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It is well-known that the Skorohod reflection of a Wiener-process is the absolute value of another Wiener process with finer filtration. In other words it can be unfolded to obtain a Wiener process. In this short note a similar statement is proved for continuous semimartingales.

Let W t be a Wiener process. It is well-known , see e.g. in [START_REF] Revuz | Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences[END_REF] pp. 230, that

|W t | = β t + sup s≤t (-β s ) (1) 
where β = sign(W s )dW s is another Wiener process. In other words starting with β, the Skorohod reflection of β defined as the right hand side of (1) can be unfolded to a Wiener process W which has finer filtration than β. In this note we give a generalized version of this observation as stated in Theorem 1.

Our motivation comes from the analysis of the continuous time version of the stochastic approximation algorithm with re-initialization. In the course of this the following equation occured

dV t = v t dt + dM t + (V 0 -V t-)dN t
where V 0 < K with some finite K ∈ R, M is a martingale starting from zero and N is a finite counting process. Without the jump term the remaining equation is easy to handle. Now if we put U t = t 0 v s ds + M t then the Skorohod

A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT reflection Y t = U t + sup s≤t (-U s ) dominates V t , in the form V t ≤ K + Y t .
However the estimation of Y is not so easy. The advantage of Theorem 1 below, is that using it we can reduce the problem to the case when N identically zero, for the details see [START_REF] Gerencsér | Stability of hybrid linear stochastic systems -a technical tool in recursive identification[END_REF].

It is clear from the case of the Wiener process, that in general the unfolding can not be carried out on the original probability field of U. So in general we need an enlargement of the probability space. The enlargement of (Ω, F, P) is (Ω ′ , F ′ , P ′ ) with a measure preserving mapping π : Ω ′ → Ω.

Theorem 1. Let U t be a continuous semimartingale starting from zero. Denote Y t = U t + sup s≤t (-U s ) the Skorohod reflection of U. Then on a suitable enlargement of the probability space there is a continuous semimartingale

Y ′ t such that |Y ′ t | = Y t and dY ′ t = sign(Y ′ t )dU t .
Proof. First we define the sign of the prospective semimartingale Y ′ . To this end let {ξ k : k ≥ 1} be a sequence of independent variables such that

P (ξ k = ±1) = 1/2 and σ ({ξ k : k ≥ 1}) is independent from F ∞ .
This can be achieved by a suitable enlargement of the probability field. On the enlarged probability field we have all the objects we have on the original field and we will use the same notation for them.

Next put z = {t ≥ 0 : Y t = 0} and denote {C k : k ≥ 1} an enumeration of the components of [0, ∞) \ z. This can be done in a measurable way, i.e the event (t ∈ C k ) belongs to F ∞ for all t ≥ 0 and k ≥ 1. To simplify the notation later let C 0 = z and ξ 0 = 0. Now put

Z t = ∞ k=0 ξ k χ (t∈C k ) and Ft = F t ∨ F Z t , where F Z t = σ(Z s , s ≤ t).
Since U is a continuous semimartingale it can be written as U t = A t + M t where A is a continuous process with locally bounded total variation and M is a F local martingale. We claim Proposition 2. M is an F local martigale.

Proposition 2 gives that Y is a semimartingale with respect to the filtration F, therefore Z can be integrated by Y . For this integral the following expression is true Proposition 3.

Z t Y t = t 0 Z s dY s .
Observe that by Proposition 3 the process defined as

Y ′ t = Z t Y t = t 0 Z s dY s has the property that |Y ′ t | = Y t and sign(Y t ) = Z t . Now put ϕ t = Y t -U t = sup s≤t (-U s ).
The points of increase of ϕ is a subset of z = {t ≥ 0 : Y t = 0} by the Skorohod reflection lemma, see [START_REF] Revuz | Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences[END_REF] Chap VI. Lemma 2.1. This finishes the proof as t 0 χ (Ys =0) dϕ s = 0, implies that dY ′ t = Z t dY t = Z t dU t .

Proof of Proposition 2. By stopping if necessery it is enough to prove that if M is an F martingale then it is also an F martingale, i.e.

E ((M t -M s ) χ A ) = 0, for s ≤ t and A ∈ Fs Since Fs = F s ∨ F Z s actually it is enough to prove for all A of the form

B ∩ D where B ∈ F s and D = ∩ n i=1 (Z t i = ε i ) with 0 ≤ t 1 < • • • < t n ≤ s, ε i ∈ { -1, 0, 1}. Since E ((M t -M s ) χ B χ D ) = E ((M t -M s ) χ B E ( χ D | F ∞ )) it is enough to show that E ( χ D | F ∞ ) is F s measurable.
D can be written in the following form

D = ∩ n i=1 (ξ κ(t i ) = ε i ), where κ(t i ) is the (random) index of the C k to which t i belongs. It is clear that κ(t i ) is measurable with respect to the condition F ∞ while {ξ k : k ≥ 0} is independent from it. So E ( χ D | F ∞ ) = P (ξ k i = ε i , i = 1, . . . , n)| k1=κ(t1),...,kn=κ(tn)
Now if m denotes the number of distict non-zero indices in {k 1 , . . . , k n }, then

P (ξ k i = ε i , i = 1, . . . , n) =    0 if ε contradicts k 2 -m otherwise.
Here ε contradicts k means, that either there are i, j such that k i = k j but ε i = ε j or exists i such that k i = 0 but ε i = 0 or k i = 0 but ε i = 0.

Observe that both the value of m, i.e. the number of the components of [0, s]\z that contain some t i and the condition, i.e. ε contradicts k can be calculated if we know the the trajectory of Y up to time s. In other words E ( χ D | F ∞ ) is F s measurable and the proposition is proved.

Proof of Proposition 3. To calculate the integral t 0 Z s dY s we use a rather standard approximation of the process Z. For ε > 0 let us define the following sequence of stopping times

τ ε 0 = 0 τ ε 2k+1 = inf {t > τ ε 2k : |Y t | > ε} k = 0, 1, 2, . . . τ ε 2k+2 = inf t > τ ε 2k+1 : Y t = 0 k = 0, 1, 2, . . . . Put Zε t = ∞ k=0 Z t χ (τ ε 2k+1 <t≤τ ε 2k+2 )
Zε is constant on every random interval of the form (τ ε k , τ 

As ε → 0 we have that Zε t → Z t for all t almost surely. From this, it is clear that the left hand side is convergent as ε → 0 and its almost sure limit is

Z t Y t -Z 0 Y 0 = Z t Y t since Y 0 = 0. Since Zε ≤ 1 the convergence of Zε implies as well that t 0 Zε s dY s → t 0 Z s dY s
in probability for all t. So to prove the proposition it is enough to show that the last term in (2) goes to zero as ε → 0+.

The last term in ( 2) is a sum. It is where {ξ k l : l = 0, 1, . . . , N(t, ε)} is an enumeration of the Zε τ 2k+1 values. Now there are two cases. On the event, where N(t, ε) remains bounded the limit is clearly zero by trivial estimates.

[0,t) Y s d Zε s = k τ ε 2k+1 <t Y τ ε 2k+1 Z τ 2k+1 = ε k τ ε 2k+1 <t Z τ 2k+1 Put N(t, ε) = max k : τ ε 2k+1 < t ,
On the event, where N(t, ε) goes to infinity as ε → 0 we can apply e.g. the Bernoulli law of large numbers to obtain that

N (t,ε) l=1 ξ k l N(t, ε) → E (ξ 1 ) = 0.
It is also well known, see e.g. in [START_REF] Revuz | Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences[END_REF] Chap. VI. Theorem (1.10) that lim ε→0+ εN(t, ε) = 1 2 L 0 t (Y ), where L 0 t is the local time of Y at level

  which is usually called the number of upcrossing of the interval [0, ε]. So

  ε k+1 ]. Since Y is continuous the sequence (τ ε k ) can not accumulate in a bounded interval so Zε is of bounded variation on every compact interval. This means that Y is Riemann-Stieltjes integrable with respect to Zε almost surely and

	Zε t Y t -Zε 0 Y 0 =	0	t	Zε s dY s +	[0,t)	Y s d Zε s