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Two simulation methods of the energy transmitted by the arc roots to the electrode material are described and their results are compared together and with these found by other authors. About a copper electrode the time phase evolutions are given when a constant energy flux is applied to the contact surface.

The obtained results are better for vacuum and small current. The cathode and anode result discussions lead to propositions to improve arc root models.

Introduction

The existence of electric arc discharge needs transition zones between the thermal plasma and the metallic electrodes, the emission of electrons (cathode) and their capture (anode) is not possible without energy exchange and its consequences: the electrode surface transformations. It is necessary to understand the material transformations and to use them in the best conditions; the goal is not the same in welding or in breaker contacts. At the cathode arc root, the emitting centres are disconnected in arc vacuum and adjacent in others cases, they are called fragments, the present study is relative to one fragment cathode. The an-ode arc root exists only to collect column electrons that transmit their energy to the electrode, as in the fragments they have a circular shape. To study material evolution two simulation methods are used:

-the 1D simulation represents a first approach and gives the first results necessary to justify the validity of our work, -the 2D axi symmetric simulation is firstly technically verified by comparison with 1D results.

The choice of a two presentation methods is to show the importance (or not) of the improvement given by the second method, the 1D simulation needs calculation times lower than the 2D one, there is a factor three for the time calculation that depends of the time and space steps.

Simulation method

The arc root, with the hypothesis of a circular shape, sends to the metal electrode supporting it a supposed constant surface energy flux. To obtain the material phase and temperature evolutions in each point, we solve the enthalpy form heat equation:

∂H ∂T = div(k -→ T ) + Source (1) 
H, k and T represent respectively the material enthalpy, the thermal conductivity and the temperature.

The term "Source" is taken equal to zero. The constant energy flux W is applied at the time t = 0 and maintained till t = τ . Energy is provided to the domain Ω t through the surface Γ W t , equation ( 1) is transformed into an equation of Stefan:

Ω t ∂H(r, t) ∂t φ(r)dr + Ω t ∇β(H(r, t))∇φ(r)dr = Γ W t W (r, t)φ(r)ds (2)
with:

β(H) = T T0 k(u)du (3)
T and T 0 are respectively the temperature at the moment considered and at the time t = 0, φ is a regular function with real values, necessary to discretize the problem, ds is an element of the surface

Γ W t , -→ r ∈ Ω t and s ∈ Γ W t .
A finite element method is used with moving boundaries and ablation to simulate the time evolution of the solid liquid limit and of the liquid vapour limit. When a node enthalpy is higher than the vaporisation enthalpy this node is removed and the energy flux is transmitted to the next liquid (or solid) node.

1D simulation

The figure 1 summarizes a method detailed in the paper of Rossignol [START_REF] Rossignol | Numerical modelling of thermal ablation phenomena due to a cathodic spot[END_REF]. 

H m h = N j=0 H m j φ j (4)
Assuming known H m h functions, equation ( 2) leads to the values of H m+1 h :

[z m ,z max ] H m+1 h -H m h τ φ(z)dz + [z m ,z max ] a(H m h ) dH m+1 h dz dφ(z) dz dz = [z m ,z max ]
W.φ(z m ).φ(z)dz ( 5) ning at z = 0 are shorter and equal to h 1 , than the 1000 steps finishing at z = z max and equal to h 2 . The step time discretization t n is chosen constant and equal to τ N with N = 10 6 to avoid computation difficulties.

a(H m h )
To compare the obtained results with experiment or with the 2D axi symmetric simulation results, we used the coordinate r in the plan Ox, Oy. In this case the considered volumes are cylinders with the axis of symmetry Oz.

2D axi symmetric simulation

To solve equation ( 1) the numerical method of finite element described in 2.1 is used, but in this case presented in figure 2 the material is a finite cylinder. The z-axe represents the symmetric axe of the cylinder and the r-axe situates the points along a radius perpendicular to the axe z-axe.

The arc root is supposed motionless, this hypothesis is satisfied by the commonly admitted reasons:

-at the cathode the life time of the fragment is very short (less than 100ns),

-at the anode the spot moves slowly, or presents a short life time if it moves quickly (in the presence of a magnetic field).

Joule heating is neglected : a simple calculation shows that the produced energy in the electrode contracted zone of the current lines is very small in comparison with the transmitted thermal energy. About the enthalpy function versus temperature, the same hypothesis like in 1D simulation is made: the phase changes (solid-liquid and liquidvapour) are made to be continuously on a small gap of temperature (10

• C for example).
The surface energy flux W(r) is applied at t = 0 on a circular surface with centre O and radius r ar during a time 2) and performing the same operations of discretization for an 1D representation, we get:

t max = τ , W ( 
Ω r,z H m+1 h -H m h τ .φ.r.dr.dz + Ω r,z a(H m h )∇dH m h .∇dφ.r.dr.dz = Ω r,z
W.φ Ω r,z .φ.r.ds [START_REF] Jüttner | The Retrograde Motion of Arc Cathode Spots in Vacuum[END_REF] with φ = φ(r, z). The initial field consists of triangles K (Fig. 3), but because of the axisymmetry, a field K will be deleted when the following condition will be satisfied:

K H m+1 h .r.dr.dz > K H vap .r.dr.dz (7)
and the initial field is reduced to the area noted Ω r,z .

The solution of equation ( 6) is obtained by solving a linear In the 1D simulation case, the energy propagates only in the z-axe direction, the obtain different zones are cylinders (figure 4a), their volume evolution gives results about contact erosion by vaporisation and about the liquid volume obtained. In the 2D axi symmetric simulation the same results appear (figure 4b), the shapes of the obtained volumes are different, this fact is due to the energy propagation in z-axe and in radial-axe directions.

Cathode arc root

At the cathode surface the classical [START_REF] Lee | Theory for the Cathode Mechanism in Metal in Metal Vapour Arc[END_REF] power flux balance gives: 

P i = P H + P r + P e ( 8 
)
P i is

1D simulation results

The figure 5 The simulation gives the time evolution of the vaporized and liquid zones along z axis, knowing the fragment radius r max = 5µm, it is then possible to obtain the liquid and vaporized volumes (figure 7). The curve about the va- 

2D axi symetric simulation results

At t cliq2D = 6.1ns (figure 8) the liquid phase appears and the part of energy absorbed by this liquid phase grows till a maximum value, about 40% at t cvap2D = 32ns , corresponding to the vaporization beginning. One can see on figure 8 that with the vapour apparition the solid energy part decreases very slowly to the value 54%, in this time interval the parts used to the vaporization and to the liquid phase vary in opposite direction. At the end of the fragment life the energy part in the vapour is 20%.

The figure 9 gives the temperature variations along zaxe at different times, the evolution is similar with 1D results (figure 6). After t = 40ns (figure 10) the radius of the vaporized zone presents a very slow evolution between 

Discussion about cathode results

Roughly the two simulations give similar results (table1) in the liquid and vapour phase apparition instants and ference between a cylindrical erosion (geometry defined on figure 4) and the evolution of the vaporised part and of the liquid phase; this result puts questions about the flux particle organisation [START_REF] Beilis | Theoretical Modelling of Cathode Spot Phenomena' Handbook of Vacuum Arc Science and Technology[END_REF] on the cathode surface. The curve corresponding to 20ns shows clearly that in this case the metal particle flux does not exist and that the radius of the liquid part is not equal to 5µm . The paper of Jüttner [START_REF] Jüttner | Cathode Spots of Electric Arcs[END_REF] gives a copper erosion rate in the gap 10 -300µm/C , the value E r1D is too large and the value E r2D corresponds to this interval. The measures lead to values near 40µg/C [START_REF] Je Daalder | Components of Cathode Erosion in Vacuum Arcs[END_REF] but the values are obtained by weighting contact electrode before and after arcing, there is a part of the vaporised material that comes back to the electrode surface or is the consequence of the anode particle flux.

The cathode results show that the energy flux incoming on the cathode contact surface presents variations along the radius r and during the fragment live. The 1D simulation shows that 25ns are necessary to produce vapour, this time is probably too long, the fragment existing needs the presence of metallic ions to heat the metal electrode surface. Mesyats [START_REF] Ga Mesyats | The Cathode Spot of a High-Current Vacuum Arc as a Multiecton Phenomenon[END_REF] shows that a 10A spot current is obtained in 0.4ns with a 0.7µm radius and a probably current density equal to 5 × 10 13 Am -2 , the 1D simulation shows that in this case all the incoming energy flux is used by the metal vaporisation, there is no liquid phase and no solid heating.

Anode arc root

In the electric arc the anode spot collects the column electrons, in vacuum breakers it generally appears at high cur-rent values (up to ×10kA ) and in other breakers working at atmospheric pressure values (or up to a multiple of 0.1M P a) it appears simultaneously with the first cathode fragment. In opposition to the cathode (several spots), the anode presents always one spot. JD Cobine and EE Burger [START_REF] Jd Cobine | Analysis of Electrode Phenomena in the High-Current Arc[END_REF] give a power density equation on the anode electrode surface:

P a = J a × (V a + ϕ + V T ) + P n + P r ( 9 
)
J a is the anode current density, V a the anode drop, ϕ material. The example given here is about an anode spot carrying a 1000A current. According to the values existing in [START_REF] Li Sharakhovsky | A Theorical and Experimental Investigation of Copper Electrode in Electrode Arc Heaters: II. The Experimental Determination of Arc Spot Parmeters[END_REF] and in [START_REF] Testé | A Method to Asses the Surface Power density Bought by an Electric Arc of Short Duration, and Short Electrode Gap to the Electrodes Example of Copper Electrodes[END_REF] one find a radius anode spot r a = 0.5mm and a transmitted surface energy flux W = 5×10 9 W m -2 .

The arc duration t a = 1ms is a reasonable value, generally the breakers interrupt currents in some milliseconds. 

1D simulation results

2D axi symmetric simulation results

At t aliq2D = 61µs (figure 16) the liquid phase appears and the energy partition changes, the curve relative to liquid energy part reaches a maximum value (about 40%) at t avap2D = 0.34ms, time corresponding to the beginning of the vaporization. Then the solid phase energy part decreases slightly from 58% to 54%, the liquid energy part decreases from 40% to 25% and the vapour energy part increases and is equal to 21% at t a = 1ms. 1D simulation depth z avap1D -z aliq1D = 159µm (figure 14), the difference is 23% it is lower than cathode case.

Figure 18 shows the liquid and vapour phase establishment, at t = 0.2ms the maximum radius of the liquid phase is equal to 479µm .

Discussion about anode results

At t a = 1ms (figure 19), on the anode surface, the liquid and vapour phase radius are respectively equal to 520µm and 465µm. The liquid phase radius is equal to the sur- 

Conclusion

Simulation of the arc effect on the copper electrodes that sustained the arc discharge have been done using two simulation possibilities the 1D and the 2D axi symmetric. The second simulation gives more precise results but the first was not without interest, it is more easy to use and it gives first results whose analysis confirms the validity of our hypothesis. The cathode fragment first nanoseconds presents a very high energy density values with only production of vapour and practically no liquid phase and no heat transfer into the solid. According to these assumptions, the 1D simulation gives a first approximation of vacuum arc ablation phenomena at small currents.
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 1 Fig. 1. 1D simulation: the thermal energy flux is applied to the infinite plan Ox, Oy, the energy dissipates only in z-axe direction. In the b and c case the thermal flux is applied on a liquid phase. At t = τ 1 and at t = τ 2 respectively the liquid and vapour phase appear.

Fig. 2 .

 2 Fig. 2. 2D axi symmetric simulation: the thermal energy flux is applied to a radius rar circle surface on the plane surface of an axe Oz and radius rmax cylinder. The energy dissipates in r-axe and z-axe directions. At t = τ1 and at t = τ2 respectively the liquid and vapour phase appear.

  r) can be variable with the radius r and with the time t; in the results presented in the next paragraphs W(r) is constant during the time τ . At the time t = 0 the specific enthalpy for each node of the cylinder is equal to H 0 , then, for t > 0 the energy is transmitted in the z-axe and r-axe directions providing a change in the enthalpy values in each point of the considered volume. Starting from equation (

  system. At the instant t = τ 1 the specific enthalpy reaches a value equal to the specific liquefaction enthalpy and the first liquid volume appears, in this case the figure 2-b shows that the surface energy flux is applied to the liquid and to the solid and one can obtain the time evolution of the depth, radius and volume of the liquid phase. At the instant t = τ 2 the same phenomena is obtained with the vaporization enthalpy, the corresponding meshes and nodes are removed and the first vaporized volume appears, and one can obtain the time characteristic evolution of this volume.The figure3shows the shape of the meshes used; in the results presented in paragraphs 3 and 4, the cylinder radius r max and height z max are divided in 125 steps giving 16400 nodes. The time step is chosen equal to t max /1000 to obtain correct results with a reasonable PC time computation.

Fig. 3 .Fig. 4 .

 34 Fig. 3. An example of the meshes used in the 2D axi symmetric simulation.

  the surface power flux delivered to the cathode surface by the ions coming from the plasma sheath, P i is directly proportional to the cathode current density J c . The power flux P e corresponds to the cooling effect produced by electron emission, generally it takes low values [3] and one can neglect it comparatively to the values taken by P i . The surface power flux P r dissipated by the cathode surface radiation takes also low comparative values; it is the result of cathode surface temperature which is equal to the metal vaporization temperature. Under these considerations equation 8 simplifies, and the power flux P H transmitted to the cathode material is equal to the incoming power flux P i . Using the values given by Rakhovskii [4] about the proportionality coefficient necessary to obtain P i and making with Jüttner [5-6] the hypothesis of a cathode fragment of 5µm radius and transporting a 10A current, the values obtained about P i gives W = 5 × 10 11 W m -2 . The cathode presented results about copper are obtain with these values of W and r, the time duration t max is taken equal to 100ns, it corresponds to the maximum cathode fragment life.
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 5 Fig. 5. The three phase energy partition versus time in the contact (1D case).

Fig. 6 .

 6 Fig. 6. Contact cathode temperature repartition along z axe at different instants (1D case).

Fig. 7 .

 7 Fig. 7. Time evolution of the liquid and vaporized volume at the cathode contact (1D case).

Fig. 8 .

 8 Fig. 8. The three phase energy partition versus time in the cathode contact (2D axi symmetric case).

Fig. 9 .

 9 Fig. 9. Cathode temperature repartition along z-axe at different instants (2D axi symmetric case).

Fig. 10 .

 10 Fig. 10. Temperature repartition along r-axe, on cathode contact surface at different instants (2D axi symmetric case).

Fig. 11 .

 11 Fig. 11. A view along z-axe and r-axe of the cathode material vaporized and liquid phase at t = 100ns. The corresponding volumes are obtained by figure rotation along z-axe.

Fig. 12 .

 12 Fig. 12. Time evolution of the liquid and vaporized volume at the cathode (2D axi symmetric case).

  the material work function, P n the result of the energy of neutral atoms and P r the radiant energy from the column.Usually the two last parts of equation 9 are negligible in comparison with the first part, V T results of electron column flux it can be taken equal to 3.0V , ϕ is the material work function equal to 4.8V for copper, the values taken by V a are generally not well defined, they can be positive or negative. The energy flux P a is used at the anode to increase material enthalpy, to provide emission of secondary electrons and to emit radiations like in the equation 8 used at the cathode. The same approximations can be made, so P a is supposed in a first time transmitted to the anode

Fig. 13 .

 13 Fig. 13. The three phase energy partition versus time in the anode contact (1D case).

Figure 13 ,

 13 Figure 13, 14 and 15 give anode results and present time evolution to similar curves in 3.1. The liquid and vapour time apparition (figure 13) t aliq1D = 54µs and t avap1D = 250µs are larger than values relative to the cathode, this is the result of an energy flux divided by 100 in anode case. The vapour erosion is almost time linear (figure 15), calculated at t a = 1ms it gives the erosion rate E ra1D = 414µg/C , these value is practically equal to these find in 3.1.
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 14 Fig. 14. Anode contact temperature repartition along z axe at different instants (1D case).

Fig. 15 .

 15 Fig. 15. Time evolution of the liquid and vaporized volume at the anode contact (1D case).

Fig. 16 .

 16 Fig. 16. The three phase energy partition versus time in the anode contact (2D axi symmetric case).

Fig. 17 .

 17 Fig. 17. Anode temperature repartition along z-axe at different instants (2D axi symmetric case).

Figure 17

 17 Figure 17 presents temperature distribution along zaxe at different time values, the liquid temperature may present linear evolution generally. At t a = 1ms the z-axe liquid depth z avap2D -z aliq2D = 129µm is smaller than the

Fig. 18 .

 18 Fig. 18. Anode temperature repartition along r-axe, on contact surface at different instants (2D axi symmetric case).

  face energy flux radius at t = 0.4ms. The corresponding volume evolution is given figure 20, the curve representing the vaporized volume is practically linear; this gives the erosion evaporation rate E ra2D = 181µg/C .

  

Table 1 .

 1 Comparison between 1D and 2D axi symmetric results at a 10A cathode fragment t = 100ns t cliq t cvap H vap /H tot H liq /H tot H sol /H tot z cliq -z cvap z cvap Erosion

		(ns) (ns)	(%)	(%)	(%)	(µm)	(µm) (µg/C)
	1D	5.4	25	50	29	21	1.6	0.4	415
	2D axi 6.1	32	20	26	54	1.2	0.3	210

Table 2

 2 gives a comparison between the results obtain with the two simulation methods. The literature gives few values on the anode erosion rate, generally it is currently acknowledged that it is the same at cathode and anode;

Please give a shorter version with: \authorrunning and \titlerunning prior to \maketitle however the values about silver [START_REF] Hemmi | Anode-fall and Cathode-fall Voltages of Air Arc in Atmosphere Between Silver Electrodes[END_REF] are situated in the case