of a scatter-

ing state |Ψk0
〉 at energy E in Eq. (16). The asymptotic

condition in Eq. (17) referred also as the ’contact condi-
tion’ or the Bethe-Peierls condition, remains unchanged
for any linear combination of scattering states and can be
thus used to found any eigenstate in the zero-range ap-
proximation for a system where an external potential is
included within the free Hamiltonian H0. For a positive
energy E, the Lippmann Schwinger equation is

|Ψ〉 = |Ψ(0)〉+ SΨ

E + i0+ −H0
|δD〉, (18)

where |Ψ(0)〉 is the complementary solution i.e it is an
eigenstate of the free Hamiltonian H0 at energy E (for a
negative energy |Ψ(0)〉 = 0 and the +i0+ prescription in
Eq. (18) is not useful). The relation between the number
A in Eq. (17) and the source amplitude SΨ in Eq. (18) is
given by:

A =
2µSΨ
ΩD~2

. (19)

The crucial point of this section is to show that the
asymptotic condition in Eq. (17) can be expressed in ar-
bitrary representation. In what follows for convenience,
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the delta distribution is represented by the ǫ → 0 limit
of a Gaussian weight:

〈r|δDǫ 〉 = 1

(2πǫ2)D/2
exp

(

−r2

ǫ2

)

, (20)

so that:

δD(r) = lim
ǫ→0

〈r|δDǫ 〉. (21)

With this particular choice, in the momentum space the
representation of the delta term has the same expression
[denoted by χǫ(k)] for all dimensions:

〈k|δDǫ 〉 = χǫ(k) = exp

(

−k2ǫ2

4

)

. (22)

Matrix elements and states without index ǫ are consid-
ered in their zero-range limit which corresponds in this
formalism to the limit ǫ → 0:

lim
ǫ→0

|Ψǫ〉 = |Ψ〉 (23)

For the formulation of the zero-range approximation it is
also useful to introduce the ’reference state’ denoted by
|φΛ

ǫ 〉:

〈k|φΛ
ǫ 〉 = −2µ

~2
× χǫ(k)

k2 + Λ2
. (24)

This state results from the action of the 2-body Green’s
function GEΛ

in free space on |δDǫ 〉 at the negative energy
EΛ:

|φΛ
ǫ 〉 = GEΛ

|δDǫ 〉, (25)

where:

GEΛ
=

1

EΛ −H0
and EΛ = −~

2Λ2

2µ
< 0. (26)

In Eq. (26) the parameter Λ is chosen positive (Λ ∈ R
+)

according to the usual prescription in scattering theory.
In the zero-range limit where ǫ → 0, in the configuration
space the reference state has the same type of singularity
as in Eq. (17):

〈r|φΛ〉 = 2µ

ΩD~2











































(

−1

r
+ Λ

)

+O(r); (D = 3)

ln

(

Λreγ

2

)

+O(r); (D = 2)

(

r − 1

Λ

)

+O(r); (D = 1)

. (27)

The contact condition in Eq. (17) can then be written in
terms of the reference state as:

lim
r→0

lim
ǫ→0

〈r|Ψǫ − SΨφ
Λ
ǫ 〉 =

SΨ
TD(EΛ)

. (28)

In the configuration space, the state |Ψǫ − SΨφ
Λ
ǫ 〉 is a

smooth function for (r, ǫ) close to (0, 0). It is thus possi-
ble to commute the r → 0 and ǫ → 0 limits in Eq. (28):

lim
r→0

lim
ǫ→0

〈r|Ψǫ − SΨφ
Λ
ǫ 〉 = lim

ǫ→0
lim
r→0

〈r|Ψǫ − SΨφ
Λ
ǫ 〉. (29)

For particles moving in presence of an external potential,
the source amplitude in configuration space depends on
the center of mass coordinates of the interacting pair.
Hence, in general situations the source amplitude is re-
placed by a state associated with the center of mass of
the interacting pair:

SΨ −→ |SΨ〉. (30)

Finally, the Bethe-Peierls condition can be written with-
out specifying any representation as:

lim
ǫ→0

〈0r|Ψǫ − SΨφ
Λ
ǫ 〉 =

|SΨ〉
TD(EΛ)

. (31)

Eq. (31) is by construction, invariant in a change of
Λ ∈ R

+: as it will be shown in the next section, one
recovers the so-called Λ-freedom of the Λ-potential [22].
This freedom permits to simplify exact calculations with-
out introducing any approximation, or also to improve
approximate schemes [22, 35, 36]. Moreover, the ǫ → 0
limit can be taken equivalently as follows:

lim
ǫ→0

〈δDǫ |Ψǫ − SΨφ
Λ
ǫ 〉 =

|SΨ〉
TD(EΛ)

(32)

or also by substituting the ket in the left hand side of
Eq. (32) by its ǫ → 0 limit:

lim
ǫ→0

〈δDǫ |Ψ− SΨφ
Λ〉 = |SΨ〉

TD(EΛ)
. (33)

The contact conditions in Eqs. (31,32,33) can be ex-
pressed in any desired representation by inserting a clo-
sure relation in the scalar product concerning the relative
particle. For example in the momentum representation,
one can insert at the right of the bra 〈0r| in Eq. (32) the
closure relation:

∫

dDk

(2π)D
|k〉〈k| = I, (34)

and this gives:

lim
ǫ→0

(
∫

dDk

(2π)D
χǫ(k)〈k|Ψ − SΨφ

Λ〉
)

=
|SΨ〉

TD(EΛ)
. (35)

In the next sections, it will be shown that Eqs. (31,32,33)
allow one to obtain in a simple way the standard integral
equations of few-body problems in the zero range limit
and also to compute the induced scattering resonances
and related scattering problems in presence of an har-
monic transverse confinement. As a conclusion of this
part, it is interesting (and useful) to note that for D = 3
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or D = 1, it is possible to eliminate the presence of the
reference function in the contact condition by performing
a specific limit on Λ. For D = 3, in the Λ → 0 limit the
contact condition can be written as:

lim
ǫ→0

∂ǫ
(

ǫ〈δD=3
ǫ |Ψ〉

)

=
µ|SΨ〉
2π~2a3

. (36)

Eq. (36) can be written in the alternative following form:

Reg
ǫ→0

〈δD=3
ǫ |Ψ〉 = µ|SΨ〉

2π~2a3
, (37)

where Reg
ǫ→0

extracts the regular part of 〈δD=3
ǫ |Ψ〉 in the

limit where ǫ → 0. For D = 1, elimination of the refer-
ence function occurs in the limit where Λ tends to ∞.
One obtains:

lim
ǫ→0

〈δD=1
ǫ |Ψ〉 = −µa1

~2
|SΨ〉. (38)

C. Link with the s-wave Λ-potential

The zero-range s-wave pseudo-potential was intro-
duced by Fermi [37] in order to perform calculations in
the first order Born approximation. The Fermi pseudo-
potential was not thus constructed for non perturbative
approach (for large values of a3 for example). The mod-
ern formulation of the zero-range pseudo-potential for
D = 3 is due to Breit [2]. In this approach, the Bethe-
Peierls condition is included in the Schrödinger equation
via the zero-range pseudo-potential. It has been shown in
the configuration space that there exists in each dimen-
sion D a family of zero-range potentials: the so-called

Λ-potentials [22]. This section, links the Bethe-Peierls
approach and the Λ-potential in arbitrary representa-
tion. For this purpose, a family of operators RΛ

ǫ is in-
troduced. They act on a state verifying the asymptotic
Bethe-Peierls condition in Eq. (17) as:

RΛ
ǫ |Ψǫ〉 = |δDǫ 〉 lim

ǫ→0
〈δDǫ |Ψǫ − SΨφ

Λ
ǫ 〉. (39)

These operators have the two obvious properties:

R
Λ= 1

aD
ǫ |Ψǫ〉 = 0 and RΛ

ǫ |φΛ
ǫ 〉 = 0. (40)

Explicit expressions for RΛ
ǫ can be found without speci-

fying any representation as follows:

RΛ
ǫ |Ψǫ〉 = |δDǫ 〉 lim

ǫ→0
rΛǫ
[

〈δDǫ |Ψǫ〉
]

, (41)

where rΛǫ is an operator defined in each dimension as:

rΛǫ [ · ] =











































[(

∂ǫ +

√

π

2
Λ

)

ǫ ·
]

; (D = 3)

[(

1 +
ǫ

2
ln(eγΛ2ǫ2/2)∂ǫ

)

·
]

; (D = 2)

[(

1 +

√

π

2

1

Λ
∂ǫ

)

·
]

; (D = 1)

(42)

Expressions of rΛǫ in Eq. (42) depend on the choice
made for the short range functions 〈r|δDǫ 〉, given here by
Eq. (20). The source term in the stationary Schrödinger
equation can be expressed in terms of RΛ

ǫ by using
Eqs. (31,39):

(H0 − E) |Ψǫ〉+ TD(EΛ)R
Λ
ǫ |Ψǫ〉 = 0. (43)

In the limit ǫ → 0, the pseudo-potential in this equa-
tion coincides exactly with the Λ-potential introduced
in Ref. [22], where the coupling constant gΛ is nothing
but the transition matrix at energy EΛ:

gΛ = TD(EΛ). (44)

D. Context of resonant scattering

The zero-range approximation is especially interesting
in the regime of parameters where the pairwise potential
leads to a resonant scattering at low collisional energy. In
this regime, the cross-section proportional to |fD|2 has a
large value at small relative momentum (k0bD ≪ 1) and
expressions in Eqs. (9,10,11,12) are good approximations.
ForD = 3, this corresponds to the regime where the scat-
tering length a3 is large in absolute value as compared
to the potential radius b3 and the maximum is at k0 = 0.
This regime can be achieved by using the Feshbach Reso-
nance (FR) mechanism (see Ref. [20] for a general review
of FR in ultracold atoms). The FR involves the coupling
between atoms (in the ’open channel’) and a molecular
state (in the ’closed channel’) characterized by a size of
the order of the potential range b3. This two-channel de-
scription provides the expression of the scattering length
(a3) as a function of the external magnetic field B in the
vicinity of a given resonance located at B = B0 which can
be parameterized by the formula [38]:

a3 = abg

(

1− ∆B
B − B0

)

. (45)

In Eq. (45), ∆B is the width of the magnetic FR and abg
is the ’background’ scattering length i.e. the scattering
length away from the FR. The magnetic width (∆B) can
be also characterized by the ’width radius’ R⋆ defined by

R⋆ =
~
2

mabgδµ∆B , (46)

where δµ is the difference of magnetic moment for an
atomic pair in the open- and the closed-channel [20, 39].
In the vicinity of a broad resonance, R⋆ is of the order
of magnitude or smaller than the 3D potential radius b3
and the 3D scattering amplitude can be approximated by
Eq. (9) in a large interval of momentum where |k0|b3 ≪ 1.
As shown in the next section, the resonant behavior

in low dimensional atomic wave guide can be reached
by tuning the length atrans of the transverse confinement
and/or the 3D scattering length. For D = 1 the reso-
nant regime occurs in the limit where the 1D-scattering
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length a1 is small with respect to the transverse length
(i.e. |a1| ≪ b1) and also for vanishing relative momentum
k0 = 0. In 2D, the maximum in |f2|2 occurs at the mo-
mentum k0 = 2/(eγa2) (where |f2| = 2/π) and the res-
onant regime is thus reached at low energy if and only
if the 2D-scattering length is large as compared to the
transverse length (i.e. a2 ≫ b2).
In the resonant regimes defined above, the probability

of scattering for two colliding particles is large so that
the pairwise short range potential affects the form of the
wave function at interparticle distances which are large
with respect to the potential radius bD. More precisely,
the scattering states in Eq. (5) can be decomposed in an
incoming part |φinc〉 = |k0〉 and a scattered part |φscatt〉.
At large distance and in the resonant regime:

∣

∣

∣

∣

〈r|φscatt〉
〈r|φinc〉

∣

∣

∣

∣

=
r≫bD







|a3|/r; (D = 3)√
eγa2/

√
πr; (D = 2)

1; (D = 1)
. (47)

For D = 3 or D = 2 this ratio is greater than or of the
order of unity for bD ≪ r < |aD|, where |aD| is arbitrar-
ily large and is equal to unity for arbitrary large distance
in one-dimensional systems (D = 1). The zero-range po-
tential approach is a formalism which permits to evalu-
ate accurately the wave function in configurations where
particles are outside the potential radius while configu-
ration where two or more particles are inside the poten-
tial radius are not reliably described. Consequently, the
Bethe-Peierls asymptotic approach is very well suited for
studying systems in the resonant regime where the wave-
function is modified by the interaction at interparticle
distances which are large as compared to the potential
radius.
In the three-dimensional space (D = 3), for a pos-

itive scattering length a3 the on-shell transition ma-
trix T3 in Eq. (7) has a real pole at negative energy
E2 = −~

2/(2µa23). In the resonant regime, this pole is
associated with the existence of a shallow dimer which is
thus very well described in the zero range approach (the
probability that the relative pair has a radius greater
than the potential radius b3 is exp(−2b3/a3) ∼ 1). For
D = 2, the pole is at E2 = −2~2/(µa22 exp(2γ)), and in
the resonant regime it is also the signature of the ex-
istence of a shallow dimer. For D = 1, in the resonant
regime (a1 → 0) the approximation of the transition ma-
trix in Eq. (7) doesn’t possess a negative low energy
pole and next order terms in the energy expansion are
needed to find the pole corresponding to the lowest bound
state [40].

II. DIMENSIONAL REDUCTION

In this section, the dimensional reduction issue is
solved by using the zero-range approximation with the
Bethe-Peierls condition expressed through Eq. (36). This
section gives alternative derivations of the results given

in Refs. [4–7]. The problematic of the 3D→1D (respec-
tively 3D→2D) dimensional reduction is as follows: two
particles move freely in 1D (resp. 2D) while they are con-
fined in the transverse direction by an atomic wave guide
built from a 2D (resp. 1D) trapping potential. The colli-
sional energy is such that at large interatomic distances,
the particles are confined in the ground state of the trap-
ping potential. The problem is to find the low-energy
transition matrix of this low dimensional quasi-2D (resp
quasi-1D) scattering process as a function of the wave
guide parameters and of the three dimensional scatter-
ing length a3. In what follows only the case of harmonic
trapping where the center of mass and relative motions
decouple are considered. In the center of mass frame the
source amplitude SΨ is constant and the scattering state
can be written as:

|Ψ〉 = |Ψ(0)〉+ |Ψint〉, (48)

where |Ψ(0)〉 is the incident wave, the ’interacting part’
is

|Ψint〉 = SΨ
E + i0+ −H0

|0r〉, (49)

and the source amplitude is found from the Bethe-Peierls
condition by solving the equation:

〈0r|Ψ(0)〉+Reg
ǫ→0

〈δD=3
ǫ |Ψint〉 = µSΨ

2π~2a3
. (50)

These quasi-1D and quasi-2D scattering problems have
been initially solved by using the Bethe-Peierls method
in the configuration space in Ref. [4] and Refs. [5, 6].
In what follows, an alternative derivation is given in or-
der to illustrate the formalism introduced in the previous
section.

A. Linear Atomic Wave Guide

The 3D→1D reduction problem, is considered here in
the case where the two colliding atoms are confined in
an isotropic two-dimensional harmonic trap while they
move freely along the third direction (z). In this case,
the problem can be solved in the center of mass frame
where the non-interacting Hamiltonian is

H0 = − ~
2

2µ
∂2
z +H2D, (51)

and H2D is the Hamiltonian for the transverse motion:

H2D = − ~
2

2µ
(∂2

x + ∂2
y) +

1

2
µω2

⊥(x
2 + y2)− ~ω⊥. (52)

The linear atomic wave guide is characterized by the
transverse length:

a⊥ =

√

~

µω⊥
, (53)
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and the zero-range approximation of the D = 3 pair-
wise potential is justified in the limit where a⊥ ≫ b3.
In Eq. (52), the zero-point energy has been subtracted.
That way, the energy E of the scattering states is mea-
sured with respect to the continuum threshold. In this
quasi-1D scattering problem at energy E = ~

2k20/2µ, the
incoming state for the relative particle (|Ψ(0)〉) in Eq. (48)
has a momentum k0 along z and is in the ground-state
of the transverse 2D-oscillator:

|Ψ(0)〉 = |nx = 0〉|ny = 0〉|kz = k0〉, (54)

where nx and |nx〉 (resp. ny and |ny〉) are the quantum
number and eigenstate of the 1D-harmonic oscillator of
atomic frequency ω⊥ and mass µ along x (resp. y). The
system is quasi-1D for collisional energies such that:

E < E1D
trans, (55)

where E1D
trans = 2~ω⊥. Eq. (55) defines the monomode

regime of the atomic waveguide such that outgoing par-
ticles are trapped at large relative distances in the ground
state of the transverse trap. The contribution of the in-
coming wave in Eq. (50) is:

〈0r|Ψ(0)〉 = φ0(0)
2 =

1√
πa⊥

, (56)

where φn(x) = 〈x|n〉 is given by:

φn(x) =
exp

(

−x2

2a2

⊥

)

π1/4
√
a⊥

Hn

(

x

a⊥

)

. (57)

In the calculation of 〈δD=3
ǫ |Ψint〉, the quantum numbers

of the non-interacting Hamiltonian are introduced di-
rectly by inserting the closure relation:

∫ +∞

−∞

dkz
2π

|kz〉〈kz |
∞
∑

nx=0

|nx〉〈nx|
∞
∑

ny=0

|ny〉〈ny | = I. (58)

Only the even values of nx and ny gives a non vanishing
contribution, and one obtains

〈δD=3
ǫ |Ψint〉 = SΨ

~ω⊥

∫ +∞

−∞

dkz
2π

∞
∑

p,q=0

exp

(

−k2zǫ
2

4

)

×

〈δD=1
ǫ |2p〉〈δD=1

ǫ |2q〉φ∗
2p(0)φ

∗
2q(0)

τ − k2
za

2

⊥

4 − p− q
, (59)

where the dimensionless energy variable τ is defined by:

τ =
E

2~ω⊥
+ i0+. (60)

The behavior of 〈δD=3
ǫ |Ψint〉 in the limit where ǫ van-

ishes is more easily obtained in the domain of negative
collisional energies (τ < 0) than in the domain of positive

collisional energies E > 0 and are related to each other
by analyticity. For τ < 0 one can use the identity

1
k2
za

2

⊥

4 + n+ p− τ
=

∫ ∞

0

du e
−u

(

k2
za2

⊥

4
+n+p−τ

)

, (61)

which allows one to decouple the discrete summations
from the integration over kz in Eq. (59). From Eq. (57),
one can deduce the following limit:

lim
ǫ→0

∞
∑

p=0

〈δD=1
ǫ |2p〉φ∗

2p(0)e
−pu =

|φ0(0)|2√
1− e−u

. (62)

Using Eq. (62) and integrating over kz in Eq. (59) gives:

〈δD=3
ǫ |Ψint〉 =

ǫ→0

−µSΨ
2π3/2~2a⊥

∫ ∞

0

du
√

u+ ǫ2

a2

⊥

euτ

1− e−u
.

(63)
In the limit where ǫ → 0, this expression diverges as 1/ǫ
and its regular part coincides with a ’Partie finie de
Hadamard’ [41, 42]:

Reg
ǫ→0

〈δD=3
ǫ |Ψint〉 = µSΨ

2π3/2~2a⊥
P. f.

∫ ∞

0

du√
u

euτ

1− e−u
.

(64)
One recognizes in Eq. (64) an expression similar to the in-
tegral representation of the Hurwitz zeta function ζ(s, z)
defined for ℜ(s) > 1 and 0 < z < 1 by [43]:

ζ(s, z) =
1

Γ(s)

∫ ∞

0

dt
ts−1e−tz

1− e−t
. (65)

However, in Eq. (65) the integral diverges for s = 1/2.
The Partie finie de Hadamard in Eq. (64) permits to
achieve a meromorphic continuation in the variable s
of Eq. (65) and to identify the function ζ(1/2, z) [44].
Hence:

SΨ =
2π1/2

~
2

µ
[

ζ
(

1
2 ,−τ

)

+ a⊥

a3

] . (66)

For positive energies and in the monomode regime
(0 < E < 2~ω⊥), the scattering state written in the con-
figuration representation in Eq. (48) has a non evanescent
contribution at large relative length z ≫ a⊥, in the sub-
space of the transverse ground-state only. This property
allows one to identify a quasi-1D scattering process with:

〈z, nx = 0, ny = 0|Ψ〉 =
|z|≫a⊥

exp(ik0z)−

iµSΨ√
π~2a⊥k0

exp(ik0|z|), (67)

and a⊥ plays the role of a 1D-potential radius (i.e.
b1 ∼ a⊥). The low-energy scattering amplitude f3D→1D

of this quasi-1D system is thus:

f3D→1D(k0) = − iµSΨ√
π~2a⊥k0

. (68)
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In the |kz〉-representation, the scattering states read:

〈kz , nx = 0, ny = 0|Ψ〉 = (2π)δ(kz − k0)+

SΨ
√
πa⊥

(

E + i0+ − ~2k2
z

2µ

) (69)

so that, the quasi-1D scattering transition matrix
T 3D→1D can be expressed as:

T 3D→1D =
SΨ√
πa⊥

. (70)

Finally, from Eqs. (66,70) one obtains:

T 3D→1D =
2~2

µa⊥
× 1

ζ(12 ,−τ) + a⊥

a3

. (71)

In the low energy limit (k0a⊥ ≪ 1):

ζ

(

1

2
,−τ

)

≃
τ→0

1√
−τ

+ ζ

(

1

2

)

(72)

and for positive energies
√
−τ = −ik0a⊥/2. From

Eq. (7), one can then identify a 1D-scattering length
which is a function of the transverse length a⊥ and of
the 3D scattering length a3 [40]:

a1 = −a⊥
2

[

a⊥
a3

+ ζ

(

1

2

)]

. (73)

B. Planar atomic wave guide

In the 3D→2D reduction problem, the two colliding
particles are confined in a planar harmonic wave guide
of frequency ωz along the z-direction while they move
freely in the two other directions. The non-interacting
Hamiltonian in the center of mass frame reads:

H0 = − ~
2

2µ
(∂2

x + ∂2
y) +Hz, (74)

with, the 1D-harmonic trap along z:

Hz = − ~
2

2µ
∂2
z +

µ

2
ω2
zz

2 − ~ωz

2
. (75)

In Eq. (75) the zero point energy of the transverse trap
has been subtracted, so that similarly to the previous
3D→1D reduction problem, the energy of an eigenstate
is measured with respect to the continuum threshold and
coincides with the collisional energy. In what follows,
|nz〉 is the eigenstate of quantum number nz for the 1D-
harmonic oscillator of frequency ωz and mass µ. The sub-
sequent derivation supposes that the 3D zero-range ap-
proximation is justified, i.e. that the atomic wave guide
is such that:

az ≫ b3, (76)

where az is the characteristic length of the atomic wave
guide:

az =

√

~

µωz
. (77)

In the quasi-2D scattering problem the incoming state is:

|Ψ(0)〉 = |k2D = k0〉|nz = 0〉, (78)

where k0 is the 2D-wave relative wavevector of the in-
coming wave and k2D = kxêx + kyêy is the 2D colli-
sional relative momentum. The collisional energy E
is E = ~

2k20/2µ and the monomode regime condition is
given by:

E < E2D
trans (79)

where, E2D
trans = ~ωz. Eq. (79) ensures that the system

is quasi-2D, i.e. the colliding particles are asymptoti-
cally trapped in the ground state of the transverse trap.
The behavior of 〈δD=3

ǫ |Ψint〉 in the limit where ǫ → 0 is
obtained by using the same technics as for the 3D→1D
reduction problem. The quantum numbers of the free
Hamiltonian are introduced by insertion of the closure
relation:

∫

d2k2D

(2π)2
|k2D〉〈k2D|

∞
∑

nz=0

|nz〉〈nz | = I. (80)

In the 3D Bethe-Peierls asymptotic condition, only even
values of nz contributes and one obtains:

〈δD=3
ǫ |Ψint〉 = µSΨa

2
z

4π~2

∫ ∞

0

k2Ddk2D

×
∞
∑

p=0

exp

(

−k22Dǫ
2

4

) 〈δD=1
ǫ |2p〉φ∗

2p(0)

τ − k2

2D
a2
z

4 − p
, (81)

where the dimensionless energy variable τ is defined by:

τ =
E

2~ωz
+ i0+. (82)

The discrete summation in Eq. (81) is performed in the
domain τ < 0 by using the transformation of Eq. (61)
together with the identity of Eq. (62). After integration
over k2D, the regular part of 〈δ3ǫ |Ψint〉 can be expressed
in the limit where ǫ → 0 as:

Reg
ǫ→0

〈δ3ǫ |Ψint〉 = − µSΨ
2π~2

|φ0(0)|2J(τ), (83)

where the function J(τ) is defined in the domain τ < 0
by:

J(τ) = P.f.

∫ ∞

0

du

u

exp(τu)
√

1− exp(−u)
. (84)
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From Eq. (50), one finally obtains:

SΨ =
2π~2φ0(0)

µ
[

1
a3

+ |φ0(0)|2J(τ)
] . (85)

Projection of the wavefunction on the ground-state of the
1D transverse harmonic oscillator 〈k2D, nz = 0|Ψ〉 gives
the quasi-2D transition matrix:

T 3D→2D = − π~2

µ
[√

πaz

2a3
+ J(τ)

2

] . (86)

In the domain of positive energy Eq. (82) is continued
analytically from the identity

J(τ) = ln

(

− B

2πτ

)

+

∞
∑

n=1

ln

(

n

n− τ

)

(2n− 1)!!

(2n)!!
, (87)

where B ≃ 0.9049 is defined by [34]:

ln

(

Beγ

2π

)

=

∫ ∞

0

du

(

u−1

√
1− e−u

− 1

u3/2
− 1

1 + u

)

,

(88)
and γ = 0.5772 . . . is the Euler’s constant. The 2D low
energy condition is given by:

|E| ≪ ~ωz, (89)

and az plays the role of a 2D-potential radius, i.e.

b2 ∼ az. Only the first logarithmic term in Eq. (87) con-
tributes at the lowest order in the limit of Eq. (89), and
one can identify the resulting expression of the quasi-2D
transition matrix T 3D→2D with the 2D low energy transi-
tion matrix T2 in Eq. (7). The 2D scattering length a2 of
this quasi-2D scattering problem can thus be expressed
in terms of az and of the 3D scattering length a3 [6, 7, 36]
as:

a2 = aze
−γ

√

2π

B
exp

(

−az
√
π

2a3

)

. (90)

It is interesting to discuss a little bit further the con-
dition for having a low energy resonant behavior in this
quasi-2D system. The 2D cross-’section’ (this is a length)
is proportional to |T 3D→2D(k0)|2/k0 and a maximum oc-
curs in the low-energy regime Eq. (89) for:

az
a3

=
1√
π
ln

(

πE

B~ωz

)

. (91)

The right hand side of Eq. (91) is large and negative
which shows that the resonance occurs for sufficiently
large values of |a3| with respect to az in the domain of
negative scattering lengths. At fixed value of the colli-
sional energy E and of the scattering length a3 < 0, the
resonance can be reached by tuning the harmonic fre-
quency of the atomic waveguide: this is the so-called

quasi-2D Confined Induced Resonance first found in
Ref. [5].

III. FORMALISM FOR N-BODY SYSTEMS

A. k-representation

In this section the Bethe-Peierls method is applied to
few- and many-body systems in the k-representation.
The system is composed of N -particles of respective
masses m1,m2, . . .mN and of momenta k1,k2, . . .kN . In
what follows, for convenience the set of momenta is de-
noted by the short-hand notation {k}. The relative and
total momenta of a given pair of particles (ij), are de-
noted by

kij =
mjki −mikj

mi +mj
, Kij = ki + kj , (92)

and the reduced mass of the pair (ij) is denoted by:

µi,j =
mimj

mi +mj
(93)

It is also convenient to introduce the set of momenta
denoted by {ξij} with {ξij} = ξ

ij
1 , ξ

ij
2 . . . ξijN where:

ξijn =























Kij

√

mi

2(mi +mj)
forn = i

Kij

√

mj

2(mi +mj)
forn = j

kn otherwise

. (94)

This last notation permits to isolate in the kinetic en-
ergy the contribution of the relative particle (ij) from
the N − 1 other momentum:

N
∑

n=1

k
2
n

mn
=

k2
ij

µi,j
+

N
∑

n=1

(

ξijn
)2

mn
. (95)

A non vanishing source amplitude |Si⇌j
Ψ 〉 is associated

with any pair of particles interacting via the short range
pairwise potential in the many-body state |Ψǫ〉. In the
case where the system is composed of particles with spin,
in what follows |Ψǫ〉 denotes the projection over a given
spin configuration of the many-body state including the
symmetry imposed by the quantum statistics. The free
Hamiltonian of the system (which may includes an ex-
ternal potential) is denoted by H0, and the N -body sta-
tionary states at energy E verifies:

(H0 − E)|Ψǫ〉 = −
∑

i<j

|(ij) : δDǫ 〉|Si⇌j
Ψ 〉. (96)

In Eq. (96), |(ij) : δDǫ 〉 is the state |δDǫ 〉 for the relative
particle (ij) of momentum kij , and the source amplitude

|Si⇌j
Ψ 〉 is a state for the N − 1 other particles of momenta

{ξij}. If the pair (ij) does not interact then |Si⇌j
Ψ 〉 = 0,

otherwise it satisfies the Bethe-Peierls contact condition:

lim
ǫ→0

〈(ij) : δDǫ |
(

|Ψ〉 − |(ij) : φΛ〉|Si⇌j
Ψ 〉

)

=
|Si⇌j

Ψ 〉
TD(EΛ)

,

(97)
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where the reference state |(ij) : φΛ
ǫ 〉 is defined in the k-

representation as:

〈kij |(ij) : φΛ
ǫ 〉 = −2µi,j

~2
× χǫ(kij)

k2ij + Λ2
(98)

In what follows Eqs. (96,97) are used in the case where
there is no external potential and |Ψ(0)〉 denotes the com-
plementary solution of Eq. (96) which satisfies the bound-
ary conditions of the problem considered (for example
an incoming plane-wave for a scattering problem). The
many-body wavefunction can then be written as:

〈{k}|Ψǫ〉 = 〈{k}|Ψ(0)〉+ GE({k})
∑

i<j

χǫ(kij)〈{ξij}|Si⇌j
Ψ 〉

(99)
where GE({k}) is the N -body Green’s function in the
k-representation:

GE({k}) =
1

E + i0+ −
∑N

n=1
~2k2

n

2mn

(100)

For each interacting pair, the contact condition Eq. (97)
gives in the k-representation an integral equation in
terms of the source terms and of the complementary so-
lution |Ψ(0)〉. Interestingly, one can extract the contribu-
tion of the interacting pair (ij) in the contact condition
Eq. (97) without any integration by using the fact that
this equation is invariant in a change of Λ ∈ R

+ (i.e. by
using the Λ-freedom). To this end, one expresses the
Green’s function in Eq. (99) as:

GE({k}) =
1

E
(ij)
col + i0+ − ~2k2

ij

2µi,j

, (101)

where E
(ij)
col is the collisional energy of the pair (ij) de-

fined by:

E
(ij)
col = E −

N
∑

n=1

~
2
(

ξijn
)2

2mn
. (102)

It is the energy of the pair (ij) in its own center of mass
frame while the other particles do not interact for a given
set of momenta {k} and a total energy E.

For a negative energy (E < 0) in which case |Ψ(0)〉 = 0,
without loss of generality one can make the particular

choice Λ2 = −2µi,jE
(ij)
col /~

2 in Eq. (97). That way, the
term involving the reference state φΛ exactly cancels with
the term associated with the source amplitude of the pair
(ij) (|Si⇌j

Ψ 〉). By analytical continuation, the same inte-

gral equation holds for E > 0 (in which case |Ψ(0)〉 6= 0).
Finally, assuming that the ǫ → 0 limit is well defined, for
each interacting pair one obtains the following integral

equation:

∑

n<p

(n,p) 6=(i,j)

∫

dDkij

(2π)D
GE({k})〈{ξnp}|Sn⇌p

Ψ 〉

=
〈{ξij}|Si⇌j

Ψ 〉
TD(E

(ij)
col + i0+)

−
∫

dDkij

(2π)D
〈{k}|Ψ(0)〉. (103)

One has to notice that the integrals in the first line of
Eq. (103) are performed with the constraint that {ξij} is
held fixed (but {ξnp} is not !).

B. Second Quantization

In this section only fermionic particles of same mass m
and two spin-components are considered. Generalization
to other systems gives similar equations. The creation
and annihilation operator of an atomic wave of momen-

tum k for a spin σ are denoted by a†k,σ and ak,σ with the
anti-commutation rule:

{ak,σ, a†k,σ′} = (2π)3δ(k − k
′)δσσ′ . (104)

The general expression of the Λ-potential is a simple way
to write the Hamiltonian in its second quantized form.
From the definition of the Λ-potential in Eq. (43) to-
gether with the expression of regularizing operator rΛǫ
introduced in Eq. (42) the Hamiltonian can be expressed
as:

Hǫ =

∫

dDk

(2π)D

∑

σ

~
2k2

2m
a†
k,σak,σ +

TD(EΛ)

2

∫

dDK

(2π)D

×
∫

dDk
′

(2π)D
χǫ(k

′)a†1
2
K−k′,↑a

†
1

2
K+k′,↓

× lim
ǫ→0

rΛǫ

[
∫

dDk

(2π)D
χǫ(k)a 1

2
K−k,↓a 1

2
K+k,↑ ·

]

, (105)

where the dot (·) after the annihilation operator a 1

2
K+k,↑

reminds that the limit ǫ → 0 depends on the many-body
state on which Hǫ applies. By making the hypothesis
that the few- or many-body state is well defined in the
zero-range limit by only using the Bethe-Peierls contact
condition, the energy theorem [23–26] can be obtain from
the identity:

lim
ǫ→0

r
Λ= 1

aD
ǫ [〈Hǫ〉ǫ] = lim

ǫ→0
〈Hǫ〉ǫ = 〈H〉. (106)

The mean value of the interacting term is exactly zero in
this limit and:

〈H〉 = lim
ǫ→0

r
Λ= 1

aD
ǫ

[

∫

dDk

(2π)D

∑

σ

~
2k2

2m
〈a†k,σak,σ〉ǫ

]

.

(107)
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The energy of the system can be thus expressed in terms
of the one-body density:

nk,σ = lim
ǫ→0

〈a†k,σak,σ〉ǫ. (108)

In the limit where ǫ → 0, one obtains from Eq. (99) the
high momentum behavior of nk,σ:

nk,σ =
k→∞

S

k4
+O

(

1

k6

)

, (109)

where S is spin independent since the interaction occurs
between different spin-particles only. Hence, the inte-
grand in Eq. (107) behaves as 1

k2 at high momentum and
action of the regularizing operator gives:

〈H〉 =
∫

dDk

(2π)D

∑

σ

[

~
2k2

2m
nk,σ − ~

2Sa2D
2m(1 + k2a2D)

]

(110)

IV. FEW-BODY BOUND STATES

A. Efimov states

In this section, the generic case where Efimov effect
occurs is considered: three identical bosons of mass m
interact in 3D with a pairwise interaction of vanishing
range with respect to the 3D scattering length a3 [45, 46].
These states have been observed for the first time in
ultra-cold atoms [47–50]. In what follows, some univer-
sal properties of Refs. [30, 45, 46] are recovered from the
STM equation by using the nodal condition introduced
in Ref. [29]. However, it is worth pointing out that de-
viations from universal predictions which are observed
in experiments can be taken into account through finite
range models [51–54]. The energy of a trimer E = E3 in
its center of mass frame is negative (and less than the
dimer’s energy E2 if it exists) so that the complementary
solution in Eq. (103) is zero (|Ψ(0)〉 = 0). The binding
wavenumber q > 0 of a trimer is defined from:

E3 = −~
2q2

m
. (111)

The Bose statistics imposes that the source amplitudes
for each pair of particle coincide with the same function:

〈{ξ12}|S1⇌2
Ψ 〉 = 〈{ξ13}|S1⇌3

Ψ 〉 = 〈{ξ23}|S2⇌3
Ψ 〉. (112)

As a consequence of translation invariance, the source
amplitudes in the center of mass frame can be written
as:

〈{ξ12}|S1⇌2
Ψ 〉 = (2π)3δ(k1 + k2 + k3) F(k3). (113)

The integral eigenequation Eq. (103) can be written as:

F(k)

f3

(

i
√

q2 + 3k2

4

) = 8π

∫

d3u

(2π)3
F(u)

u2 + k2 + k.u+ q2
.

(114)

Eq. (114) is the so-called Skorniakov Ter-Martirosian
(STM) equation [27]. This equation is rotationaly invari-
ant and can thus be studied in each momentum sector.
In Ref. [55], Danilov showed that as it stands Eq. (114)
is ill-defined: it supports a continuum of negative en-
ergy solutions in the s-wave sector of F (k). Hence, the
Bethe-Peierls asymptotic method which is at first sight
adapted for modeling the three-boson resonant problem
does not permit to derive a well defined eigenequation.
The s-wave component of F(k) of the source amplitude
is denoted by φ(k):

∫

dΩ

4π
F(k) = φ(k), (115)

and φ(k) verifies the following integral equation:

φ(k)

f3

(

i
√

q2 + 3k2

4

) =
2

π

∫ ∞

0

du φ(u)Kq(k, u), (116)

where the s-wave kernel of the STM equation is given by:

Kq(k, u) =
u

k
ln

(

u2 + k2 + q2 + ku

u2 + k2 + q2 − ku

)

. (117)

The fact that there exists a continuum of negative en-
ergy solutions means that the Bethe-Peierls model is not
self-adjoint for the three-boson problem. Danilov found
a way to restore the self-adjointness by introducing a
supplementary condition on the high momentum asymp-
totic behavior of the function φ(k) [55]. The method of
Danilov is based on the fact that for all values of q and
a 6= 0, Eq. (116) supports solutions with the asymptotic
behavior:

φ(k) ∼
k→∞

Akis0−2 +Bk−is0−2, (118)

where A and B are two constants and s0 solves the equa-
tion sin(πs0/6) =

√
3s0 cos(πs0/2)/8 (s0 ≃ 1.00624 . . . ).

The zero-range approach is made self-adjoint if one fixes
the asymptotic phase shift between the two conjugate
behavior k±is0 for all values of a and q. However, Min-
los and Fadeev showed that even with this supplemen-
tary phase-shift condition the spectrum is not bounded
from below [56]: this is the so-called Thomas collapse
which is characteristic of zero-range forces [28]. In 1970,
Efimov has solved the three-boson problem in the res-
onant regime by introducing the notion of three-body
parameter which is also in the zero-range limit, a way
to fix the asymptotic phase-shift in Eq. (118). In the
k-representation it is referred in what follows as κ⋆ and
defined as:

φ(k) ∝
k→∞

1

k2
sin

[

s0 ln

(

k
√
3

κ⋆

)]

. (119)

By construction the three-body parameter is not unique
[Eq. (119) is invariant in a change κ⋆ → κ⋆ exp(π/s0)].
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FIG. 1: Shape of the expession of k2φ(k) in Eq. (121) plotted
in a semi-log plot as a function of k/q.

At unitarity, (i.e. |a| → ∞ and b3 → 0), Efimov showed
that the spectrum of trimers is characterized by an accu-
mulation point at zero energy: binding wavenumbers of
the trimers are related the each to the others by a scaling
factor:

qn = qpe
−(n−p)π/s0 , (120)

where (n, p) ∈ Z
2. Interestingly, in Ref. [59] the analyti-

cal expression for the source amplitude of the trimers has
been found at unitarity:

φ(k) =
1

k
√

q2 + 3k2

4

sin

[

s0 arcsinh

(

k
√
3

2q

)]

. (121)

In particular, this result shows that the choice made
for the definition of κ⋆ in Eq. (119) is such that
the spectrum of the zero range theory at unitarity is
qn = κ⋆ exp(nπ/s0) with n ∈ Z. The shape of the func-
tion k2φ(k) of Eq. (121) is given in Fig. (1). For increas-
ing values of k starting from k = 0, the first zero of φ(k)
is located at the momentum k = 2q√

3
sinh(π/s0). Using,

this property, it is possible to filter a set of solutions of
Eq. (116) satisfying Eqs. (119,120) for sufficiently high
quantum numbers (shallow states) and with a spectrum
bounded from below. This is done by imposing a nodal
condition on the eigenstates:

φ(kregp ) = 0, (122)

where the node kregp is chosen among the set:

kregp =
κ⋆

√
3
epπ/s0 p ∈ Z. (123)

The position of the node in Eq. (123) fixes the min-
imum energy of the spectrum. For example if one
chooses the nodal condition for p = 2, using the fact that

exp(π/s0) ≃ 2 sinh(π/s0), the minimum energy E0 is al-
most equals to −~

2κ⋆ 2 exp(2π/s0)/m (with a relative
error 2 exp(−2π/s0) ≃ 3.8× 10−3) and the spectrum at
unitarity is asymptotically (i.e. for large values of n)
given by:

En = −~
2κ⋆ 2

m
exp

[−2(n− 1)π

s0

]

, n ∈ N. (124)

For a finite scattering length a3 and for k|a3| ≫ 1, eigen-
functions φ(k) of Eq. (116) have the same behavior as the
unitary solutions of Eq. (121) so that Eq. (122) can be
also used as a filtering condition and permits to recover
the universal spectrum of the zero-range theory for en-
ergies much larger than E0. In principle, the zero-range
theory also called ’universal theory’ in the literature is
recovered by imposing the filtering condition at an arbi-
trary large node kregp . To summarize this discussion, the
nodal condition in Eq. (122) has two roles: first, it im-
poses the Danilov’s asymptotic phase shift for states of
sufficiently high quantum number and second, it imposes
a minimum energy to the spectrum. For a realistic finite
range force, the possible values of the binding wavenum-
bers obtained from the zero range theory in Eq. (120) are
such that qnb3 ≪ 1, the ground state energy in Eq. (124)
has thus to be chosen higher than −~

2/(mb23).
The nodal condition in Eq. (122) applied on Eq. (116)

can be transformed into the integral condition:

0 = − 2

π

∫ ∞

0

du φ(u)Kq(k
reg
p , u). (125)

Subtracting Eq. (125) from Eq. (116) gives the regular-
ized STM equation [29]

φ(k)

f3

(

i
√

q2 + 3k2

4

) =

2

π

∫ ∞

0

du
[

Kq(k, u)−Kq(k
reg
p , u)

]

φ(u), (126)

which encapsulates the nodal condition. Numerical solu-
tions of Eq. (126) are obtained by introducing an ultra-
violet cut-off Q in the integral. One can verify that
results are insensitive to the choice made on the cut-
off for Q ≫ kregp . For instance considering the unitary

limit, taking the nodal condition at kreg1 and an UV cut-
off at 5× 102 × κ⋆, one finds the relative error for the
ground state equals to 3.8× 10−3 ≃ 2 exp(−2π/s0) and
for the first excited states (n ≤ 8), a relative error lesser
than 10−4. In practice, the value of the scaling factor
exp(2π/s0) ≃ 515 is relatively large so that for the nodal
condition at kreg2 , the spectrum is very close to the univer-
sal spectrum beginning from the second branch (n ≥ 1)
and for an inverse scattering length 1/|a3| smaller or of
the order of κ⋆.
In Fig. (2), the second Efimov branch of the regular-

ized STM Eq. (126) with the nodal condition at kreg2 has
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been plotted as a function of (1/a3). As in Ref. [30], the
thresholds for the apparition of the trimers are denoted
by a∗ at the atom-dimer continuum limit and by a′ ∗

at the three-atom continuum limit. As a consequence
of the choice of the nodal condition at kregp for a finite
p, results sligthly differ from the zero-range theory in
Ref. [30]. The atom-dimer scattering problem (regime
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FIG. 2: Solid line: second branch of the trimer’s spectrum ob-
tained with the nodal condition at kreg

2 . Vertical dashed line:
trimer’s apparition thresholds. Oblique dashed line: atom-
dimer continuum limit. The value of the scattering length at
the trimer’s apparition threshold a∗ ≃ −1.51 and a′ ∗ ≃ .0713
are close to the results of the ’universal theory’ in Ref. [30, 59]
a∗ ≃ −1.507 and a′ ∗ ≃ .0707. The difference is due to the
fact that the zero-range theory is recovered only for a nodal
condition at an arbitrarily large kreg

p .

where a3 > 0) can be also solved by using the same fil-
tering technique. In what follows, the atom-dimer scat-
tering length is computed as a function of the atomic
scattering length a3 for a given value of the three-body
parameter κ⋆. To this end, the atom-dimer collisional
energy is set to zero (q = 1/a3) and the ansatz for the
source amplitude is [27]:

φ(k) = 2π2 δ(k)

k2
+ 4π

g(k)

k2
. (127)

Using the regularized STM equation one obtains:

3g(k)a3

8
[

1 +
√

1 + 3
4 (ka3)

2
] =

a23
1 + (ka3)2

− a23
1 + (kregp a3)2

+

∫ ∞

0

du

πu2

[

K 1

a3

(k, u)−K 1

a3

(kregp , u)
]

g(u). (128)

The atom-dimer scattering length is obtained in the zero
momentum limit as

aad = lim
k→0

g(k), (129)

and is plotted in Fig. (3) for the nodal condition taken
at kreg2 . Fig. (3) is limited to atomic scattering lengths
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FIG. 3: Atom-dimer scattering length aad computed with the
nodal condition at kreg

2 and plotted in a semi-log scale as a
function of κ⋆/a3 for a3k

reg
2 ≪ 1.

a3 much smaller than 1/kreg2 i.e. in a regime where
the nodal condition permits to recover the universal the-
ory with high accuracy. The scattering length aad di-
verges at the threshold of apparition of an Efimov’s
trimer [a3 ≃ a∗ exp(nπ/s0), n ∈ N] and thus exhibits the
log-periodicity which is a characteristics of the Efimov
physics.
In Ref. [60] another regularizing technique of the STM

equation was derived in the framework of the Effective
Field Theory. In this last formulation, the role of the inte-
gral counter-term explicitly depends on the ultra-violet
integral cut-off of the integral (Q) in such a way that
the three-body parameter has a fixed value for all Q.
In Refs. [61, 62] a subtraction technique has been also
introduced in order to regularize the atom-dimer scatter-
ing problem. In these last references, the subtraction is
made at zero momentum and therefore imposes the ex-
act value of the atom-dimer scattering length. Thus, this
regularization scheme does not correspond to the nodal
condition of Eq. (122). It is interesting to write down the
equation for the atom-dimer scattering amplitude g(k)
obtained within this scheme:

3g(k)a3

8
[

1 +
√

1 + 3
4 (ka3)

2
] − 3aada3

16
=

a23
1 + (ka3)2

− a23

+

∫ ∞

0

du

πu2

[

K 1

a3

(k, u)− 2u2a23
1 + u2a23

]

g(u), (130)

and to compare with Eq. (128).

B. Heterogeneous Trimers

As a consequence of interesting predictions [8, 16, 17,
63–68], heteronuclear systems play an important role in
ultra-cold physics. In this section, the eigenequation
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for heteronuclear trimers is considered. Particles (la-
beled by i) can be either bosons or fermions and have
a mass mi which can take two possible values: mi = m
or mi = M . Bosons (respectively fermions) of mass M
are denoted by B (respectively by F ) while bosons (re-
spectively fermions) of mass m are denoted by b (respec-
tively f). Fermionic particles are supposed to have two
possible internal states denoted by ↑ and ↓. The con-
figurations studied here are thus constructed from the
set of particles {b, B, f↑, f↓, F↑, F↓}. The present study
is also restricted to ’2+1’ few-body systems where the
two-body interaction is non-vanishing for heterogeneous
pairs of particles only. As an example in the case of (bF↑)
interacting pairs, other pairs like (bF↓) or (bB) are not
interacting. For fermions neglecting (F↑F↑) or (f↑f↑) in-
teractions is an exact asumption which is a consequence
of Pauli principle. However, neglecting (BB) or (bb) in-
teractions is not an exact hypothesis and only means that
these interactions are negligible with respect to an het-
eronuclear interaction. Thus the true inter-atomic forces
of the heteronuclear interacting pairs are in the vicinity
of a s-wave resonance while interaction for pairs of iden-
tical bosons is neglected. For convenience, the following
notations are introduced for the different combinations
of particles masses mi: :

M(ij) = mi +mj (131)

µi,(jk) =
miM(jk)

mi +M(jk)
(132)

µ(ij),(kl) =
M(ij)M(kl)

M(ij) +M(kl)
. (133)

In this section, two identical atoms of mass M (particles
1 and 2) interact with another one of mass m (parti-
cle 3). All the possible bound states can be thus de-
duced from the two configurations: (BBb) and (F↑F↑b).
Eigenequation for trimers is obtained for a negative en-

FIG. 4: Schematic representation of the momentum coordi-
nates used for the source amplitude associated with the con-
tact condition between particles 1 and 3.

ergy E = E3:

E3 = − ~
2q2

2µ2,3
< 0, (134)

and if a dimer of binding energy E2 exists then E3 < E2.
In the center of mass frame, the source amplitude asso-
ciated with the pair (23) is

〈{ξ23}|S2⇌3
Ψ 〉 = (2π)Dδ(k1 + k2 + k3) F(k1). (135)

The other source amplitude is deduced from Eq. (135)
by using the exchange symmetry between particle 1 and
particle 2:

〈{ξ13}|S1⇌3
Ψ 〉 = s13(2π)

Dδ(k1 + k2 + k3) F(k2), (136)

where s13 = 1 when particles (1) and (2) are bosons and
s13 = −1 if they are fermions. For simplifying the nota-
tions, it is useful to introduce the mass ratio y defined
by:

y =
µ2,3

m3
=

M

M +m
. (137)

Assuming that the ǫ → 0 limit is well defined, the
eigenequation is obtained from the contact condition for
the pair (2 : M ; 3 : m) in Eq. (103) where |Ψ(0)〉 = 0:

~
2F(k)

2µ2,3TD(Ecol
k )

= −s13

∫

dDu

(2π)D
F(u)

u2 + k2 + 2yk.u+ q2
. (138)

In Eq. (138) the identity dDk23 = dDk2 has been used
(the contact condition is performed at a fixed value of
K23 and Ecol

k is the collisional energy:

Ecol
k = E3 −

~
2k2

2µ1,(23)
< 0. (139)

A detailed study of the three-body bound states in 2D
has been performed in Ref. [64], and in this section the
discussion is centered on the 3D case. By using the rota-
tional symmetry of the kernel in Eq. (138), one can fix an
arbitrary direction: êq and expand the source amplitude
F(k) in terms of partial waves as:

F(k) =

∞
∑

l=0

Pl(êk · êq)Fl(k). (140)

Each component Fl(k) verifies the following integral
equation:

~
2Fl(k)

2µ1,3T3(Ecol
k )

=

− s13(−1)l

yπk

∫ ∞

0

du uFl(u)Ql

(

u2 + k2 + q2

2yku

)

, (141)
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where Ql is a Legendre function of second kind. One
can notice that the standard STM Eq. (114) is obtained
by setting formally s13 = 2 and y = 1/2 in Eq. (141).
For a sufficiently large value of the mass ratio, the Efi-
mov effect appear in non zero partial waves [57, 58]. In
this regime as in the three-boson case, Eq. (141) sup-
ports pair of solutions such that Fl(k) ∼ k−2±is (s ∈ R)
at large momentum k. The regularizing technique can be
achieved by fixing the asymptotic phase shift which is a
function of the three-body parameter in the partial wave
l and denoted here by κ⋆

l :

Fl(k) ∝
k→∞

1

k2
sin

[

s ln

(

k
√
3

κ⋆
l

)]

. (142)

A set of solutions satisfying Eq. (142) can be filtered from
Eq. (141) by imposing the nodal condition:

Fl(k
reg
p,l ) = 0 (143)

where the node kregp,l is defined by:

kregp,l =
κ⋆
l√
3
epπ/s , p ∈ N. (144)

Exact zero range theory is obtained in the limit where
p → ∞. Universal results are recovered if the node kregp is
chosen at a large value as compared to all the low energy
scales (kregp,l ≫ 1/|a|, q). Using the subtracting scheme of

the three-boson problem, Eq. (143) can be also incorpo-
rated into the integral equation Eq. (141):

~
2Fl(k)

2µ1,3T3(Ecol
k )

= −s13(−1)l

yπ

∫ ∞

0

du uFl(u)

[

1

k
Ql

(

u2 + k2 + q2

2yku

)

− 1

kregl

Ql

(

u2 + kregl
2 + q2

2ykregl u

)]

.

(145)

It is interesting to find at resonance the regimes where
an Efimov effect occurs from Eq. (141). To this end, zero
energy solutions at unitarity |a3| = ∞ are considered (so-
lutions for finite energy have the same high momentum
behavior). In this regime, Eq. (141) is scale invariant
and this allows one to search for power law solutions:
Fl(k) = kν+l−2, where ν is a function of the mass ratio.
For convenience, the following dimensionless parameter t
is introduced:

t = arcsin(y) = arcsin

(

M

M +m

)

. (146)

Thus, the scattering amplitude is f3(κk) = 1/(k cos t)
and Eq. (141) gives for each partial wave l an eigenvalue
equation: λ(ν, l, t) = 0 where,

λ(ν, l, t) = cos t− s13(−1)l

π sin t

∫ ∞

0

dzzν+l−1Ql

(

1 + z2

2z sin t

)

.

(147)

The integrand in Eq. (147) is positive, hence for a
Bose (resp. Fermi) statistics only even (resp. odd)
values of l can support a solution. For x > 1,
Ql(x) =

1
2Pl(x) ln(

x+1
x−1) +Wl(x) where Wl(x) is a poly-

nomial of order l. The polynomialWl does not contribute
in the integral of Eq. (147) and λ(ν, l, t) can be thus ex-
pressed in terms of a sum of functions of the form:

I(γ, t) =

∫ ∞

0

dz zγ−1 ln

(

z2 + 2z sin t+ 1

z2 − 2z sin t+ 1

)

, (148)

with 0 ≤ t ≤ π
2 and |ℜ(γ)| < 1. In Eq. (148), I(γ, t) can

be calculated explicitly as:

I(γ, t) =
2π sin(γt)

γ cos(πγ2 )
. (149)

In the l-wave, Efimov states are characterized by a power
law such that ν = −l + is where s is real. For example,
for two identical bosons interacting with another particle
(s13 = 1), in the s-wave sector:

λ (ν, l = 0, t) = cos t− sin(νt)

ν sin(t) cos
(

πν
2

) . (150)

Eq. (150) admits solution of the form ν = is for all values
of the mass ratio and s → 0 for t → 0. For higher l-waves,
Efimov states appear above a critical value of the mass
ratio. The threshold is obtained by searching the value
of the parameter t = tcritl such that:

lim
ν→−l

λ
(

ν, l, tcritl

)

= 0. (151)

In the p-wave sector which concerns the case of two
identical fermions interacting with another particle
(s13 = −1) one gets

λ (ν, l = 1, t) = cos t− (ν + 2) sin(νt)− ν sin[(ν + 2)t]

2ν(ν + 2) sin2 t cos t cos
(

πν
2

) ,

(152)
and the threshold is obtained from the equation:

tcrit1 = tan(tcrit1 )− π

2
sin2(tcrit1 ). (153)

Eq. (153) gives the critical mass ratio
(

M
m

)crit

l=1
≃ 13.6

found in Refs. [8, 58]. For higher partial waves, the criti-

cal values of the mass ratio
(

M
m

)crit

l
found by this method

coincide with the ones computed in Ref. [17] where the
hyper-spherical method were used. Results are reported
in Fig. (5).

V. HETEROGENEOUS TETRAMERS

The four-body problem is the subject of recent theo-
retical [68, 69, 72–74] and experimental [70, 71] studies in
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l
for the threshold of appari-

tion of an Efimov spectrum in each partial wave l of Eq. (141).

ultra-cold atoms. In this section, zero-range eigenequa-
tion for four-particle bound states or ’tetramers’ is con-
sidered. The binding energy is denoted by E4 and:

E4 = −~
2q2

2µ
, (154)

whereE4 < E3 and/orE4 < 2E2 if a trimer and/or dimer
exists. A particle (i) is also characterized by a momen-
tum ki and a mass mi equals to m or M . In the center
of mass frame, the source amplitude associated with the
pair (12) can be written as:

〈{ξ12}|S1⇌2
Ψ 〉 = (2π)Dδ(

4
∑

n=1

kn)F(K12,k34). (155)

The integral equation satisfied by the function F is ob-

FIG. 6: Schematic representation of the momentum coor-
dinates used for the source amplitude associated with the
contact condition between particles 1 and 2 for a system of
fermions with two-mass components.

Pair (ij) Permutations 〈{ξij}|Si⇌j

Ψ 〉

(12) (2π)Dδ(
4

∑

n=1

kn) F(K12,k34)

(13) 2 ↔ 3 s13(2π)
Dδ(

4
∑

n=1

kn) F(K13,k24)

(14) 2 ↔ 4 s14(2π)
Dδ(

4
∑

n=1

kn) F(K14,k32)

(23) 1 ↔ 3 s23(2π)
Dδ(

4
∑

n=1

kn) F(K23,k14)

(24) 1 ↔ 4 s24(2π)
Dδ(

4
∑

n=1

kn) F(K24,k31)

(34) 1 ↔ 3, 2 ↔ 4 s34(2π)
Dδ(

4
∑

n=1

kn) F(K34,k12)

TABLE I: Source terms for each pair (ij) deduced by using
the permutation symmetry of the 4-body wave function from
the source term of the interacting pair (12) in Eq. (155). The
statistical factors sij are given in Tab. II.

Configuration (m1,m2,m3,m4) (s13, s14, s23, s24, s34)

BBBB (m,m,m,m) (1, 1, 1, 1, 1)

(f or b)BBB (m,M,M,M) (1, 1, 0, 0, 0)

BbBb (M,m,M,m) (0, 1, 1, 0, 1)

F↑f↓F↑f↓ (M,m,M,m) (0,−1,−1, 0, 1)

Bf↑Bf↑ (M,m,M,m) (0,−1, 1, 0,−1)

(f or b)F↑F↑F↑ (m,M,M,M) (−1,−1, 0, 0, 0)

TABLE II: Different possible 4-body configurations. The no-
tation is as follows: B (resp. F ) means that the atom is a
boson (resp. fermion) of mass M , b (resp. f) means that the
atom is a boson (resp. a fermion) of mass f . The fermions
have two possible internal states ↑ and ↓. For each configu-
ration, interaction is non vanishing only between one type of
heterogeneous pair. The statistical factors sij appears in the
integral equation (159).

tained from Eq. (103) (here (ij) = (1, 2)). A specific con-
figuration is represented schematically in Fig. (6). The
summation at the left hand side of the integral equa-
tion is composed of source terms which are deduced from
Eq. (155) by using the permutation symmetry and the
statistics of the particles. In order to have a general equa-
tion for the different possible configurations, a statistical
factor denoted by snp is introduced for each pair of parti-
cles. Depending on the system, for two interacting parti-
cles n and p, the statistical factor is snp = ±1 or snp = 0
for non-interacting particles. Using this notation, the dif-
ferent source amplitude are written in Tab. (I). Different
possible configurations of the two-mass component sys-
tem and the corresponding statistical factors are listed in
Tab. (II) Eq. (103) can be simplified into:
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Pair (ij) vij σij

(13)
m4u

M3,4

+ v −
m4k

M2,4

(

µ1,2

m1

−
µ3,4

m3

)

u− v + k

(14) −
m3u

M3,4

+ v +
m3k

M2,3

(

µ1,2

m1

−
µ3,4

m4

)

u+ v + k

(23)
m4u

M3,4

+ v +
m4k

M1,4

(

µ1,2

m1

−
µ3,4

m4

)

u+ v − k

(24)
m3u

M3,4

− v +
m3k

M1,3

(

µ1,2

m1

−
µ3,4

m3

)

u− v − k

TABLE III: Coordinates appearing in Eq. (159).

∫

dDk12

(2π)D

∑

n<p
p>2

snp
F (Knp,kkl)

κ2 + k212
=

−~
2F(u,v)

2µ1,2TD(E
(12)
col )

,

(156)

where u = K12, v = k34. In Eq. (156) the momentum κ
is related to the collisional energy by:

E
(12)
col =

~
2κ2

2µ1,2
, (157)

and can be expressed as

κ2 = q2 +
µ1,2

µ(12),(34)
u2 +

µ1,2

µ3,4
v2. (158)

The integral equation which encapsulate the Bethe-
Peierls can finally be written as:

∫

dDk

(2π)D

[

s13
F(k,v13)

κ2 + σ2
13

+ s14
F(k,v14)

κ2 + σ2
14

+ s23
F(k,v23)

κ2 + σ2
23

+s24
F(k,v24)

κ2 + σ2
24

+ s34
F(−u,k)

κ2 + k2

]

=
−~

2F(u,v)

2µ1,2TD(E
(12)
col )

,

(159)

In the particular case where the system is composed of
two heterogeneous dimers made of fermions (F↑f↓F↑f↓),
one recovers the same integral equation as in Eq. (16)
of Ref. [12]. In 3D depending on the statistics of the
particle and of the mass ratio, Eq. (159) is not in gen-
eral well defined as a consequence of the Efimov-Thomas
effect. For systems composed of four particles in 2D,
bound states of particles of same mass has been consid-
ered in [72]. In the present work, the binding energies
of 2D ground tetramers are computed numerically as a
function of the mass ratio of the interacting particles in
the BBBb configuration. Calculations are restricted to
s-wave tetramers by using the ansatz:

F(u,v) = F (u, v, θ) with θ = ∠(u,v), (160)

In order to check the numerical computation, the partic-
ular case of four identical bosons which has been already
obtained by several authors [72, 73] has been considered.
In this configuration, two bound states have been found
with the binding energies which are close to already pub-
lished results: E4/E2 = 197 and 24, to be compared with

0 2 4 6 8 10
M/m

0

5

10

15

20

25

30

E
4 [

 E
2 ]

FIG. 7: Ground state branch for the three bosons of mass M
interacting with one impurity of mass m in 2D as a function
of the mass ratio.

E4/E2 = 197.3 and 25.5 in Ref. [73] or with E4/E2 = 194
and 24 in Ref. [72]. Results for three identical bosons in-
teracting resonantly with another particle is shown in
Fig. (7). In 3D for the same bBBB configuration, sim-
ilarly to the 3-bosons original STM equation, Eq. (159)
does not constitute a well defined problem. The nature
and properties of eigenstates of this system in the zero-
range limit is yet unsolved. The bF↑F↑F↑ or f↓F↑F↑F↑
configurations have been studied recently in Ref. [68] and
a pure 4-body Efimov effect (i.e. without 3-body Efimov
state) involving a four-body parameter has been found
for a mass ratio 13.384 < M/m < 13.607.

CONCLUSIONS

In this paper, it has been shown how the zero-range
approach can be formulated for different problems in a
unified framework without technical intricacy for all di-
mensions D ≤ 3. In the few-body problem, general in-
tegral eigenequations are obtained straightforwardly in
the momentum representation. Efimov effect is deduced
from the Skorniakov Ter-Martirosian equation by using
a nodal condition and a subtracting technique which is
close to regularizing schemes used in the Effective Field
Theory. Open questions remain to be solved concerning
the few-body problem in the limit of zero-range forces.
For example, the question whether or not the 3-body pa-
rameter is enough for describing 4-bosons properties in
3D is still under debate [69, 74]. The ’N + 1’ fermionic
problem is another open issue. The question whether
or not a pure N -body Efimov effect occurs in 3D and at
which critical mass ratio, is yet unsolved forN ≥ 4. How-
ever, the corresponding zero-range integral equation for
this last problem can be easily deduced from the present
formalism and is given below as a concluding remark.
Each of the N polarized fermions of mass M labeled by
i (1 ≤ i ≤ N) interact with only one impurity (particle
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i = N + 1) of mass m. In the center of mass frame, the
source amplitude for the pair N, (N + 1) can be written
as:

〈{ξN,(N+1)}|SN⇌N+1
Ψ 〉 = (2π)Dδ

(

N+1
∑

i=1

ki

)

× F (k1,k2 . . .kN−1), (161)

and other source amplitudes |Si⇌N+1
Ψ 〉 (i = 1 · · ·N − 1)

are deduced from this ansatz by using the fermionic
statistics. The general integral equation for this problem
which encapsulates the Bethe-Peierls asymptotic condi-
tion is then obtained from Eq. (103):

∫

dDkN

(2π)D
F (kN ,k2,k3, · · ·kN−1) + F (k1,kN ,k3, · · ·kN−1) + · · ·+ F (k1,k2, · · ·kN−2,kN )

−E − i0+ + ~2

2M

∑N
i=1 k

2
i +

~2

2m

(

∑N
i=1 ki

)2

=
F (k1,k2, · · ·kN−1)

TD(Ecol + i0+)
−
∫

dDkN

(2π)D
Ψ(0)(k1, · · ·kN ), (162)

where Ecol = E − ~
2

2M

∑N−1
i=1 k2i − ~

2

2(M+m)

(

∑N−1
i=1 ki

)2

,

Ψ(0) is a complementary solution associated with the free
Hamiltonian at energy E in the center of mass frame (it
is equal to zero for E < 0) and F is antisymmetric under
exchange of two coordinates (ki,kj).
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D’Incao, H. Nägerl, and R. Grimm, Phys. Rev. Lett. 102,
140401 (2009).

[71] S. Pollack , D. Dries, R. Hulet, Science 326, 1683 (2009).
[72] I. Brodsky and M. Kagan, A. Klaptsov, R. Combescot

and X. Leyronas, Phys. Rev A 73, 032724 (2006).
[73] L. Platter, H.-W. Hammer, and U.-G. Meißner, Few-

Body Systems 35, 169 (2004).
[74] H.-W. Hammer, L. Platter, Eur. Phys. J. A 32, 113

(2007).


