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Abstract

It is well-known that the Skorohod reflection of a Wiener–process is the absolute
value of another Wiener process with finer filtration. In other words it can be un-
folded to obtain a Wiener process. In this short note a similar statement is proved
for continuous semimartingales.

Key words: reflected process, semimartingale

Let Wt be a Wiener process. It is well-known , see e.g. in Revuz and Yor (1994)
pp. 230, that

|Wt | = βt + sup
s≤t

(−βs) (1)

where β =
∫

sign(Ws)dWs is another Wiener process. In other words starting
with β, the Skorohod reflection of β defined as the right hand side of (1) can
be unfolded to a Wiener process W which has finer filtration than β. In this
note we give a generalized version of this observation as stated in Theorem 1.

Our motivation comes from the analysis of the continuous time version of the
stochastic approximation algorithm with re-initialization. In the course of this
the following equation occured

dVt = vtdt + dMt + (V0 − Vt−)dNt

where V0 < K with some finite K ∈ R, M is a martingale starting from
zero and N is a finite counting process. Without the jump term the remaining
equation is easy to handle. Now if we put Ut =

∫ t
0 vsds+Mt then the Skorohod
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reflection Yt = Ut + sups≤t(−Us) dominates Vt, in the form Vt ≤ K + Yt.
However the estimation of Y is not so easy. The advantage of Theorem 1 below,
is that using it we can reduce the problem to the case when N identically zero,
for the details see Gerencsér and Prokaj (2008).

It is clear from the case of the Wiener process, that in general the unfolding
can not be carried out on the original probability field of U . So in general we
need an enlargement of the probability space. The enlargement of (Ω, F,P) is
(Ω′, F′,P′) with a measure preserving mapping π : Ω′ → Ω.

Theorem 1. Let Ut be a continuous semimartingale starting from zero. De-

note Yt = Ut + sups≤t(−Us) the Skorohod reflection of U . Then on a suitable

enlargement of the probability space there is a continuous semimartingale Y ′
t

such that |Y ′
t | = Yt and dY ′

t = sign(Y ′
t )dUt.

Proof. First we define the sign of the prospective semimartingale Y ′. To this
end let {ξk : k ≥ 1} be a sequence of independent variables such that P (ξk =
±1) = 1/2 and σ ({ξk : k ≥ 1}) is independent from F∞. This can be achieved
by a suitable enlargement of the probability field. On the enlarged probability
field we have all the objects we have on the original field and we will use the
same notation for them.

Next put z = {t ≥ 0 : Yt = 0} and denote {Ck : k ≥ 1} an enumeration of
the components of [0,∞) \ z. This can be done in a measurable way, i.e the
event (t ∈ Ck ) belongs to F∞ for all t ≥ 0 and k ≥ 1. To simplify the notation
later let C0 = z and ξ0 = 0. Now put Zt =

∑∞
k=0 ξk

χ
(t∈Ck) and F̃t = Ft ∨ F

Z
t ,

where F
Z
t = σ(Zs, s ≤ t).

Since U is a continuous semimartingale it can be written as Ut = At + Mt

where A is a continuous process with locally bounded total variation and M
is a F local martingale. We claim

Proposition 2. M is an F̃ local martigale.

Proposition 2 gives that Y is a semimartingale with respect to the filtration F̃,
therefore Z can be integrated by Y . For this integral the following expression
is true

Proposition 3.

ZtYt =
∫ t

0
ZsdYs.

Observe that by Proposition 3 the process defined as Y ′
t = ZtYt =

∫ t
0 ZsdYs

has the property that |Y ′
t | = Yt and sign(Yt) = Zt.

Now put ϕt = Yt − Ut = sups≤t(−Us). The points of increase of ϕ is a subset
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of z = {t ≥ 0 : Yt = 0} by the Skorohod reflection lemma, see Revuz and
Yor (1994) Chap VI. Lemma 2.1. This finishes the proof as

∫ t
0
χ

(Ys 6=0)dϕs = 0,
implies that dY ′

t = ZtdYt = ZtdUt.

Proof of Proposition 2. By stopping if necessery it is enough to prove that if
M is an F martingale then it is also an F̃ martingale, i.e.

E ((Mt − Ms)χA) = 0, for s ≤ t and A ∈ F̃s

Since F̃s = Fs ∨ F
Z
s actually it is enough to prove for all A of the form

B ∩ D where B ∈ Fs and D = ∩n
i=1 (Zti = εi) with 0 ≤ t1 < · · · < tn ≤ s,

εi ∈ {− 1, 0, 1}.

Since

E ((Mt − Ms)χB
χ

D ) = E ((Mt − Ms)χBE (χD | F∞))

it is enough to show that E (χD | F∞) is Fs measurable.

D can be written in the following form D = ∩n
i=1(ξκ(ti) = εi), where κ(ti) is the

(random) index of the Ck to which ti belongs. It is clear that κ(ti) is measurable
with respect to the condition F∞ while {ξk : k ≥ 0} is independent from it.
So

E (χD | F∞) = P (ξki
= εi, i = 1, . . . , n)|k1=κ(t1),...,kn=κ(tn)

Now if m denotes the number of distict non-zero indices in {k1, . . . , kn}, then

P (ξki
= εi, i = 1, . . . , n) =







0 if ε contradicts k

2−m otherwise.

Here ε contradicts k means, that either there are i, j such that ki = kj but
εi 6= εj or exists i such that ki = 0 but εi 6= 0 or ki 6= 0 but εi = 0.

Observe that both the value of m, i.e. the number of the components of [0, s]\z

that contain some ti and the condition, i.e. ε contradicts k can be calculated
if we know the the trajectory of Y up to time s. In other words E (χD | F∞)
is Fs measurable and the proposition is proved.

Proof of Proposition 3. To calculate the integral
∫ t
0 ZsdYs we use a rather stan-

dard approximation of the process Z. For ε > 0 let us define the following
sequence of stopping times

τ ε
0 = 0

τ ε
2k+1 = inf {t > τ ε

2k : |Yt | > ε} k = 0, 1, 2, . . .

τ ε
2k+2 = inf

{

t > τ ε
2k+1 : Yt = 0

}

k = 0, 1, 2, . . . .
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Put

Z̃ε
t =

∞
∑

k=0

Zt
χ

(τε
2k+1

<t≤τε
2k+2

)

Z̃ε is constant on every random interval of the form (τ ε
k , τ ε

k+1]. Since Y is
continuous the sequence (τ ε

k ) can not accumulate in a bounded interval so
Z̃ε is of bounded variation on every compact interval. This means that Y is
Riemann–Stieltjes integrable with respect to Z̃ε almost surely and

Z̃ε
t Yt − Z̃ε

0Y0 =
∫ t

0
Z̃ε

sdYs +
∫

[0,t)
YsdZ̃ε

s (2)

As ε → 0 we have that Z̃ε
t → Zt for all t almost surely. From this, it is clear

that the left hand side is convergent as ε → 0 and its almost sure limit is
ZtYt −Z0Y0 = ZtYt since Y0 = 0. Since

∣

∣

∣Z̃ε
∣

∣

∣ ≤ 1 the convergence of Z̃ε implies
as well that

∫ t

0
Z̃ε

sdYs →
∫ t

0
ZsdYs

in probability for all t. So to prove the proposition it is enough to show that
the last term in (2) goes to zero as ε → 0+.

The last term in (2) is a sum. It is

∫

[0,t)
YsdZ̃ε

s =
∑

k

τε
2k+1

<t

Yτε
2k+1

Zτ2k+1
= ε

∑

k

τε
2k+1

<t

Zτ2k+1

Put N(t, ε) = max
{

k : τ ε
2k+1 < t

}

, which is usually called the number of

upcrossing of the interval [0, ε]. So

∫ t

0
YsdZ̃ε

s = ε
N(t,ε)
∑

l=1

ξkl

where {ξkl
: l = 0, 1, . . . , N(t, ε)} is an enumeration of the Z̃ε

τ2k+1
values.

Now there are two cases. On the event, where N(t, ε) remains bounded the
limit is clearly zero by trivial estimates.

On the event, where N(t, ε) goes to infinity as ε → 0 we can apply e.g. the
Bernoulli law of large numbers to obtain that

∑N(t,ε)
l=1 ξkl

N(t, ε)
→ E (ξ1) = 0.

It is also well known, see e.g. in Revuz and Yor (1994) Chap. VI. Theorem
(1.10) that limε→0+ εN(t, ε) = 1

2
L0

t (Y ), where L0
t is the local time of Y at level
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zero. So we have in both cases that
∫

[0,t)
YsdZ̃ε

s →
1

2
L0

tE (ξ1) .

Now as E (ξ1) = 0 we get the result.
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