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We consider deconvolution models with noise variables that have bounded, decreasing densities with compact support. The nonparametric maximum likelihood estimator of the distribution function is shown to converge globally at a rate n -1/3 with respect to the L 2 -metric.

Introduction

Let X 1 , X 2 , . . . be a sequence of iid random variables that possess an unknown distribution function F 0 . We estimate F 0 based on a contaminated sample Z 1 , . . . , Z n where each Z i equals X i + Y i for i = 1, . . . , n. The noise variable Y i is independent of X i and its density function g is known.

Estimating f 0 , the density of F 0 , in this deconvolution model is often addressed by means of inverse Fourier transforms based on kernel estimators. Carroll and

A C C E P T E D M A N U S C R I P T

ACCEPTED MANUSCRIPT [START_REF] Carroll | Optimal rates of convergence of deconvolving a density[END_REF], Fan (1991) and Fan (1991) discuss the relation between the rate of convergence of this density estimator and the smoothness of the noise density g. For instance, it is shown that in case of Y ∼ N(0, 1) and f 0 having k bounded derivatives, the fastest rate of convergence of any nonparametric estimator is (log(n)) -k/2 , which is attained by the kernel estimator. Estimating F 0 by integrating this density estimator is suggested by [START_REF] Zhang | Fourier methods for estimating mixing densities and distributions[END_REF], which is further studied in [START_REF] Hesse | Distribution functions estimation from noisy observations[END_REF] and [START_REF] Hall | Estimation of distributions, moments and quantiles in deconvolution problems[END_REF] with respect to bounds on rates of convergence.

The maximum likelihood estimator (MLE) Fn estimates F 0 without entering the Fourier domain and is given as the maximizer of the log likelihood function over all distribution functions on [ 0, ∞); formally defined below. [START_REF] Donauer | Maximum Likelihood Estimation in a class of Deconvolution Models -Characterization[END_REF] study Fn , mainly consistency, motivated by a long standing conjecture about the pointwise asymptotic distribution of Fn given in [START_REF] Groeneboom | Information Bounds and Nonparametric Maximum Likelihood Estimation[END_REF]. In the current paper we study the rate of convergence for Fn for decreasing densities g on [ 0, ∞) from a global point of view, which turns out to be n -1/3 . Even though one can find various rates for maximum likelihood estimators in the literature (see for example [START_REF] Groeneboom | Current status data with competing risks: Consistency and rates of convergence of the mle[END_REF], the cube-root-n behavior seems to be natural in this setting. It is supported by pointwise results like the lower bound on the minimax risk for deconvolution problems derived in [START_REF] Jongbloed | Three Statistical Inverse Problems[END_REF] and the pointwise asymptotic distribution result for the exponential deconvolution model in the same reference. In addition, an alternative estimator for F 0 , the so-called Isotonic Inverse Estimator (see [START_REF] Van Es | Isotonic inverse estimators for nonparametric deconvolution[END_REF], also converges pointwisely at rate n -1/3 . In Section 2 we derive the n -1/3 rate of convergence of Fn with respect to the L 2 -metric (Theorem 5). Using the structure of our deconvolution model, it is deduced from a rate result for the sampling density with respect to the Hellinger metric (Theorem 1). For the proof of the latter theorem, we use con-cepts of Chapter 7 in van de Geer (2000), which provide general theory for deriving rates of convergence of maximum likelihood estimators. However, the general results presented there cannot be applied immediately. We need to decompose function classes using the specific structure of our model in order to be able to compute the required entropies. Some proofs and technical details are stated in Section 3.

Global Rates of Convergence

Assume that the noise variable Y has a density g : [ 0, ∞) → [ 0, ∞) with g(y) = 0 for all y > S g with some 0 < S g < ∞ that is known, absolutely continuous, bounded and decreasing on (0, ∞), allowing the representation g(y) = ∞ y -g ′ (w) dw = g(0)+ y 0 g ′ (w) dw, y ≥ 0. The function F 0 is assumed to be contained in F [ 0,S0 ] , the class of all continuous distribution functions F :

[ 0, ∞) → [ 0, 1 ] satisfying F (S 0 ) = 1 with 0 < S 0 < ∞. For the density f 0 we require f 0 ≥ c 0 > 0, for some constant c 0 , in a neighborhood of zero. Moreover, f 0 = 0 is only allowed on intervals that are shorter than S g . The density h 0 of Z is given by the convolution of g and F 0 , i.e. h 0 = h F0 = g * dF 0 , and is contained in the set of all convolutions H = {h F :

h F = g * dF, F ∈ F [ 0,∞) }.
Note that integration by parts leads for all h F ∈ H to

h F (z) = g(0)F (z) + [ 0,z ] g ′ (z -y)F (y) dy, z ≥ 0. ( 1 
)
Lebesgue measure on [ 0, S g + S 0 ] is denoted by µ and µ 0 = 1l h0>0 µ. Also,

define S F = F -1 (1) = inf{x ≥ 0 : F (x) = 1}.
The nonparametric maximum likelihood estimator (MLE) is defined as the maximizer of

Ψ n (F ) = [ 0,∞) log h F (z) dH n (z) = 1 n n i=1 log [ 0,Z i ] g(Z i -x) dF (x)
over all distribution functions F on [ 0, ∞), where H n denotes the empirical distribution function of the observations. Lemma 2.2 in [START_REF] Donauer | Maximum Likelihood Estimation in a class of Deconvolution Models -Characterization[END_REF] shows that Fn is a piecewise constant distribution function which only jumps at (usually a strict subset of the) observation points. Moreover, it is unique among distribution functions of this type. The optimization problem therefore boils down to a finite dimensional one that can be solved by a Newton procedure as illustrated in [START_REF] Donauer | Maximum Likelihood Estimation in a class of Deconvolution Models -Characterization[END_REF]. From Theorem 13 in the same reference we know that

sup x∈[ 0,∞) Fn (x) -F 0 (x) → 0, a.s. (2) 
We will use the abbreviations ĥn = h Fn and Ŝn = S Fn . In particular Ŝn ≤ Z (n) ,

where Z (n) denotes the last order statistic. The rate results we derive, are with respect to the L 2 metric • L2 and the Hellinger distance d H , defined for densities p 1 and p 2 as

d H (p 1 , p 2 ) = 1 2 p 1 (x) -p 2 (x) 2 dx 1/2
.

Theorem 1 Let β > 0 such that with probability tending to one Ŝn ≤ S 0 + S g -β.

Then

d H ( ĥn , h 0 ) = O p (n -1/3 ) and ĥn -h 0 L2 = O p (n -1/3 ). ( 3 
)
Remark 2 If g is such that -g ′ (0) < g(0) 2 and g(y) = g(0)+g ′ (0)y +o(y) for y ↓ 0, Lemma 6.1 in [START_REF] Donauer | Maximum Likelihood Estimation in a class of Deconvolution Models -Characterization[END_REF] implies that one can find a β > 0 such that Ŝn ≤ S 0 + S g -β holds with probability tending to one (n → ∞).

The proof of Theorem 1 is based on Theorem 7.4 of van de Geer (2000), which provides a tool to derive rates of convergence of maximum likelihood estimators with respect to the Hellinger metric. In order to apply it directly, the entropy with bracketing of the class

H1/2 =    h + h 0 2 , h ∈ H   
with respect to L 2 (µ 0 ) needs to be calculated. Here and in what follows d) always denote the δ-entropy with bracketing of a set of functions

H [ ] (δ, A,
A with respect to the metric d (see [START_REF] Van De Geer | Empirical Processes in M-Estimation[END_REF] for the definition of this entropy).

By (1), every element of H can be expressed as the difference of two uniformly bounded monotone functions, i.e. H is a class of uniformly bounded variation.

Hence for a positive constant A we have [START_REF] Van De Geer | Empirical Processes in M-Estimation[END_REF]). The structure of H1/2 now suggests to apply a result that allows us to relate the known entropy of H to the entropy of a transformed class of H, in this case H1/2 . But the square root transformation only preserves the entropy of the underlying class of functions under certain additional assumptions. This is discussed in the following Remark and Lemma 4 (proven in Section 3) which are used later on.

H [ ] (δ, H, L 2 (µ 0 )) ≤ Aδ -1 all δ > 0 (see (2.6) in
Remark 3 Let P be a class of nonnegative bounded monotone functions on [ 0, S ], where 0 < S < ∞, and let µ be Lebesgue measure on [ 0, S ]. With p 0 ∈ P, the class P1/2 = { (p + p 0 )/2, p ∈ P} also consists of monotone bounded functions, so that for some positive constant A and all δ > 0

H [ ] (δ, P1/2 , L 2 (µ)) ≤ Aδ -1 (4)
due to Lemma 3.8 in van de Geer (2000).

Lemma 4 Let P be a class of nonnegative functions with support contained in [ 0, S ], where 0 < S < ∞, and let µ be Lebesgue measure on [ 0, S ]. Assume that p ≥ c 2 for a constant c > 0 for all p ∈ P. Then we have

A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT H [ ] (δ, { √ p : p ∈ P}, L 2 (µ)) ≤ H [ ] (δc, P, L 2 (µ))
, for all δ > 0.

(5) Since h F is not monotone on [ 0, S 0 + S g ], formula (4) cannot be applied immediately in order to obtain the entropy of H1/2 . The same holds for Lemma 4 because h 0 can become arbitrarily small in the neighborhood of zero and of S 0 + S g (only there, due to the assumptions on f 0 ). In the proof of Theorem 1 we therefore decompose the class H1/2 so that ( 4) and ( 5) can be applied to appropriately chosen subclasses. (See Lemma 6 on how to relate the entropy of a class that is decomposed into a sum or product of other classes to the entropies of these individual classes.) Following these lines will eventually allow us in the proof below to bound the entropy H1/2 based on the known entropies of H and F [ 0,∞) .

PROOF. (Theorem 1) Let η > 0 be arbitrarily small. To prove (3) we have to show that there exists an M > 0 and n 0 ∈ IN such that IP n 1/3 d H ( ĥn , h 0 ) > M < η for all n ≥ n 0 .

In order to apply Theorem 7.4 of van de Geer (2000), we first need to restrict the entropy calculation to a subclass of H1/2 . Fix a small β > 0 such that Ŝn ≤ S 0 + S g -β with probability tending to 1, and for this β define

K 2 = S 0 + S g -β. Also, choose K 1 < S g such that h 0 (z) ≥ c 1 > 0 for some constant c 1 and all z ∈ [ K 1 , K 2 )
, which is possible due to the assumption about f 0 stated at the beginning of this section. Fix 0 < α < c 1 /g(0) and define

F α,β = F ∈ F [ 0,∞) : sup [ 0,S0+Sg ] |F (x) -F 0 (x)| < α, S F < S 0 + S g -β
where S F = F -1 (1). Note that, due to the uniform consistency of Fn (see (2))

IP( Fn ∈ F α,β ) ≥ 1 -η/2 for sufficiently large n. For those large n we get

IP n 1/3 d H ( ĥn , h 0 ) > M ≤ IP n 1/3 d H ( ĥn , h 0 ) > M, Fn ∈ F α,β + η 2 . ( 6 
)
Consider from now on H1/2 α,β ⊂ H1/2 indexed by F α,β , i.e.

H1/2 α,β =    h F + h 0 2 : F ∈ F α,β    .
Then every element hF of H1/2 α,β can be written as hF

= √ F 1 • √ k 1 + √ k 2 + √ k 3 with F 1 ∈ F 1,α,β , k 1 ∈ K 1,α,β , k 2 ∈ K 2,α,β and k 3 ∈ K 3,α,β for F 1,α,β = F + F 0 2 , F ∈ F α,β , K 1,α,β = k F | k F (z) = h F (z) + h 0 (z) F (z) + F 0 (z) 1l (0,K1 ] (z), F ∈ F α,β , K 2,α,β = k F | k F (z) = h F (z) + h 0 (z) 2 1l (K1,K2 ] (z), F ∈ F α,β and K 3,α,β = k F | k F (z) = h F (z) + h 0 (z) 2 1l (K2,S0+Sg ] (z), F ∈ F α,β .
Due to the assumption that F 0 (x) > 0 for all x > 0, the class K 1,α,β is well defined. Using this notation, and interpreting ⊙ and ⊕ as elementwise operations on sets of functions (see Lemma 6), we have

H1/2 α,β ⊂ √ F 1,α,β ⊙ √ K 1,α,β ⊕ √ K 2,α,β ⊕ √ K 3,α,β
so that Lemma 6 and k F ≤ g(0) for all k F ∈ K 1,α,β (see Lemma 7 below) imply

H [ ] (δ, H1/2 α,β , L 2 (µ 0 )) ≤ H [ ] (δ/(6 g(0)), √ F 1,α,β , L 2 (µ 0 )) +H [ ] (δ/6, √ K 1,α,β , L 2 (µ 0 )) + 3 i=2 H [ ] (δ/3, √ K i,α,β , L 2 (µ 0 )). (7) 
The class F 1,α,β clearly consists of bounded monotone functions. Hence by (4) there exists a constant B 0 > 0 such that

H [ ] δ, √ F 1,α,β , L 2 (µ 0 ) ≤ B 0 δ -1 for all 0 < δ < 1.
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According to Lemma 7-9 one can find constants B i , i = 1, . . . , 3 such that

H [ ] δ, √ K i,α,β , L 2 (µ 0 ) ≤ B i δ -1 for all 0 < δ < 1, i = 1, . . . , 3.
Hence, by ( 7) there also exists a nonnegative constant A with

H [ ] δ, H1/2 α,β , L 2 (µ 0 ) ≤ Aδ -1 for all 0 < δ < 1.
Using this bound, we obtain for some A 0 > 0 and all 0 < δ < 1

J [ ] (δ, H1/2 α,β , L 2 (µ 0 )) := max δ δ 2 /13 H [ ] (u, H1/2 α,β , L 2 (µ 0 )) du, δ ≤ A 0 √ δ.
Theorem 7.4 of van de Geer ( 2000) can now be applied to the class H1/2 α,β . Note that, in view of (1), the constant function g(0) acts as an envelope function for H1/2 α,β , square integrable with respect to µ 0 . Taking r n = Mn -1/3 for some large M > 0 it follows that √ nr 2 n ≥ cψ(r n ), where ψ(δ) = A 0 √ δ and where c denotes some constant. This implies, for sufficiently large M,

IP d H ( ĥn , h 0 ) > Mn -1/3 , Fn ∈ F α,β ≤ η/2
for all n sufficiently large. Together with (6) this finishes the proof.

For proving the second statement of (3) note that

p 1 -p 2 L2 ≤ 2 √ 2cd H (p 1 , p 2 )
if p 1 and p 2 are bounded above by c 2 . Since h F (z) ≤ g(0) for all F ∈ F [ 0,∞) , the first statement of (3) implies ĥn -h 0 L2 = O p (n -1/3 ). 2

From Theorem 1 we can infer that Fn converges to F 0 with rate n -1/3 with respect to the L 2 -norm. For doing so, F is expressed in terms of h F using a so-

called resolvent ̺ : [ 0, ∞) → [ 0, ∞), given as a solution of [̺ * g](x) = x, x ≥ 0.
This implies [̺ * h F ](x) = [̺ * g * dF ](x) = x 0 F (y) dy, x ≥ 0 which leads to

F (x) = d dx [̺ * h F ] (x) = [̺ ′ * h F ](x) + ̺(0)h F (x), x ≥ 0, (8) 
where a continuous version of ̺ ′ on [ 0, ∞) exists due the differentiability of g on (0, ∞) (see Lemma 4.2 in [START_REF] Jongbloed | Three Statistical Inverse Problems[END_REF]. Further properties of ̺ can be found in [START_REF] Jongbloed | Estimating a concave distribution function from data corrupted with additive noise[END_REF].

Theorem 5 Fn -F 0 L2 = O p (n -1/3 ), under the assumption of Theorem 1.

PROOF. Using that S 0 and S g are finite, we show below that Fn -F 0 L2 ≤ c ĥn -h 0 L2 for some positive constant c so that the rate of Fn -F 0 L2

follows immediately from (3). Note that Fn -F 0 (x) = 0 for all x > S 0 + S g since 1 = Fn (Z (n) ) ≤ Fn (S 0 + S g ). For x ∈ [ 0, S 0 + S g ] we have by ( 8) that 

( Fn -F 0 )(x) ≤ x 0 ̺ ′ (x -y)( ĥn -h 0 )(y) dy + ̺(0) ĥn (x) -h 0 (x) ≤ c√ x ĥn -h 0 L2 + ̺(0) ĥn (x) -h 0 (x) where c = max [ 0,S0+Sg ] |̺ ′ (x)| < ∞. Hence Fn -F 0 2 L2 = S0+Sg 0 | Fn (x) - F 0 (x)| 2 dx ≤ c ĥn -h 0 2 L2 for c = c2 (S 0 + S g ) 2 + 2̺(0) 2 > 0. 2 3 
{[ l 1 , u 1 ], . . . , [ l N , u N ]
} be a set of δc-brackets for P with respect to µ. Let √ p ∈ P 1/2 . Then there exists a j ∈ {1, . . . , N} such that l j ≤ √ p ≤ √ u j .

Due to p(x) ≥ c 2 for all p ∈ P we have wlog l j ≥ c 2 for j = 1 . . . , N so that an application of the mean value theorem yields

u j (x) -l j (x) ≤ 1 2 √ c 2 |u j (x) -l j (x)|
and hence √ u j -l j L2(µ) ≤ c -1 u j -l j L2(µ) ≤ δ which implies (5). 2

Lemma 6 Let P 1 and P 2 be classes of functions. Then for the class P 1 ⊕P 2 = {p 1 + p 2 : p 1 ∈ P 1 , p 2 ∈ P 2 } we have

H [ ] (δ, P 1 ⊕ P 2 , L 2 (Q)) ≤ H [ ] (δ/2, P 1 , L 2 (Q)) + H [ ] (δ/2, P 2 , L 2 (Q))
for any δ > 0 and probability measure Q.

Assume 0 ≤ p 1 ≤ c 1 for all p 1 ∈ P 1 and 0 ≤ p 2 ≤ c 2 for all p 2 ∈ P 2 for constants c 1 > 0 and c 2 > 0, and let P 1 ⊙ P 2 = {p 1 • p 2 : p 1 ∈ P 1 , p 2 ∈ P 2 }.

Then we have for all δ > 0 and Q being a probability measure

H [ ] (δ, P 1 ⊙ P 2 , L 2 (Q)) ≤ H [ ] (δ/(2c 2 ), P 1 , L 2 (Q)) + H [ ] (δ/(2c 1 ), P 2 , L 2 (Q)).
PROOF. See Pollard (1990, pages 22-23) for similar statements using entropy without bracketing. 2

Lemma 7 Let K 1 < S g . Then we have g(K 1 ) ≤ k F (z) ≤ g(0) for all z ∈ (0, K 1 ] and for all k F ∈ K 1,α,β . The class K 1,α,β is of uniform bounded variation so that for some A > 0 and all δ > 0 H [ ] (δ, √ K 1,α,β , L 2 (µ 0 )) ≤ Aδ -1 .

PROOF. Let k F ∈ K 1,α,β . First note that (1) implies (10)

k F (z) = g(0) + 1 F (z) + F 0 (z)
Since g ′ ≤ 0, it follows from (9) that k F (z) ≤ g(0) for all z ≥ 0. Moreover, k F (z) ≥ g(0)+ z 0 g ′ (z-y) dy = g(0)-g(0)+g(z) ≥ g(K 1 ) > 0 for z ∈ (0, K 1 ] again by ( 9) and due to g ′ (y) ≤ 0 for all y.

  Proofs and Technical Lemmas PROOF. (Lemma 4) Let δ > 0, N = exp H [ ] (δc, P, L 2 (µ) and let

  z -y) -g(0)) d(F + F 0 )(y).
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Define for z ∈ [ 0, K 1 ] the function kF (z) by kF (z) = k F (z) if z ∈ (0, K 1 ] and kF (0) = lim z↓0 k F (z) = g(0) which we will show is of uniform bounded variation. For n

and write c j = F (τ j )+F 0 (τ j ) for all j = 0, . . . , n. Let j ∈ {1, . . . , n}.

Then, by (10),

c in a neighborhood of zero, say [ 0, ξ ] for ξ > 0, we have c j ≥ c min{τ j , ξ}.

To see this assume τ j < ξ. Then c j ≥ F 0 (τ j ) ≥ c 0 τ j . For τ j ≥ ξ we get

for constants c1 > 0 and c2 > 0 independent of j implying

for any partition and showing that K 1,α,β is of bounded variation. Using formula (2.6) in van de Geer (2000), which gives a bound on the entropy for classes of bounded variation, together with Lemma 4 we have for some A > 0 and all δ > 0

Then for 0 < α < c 1 /g(0) and some

PROOF. Note that K 2,α,β is a class of uniformly bounded variation since H itself possesses this property. Thus for some A > 0 we get

. Thus, also inf [ K1,K2) k F (z) ≥ c > 0 for some constant c and all k F ∈ K 2,α,β which yields that there exists an A > 0 such that

for all δ > 0 by Lemma 4. 2

Aδ -1 for δ > 0.

PROOF. Every h F is decreasing on [S F , ∞). Since we only consider those h F with S F ≤ K 2 , we know that K 3,α,β is a class of bounded decreasing functions.

An application of (4) yields the proposed entropy bound. 2