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Asymptotics for sums of a function of normalized

independent sums

Kamil Kosiński∗

Wydzia l Matematyki, Informatyki i Mechaniki, Uniwersytet Warszawski, Warszawa,
Poland

Abstract

We derive a central limit theorem for sums of a function of independent sums
of independent and identically distributed random variables. In particular we
show that previously known result from Rempa la and Weso lowski (Statist.
Probab. Lett. 74, 129), which can be obtained by applying the logarithm as
the function, holds true under weaker assumptions.

Key words: Products of sums of iid rv’s, Limit distribution, Central limit
theorem, Lognormal distribution
2000 MSC: G0F05

1. Introduction

Throughout this paper let (Xk,n)k=1,...,n; n = 1, 2 . . . be a triangular array
of independent and identically distributed (iid) random variables (rv’s) with
the same distribution as X. Let us define the (mutually independent) partial
sums Sn,n =

∑n
k=1Xk,n. We will work with real functions f defined at least

on an interval I such that P(X ∈ I) = 1. We will also write log+ x for
log(x ∨ 1).

The asymptotic behavior of the product of partial sums of a sequence of
iid rv’s has been studied in several papers (see e.g. Lu and Qi (2004) for a
brief review). In particular it was shown in Rempa la and Weso lowski (2002)
that if (Xn) is a sequence of iid positive square integrable rv’s with EX1 = µ,
Var(X1) = σ2 > 0, then setting Sn =

∑n
k=1Xk and γ = σ/µ we have as
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n→∞ (
n∏
k=1

Sk
kµ

) 1
γ
√
n

d→ e
√

2N ,

where
d→ stands for convergence in distribution and N is a standard normal

random variable. This result was extended in Qi (2003) and Lu and Qi
(2004) to a general limit theorem covering the case when the underlying
distribution is integrable and belongs to the domain of attraction of a stable
law with index from the interval [1, 2].

This study brought an interest to the array case, where we no longer
consider a sequence (Xn) but a triangular array (Xk,n). In Rempa la and
Weso lowski (2005) the analogous result was obtained, namely(

n
γ2

2

n∏
k=1

Sk,k
kµ

) 1
γ
√

logn
d→ eN , (1)

under the assumption E|X|p <∞ for some p > 2.
The purpose of this paper is to show that the above result holds true

under the assumption EX2(log+ |X|)1/2 < ∞. However, it is no longer true
in general when only EX2 < ∞ is assumed. We will show that under this
assumption, different normalisation is needed. Furthermore, we will set our
discussion in a more general setting. It is straightforward that (1) is a simple
corollary from ∑n

k=1 f(Sk,k/k)− bn
an

d→ N ,

if one sets f(x) = log x and chooses the sequences an, bn properly.

2. Main result

Theorem 1. Suppose that E|X|2 < ∞ and denote µ = EX, σ2 = Var(X).
Let f be a real function with bounded third derivative on some neighbourhood
of µ. Then as n→∞∑n

k=1 f(Sk,k/k)− bn
an

d→ σf ′(µ)N ,

where

an =
√

log n , bn = nf(µ) +
f ′′(µ)

2

n∑
k=1

1

k
E|X − µ|21{|X−µ|≤σk}.

2
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Remark 1. If we strengthen the assumption of the square integrability of
random variable X to EX2(log+ |X|)1/2 <∞, then we can take the sequence

b̃n = nf(µ)+ f ′′(µ)σ2

2
log n instead of bn. To see this we should show b̃n− bn =

o(
√

log n), which since log n−
∑n

k=1
1
k

= O(1) is equivalent to

Qn :=
n∑
k=1

1

k

(
σ2 − E|X − µ|21{|X−µ|≤σk}

)
= o(

√
log n).

Observe that Qn is positive and

Qn =
n∑
k=1

1

k
E|X − µ|21{|X−µ|>σk} = E|X − µ|2

∑
σk<|X−µ|, k≤n

1

k

∼ E|X − µ|2 log+ (n ∧ (|X − µ|/σ)) =: Q̃n.

Therefore, if EX2(log+ |X|)1/2 <∞, we can use the Dominated Convergence
Theorem and infer that b̃n − bn = o(

√
log n).

Remark 2. On the other hand, if for some ε > 0 we define a random variable
X by setting P(X = ±kn) = C/(2k2

nn
2) and P(X = 0) = 1−

∑
n P(|X| = kn),

where kn = en
2+ε

and C = 6/π2. Then we simply have µ = 0, σ2 = 1 and
EX2(log+ |X|)1/2 =∞. Although, one can check that lim supnQn/

√
log n =

lim supn Q̃n/
√

log n =∞, which means that we cannot use b̃n in general.

Now let us take any positive (i.e. I ⊂ (0,∞)), nondegenerate random variable
X with EX2(log+ |X|)1/2 <∞ and f(x) = µ log (x/µ). Theorem 1 yields (1),
that is the result from Rempa la and Weso lowski (2005) however under weaker
assumptions. Our argument shows that their result holds true even under
the assumption of square integrability, although the normalizing sequences

should be different. Namely, instead of the term n
γ2

2 in (1) we should have
exp( 1

2µ2

∑n
k=1

1
k
E|X − µ|21{|X−µ|≤σk}).

The proof of Theorem 1 relies on the Taylor’s expansion of a function f
in the neighbourhood of µ. Linear term in this expansion obeys a version of
the classical Central Limit Theorem. Other terms are negligible mainly due
to the Strong Law of Large Numbers (SLLN). This assertion will be made
valid by a series of lemmas.

Lemma 2. Under the assumptions of Theorem 1 with σ > 0

1

σ
√

log n

n∑
k=1

(
Sk,k
k
− µ

)
d→ N as n→∞.

3
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Proof. We may assume EX = 0 and EX2 = 1 by a simple normalization
argument. Since

Var

(
n∑
k=1

Sk,k
k

)
=

n∑
k=1

Var(Sk,k)

k2
=

n∑
k=1

1

k
∼ log n,

then to complete the proof it is sufficient to show the Lindeberg condition
for the array (

Sk,k
k
√

logn
)k≤n, that is

∀
r>0

1

log n

n∑
k=1

E
(
Sk,k
k

)2

1{|Sk,k/k|>r
√

logn} = o(1). (2)

Since {(Sk,k/
√
k)2} is uniformly integrable,

sup
k∈N

E
(
Sk,k√
k

)2

1{|Sk,k/
√
k|>r

√
logn} → 0 as n→∞,

proving (2). �

To establish the SLLN we will refer to Hsu-Robbins (1947) Law of Large
Numbers (cf. Li et al. (1995) for partial bibliographies and brief discussions).

Lemma 3 (Hsu-Robbins LLN). For a sequence (Xn) of iid rv’s with EX1 = 0
and EX2

1 <∞ the series
∞∑
n=1

P(|Sn/n| > t) (3)

converges for every t > 0.

The condition (3) implies Sn/n→ 0 a.s. under the Borel-Cantelli lemma.
Moreover if X1 in Lemma 3 has the same distribution as X in Theorem 1,
then P(|Sn/n| > t) = P(|Sn,n/n| > t), i.e Sn,n/n→ 0 a.s. as well.

Before we proceed, we need some technical results derived from the el-
ementary fact about the moments of sums of iid rv’s (e.g. Hall and Heyde,
1980, p. 23).

Lemma 4 (Rosenthal’s inequality). If (Xn) is a sequence of iid rv’s with the
zero mean, then for any p ≥ 2

E|Sn|p ≤ Cp
(
nE|X1|p + np/2(EX2

1 )p/2
)
,

where Cp is a constant depending only on p.

4
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We will use this version of the Rosenthal’s inequality to prove the fol-
lowing lemma, which on the other hand will simplify a number of steps in
the next lemma. The later will play a crucial role in the proof of the main
theorem.

Lemma 5. Under the assumptions of Theorem 1, for every p > 2

E
∞∑
k=1

(
|T̃k|
k

)p

<∞,

where T̃k =
∑k

i=1

(
Xi,k1{|Xi,k|≤k} − EXi,k1{|Xi,k|≤k}

)
.

Proof. Let Yk
d
= Xi,k1{|Xi,k|≤k} − EXi,k1{|Xi,k|≤k}, then by Lemma 4

E
∞∑
k=1

(
|T̃k|
k

)p

≤ Cp

∞∑
k=1

1

kp
(
kE|Yk|p + kp/2(EY 2

k )p/2
)

≤ Cp2
p

(
∞∑
k=1

1

kp−1
E|X|p1{|X|≤k} +

∞∑
k=1

1

kp/2
(EX2)p/2

)

= Cp2
p

E|X|p
∞∑

k≥|X|

k1−p + (EX2)p/2
∞∑
k=1

1

kp/2


≤ Cp2

p

(
CE|X|2 + (EX2)p/2

∞∑
k=1

1

kp/2

)
<∞,

for some positive constant C. �

Lemma 6. Under the assumptions of Theorem 1 we have

n∑
k=1

[(
Sk,k − kµ

k

)2

−
E|X − µ|21{|X−µ|≤σk}

k

]
= OP(1), (4)

n∑
k=1

∣∣∣∣Sk,k − kµk

∣∣∣∣3 = OP(1). (5)

Proof. To simplify the notation we will write Sk for Sk,k. First note that
to show (4) it is sufficient to prove that

n∑
k=1

(
S2
k

k2
−

E|X|21{|X|≤k}
k

)
= OP(1),

5
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for a normalized random variableX. Take any ε > 0 and let Tk :=
∑k

i=1Xi,k1{|Xi,k|≤k}.
Then

∑∞
k=1 P(Sk 6= Tk) ≤

∑∞
k=1 kP(|X| > k) < ∞, because EX2 < ∞.

Hence we can take R big enough that
∑∞

k=R P(Sk 6= Tk) < ε/3 and M big
enough that

P

(∣∣∣∣∣
R−1∑
k=1

(
S2
k

k2
−

E|X|21{|X|≤k}
k

)∣∣∣∣∣ > M/2

)
< ε/3.

So all we need to show is

P

(∣∣∣∣∣
n∑

k=R

(
T 2
k

k2
−

E|X|21{|X|≤k}
k

)∣∣∣∣∣ > M/2

)
< ε/3,

which is implied by
n∑
k=1

T 2
k − bk
k2

= OP(1) (6)

with bk := kE|X|21{|X|≤k}. Observe that

Tk =
k∑
i=1

(
Xi,k1{|Xi,k|≤k} − EXi,k1{|Xi,k|≤k}

)
+ ck := T̃k + ck,

where ck = kEX1{|X|≤k} and

n∑
k=1

T 2
k − bk
k2

=
n∑
k=1

T̃ 2
k − bk
k2

+
n∑
k=1

c2k
k2

+ 2
n∑
k=1

ckT̃k
k2

:= I1 + I2 + I3.

Recall that EX = 0 so that

|ck| = |kEX1{|X|≤k}| = |kEX1{|X|>k}| ≤ E|X|2 = 1,

thus I2 = O(1). We also have I3 = OP(1) because I3 is bounded in L2

E

(
n∑
k=1

ckT̃k
k2

)2

=
n∑
k=1

E

(
ckT̃k
k2

)2

≤
n∑
k=1

1

k4
kVar(X1{|X|≤k})

≤ EX2

n∑
k=1

1

k3
= O(1).

6
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I1 can be rewritten as

I1 =
n∑
k=1

T̃ 2
k − ET̃ 2

k

k2
−

n∑
k=1

c2k
k3

:= I11 − I12.

But I12 = O(1) since |ck| ≤ 1. So in order to show (6) it is enough to show
that

Kn :=
n∑
k=1

T̃ 2
k − ET̃ 2

k

k2
= OP(1),

where T̃k is a sum of independent, mean zero rv’s with the same distribution
as X1{|X|≤k} − EX1{|X|≤k}. This however follows from Lemma 5 with p = 4.
Indeed

EK2
n = Var(Kn) =

n∑
k=1

1

k4
Var(T̃ 2

k ) ≤ E
∞∑
k=1

(
T̃k
k

)4

<∞,

so the proof of (4) is complete.

To prove (5) it suffices to show that
∑n

k=1

∣∣Sk
k

∣∣3 = OP(1) for normalized
X, which by the same arguments as above is implied by

n∑
k=1

∣∣∣∣Tkk
∣∣∣∣3 = OP(1).

Using the same notation we have |Tk|3 = |T̃k + ck|3 ≤ 4|T̃k|3 + 4. Thus

n∑
k=1

∣∣∣∣Tkk
∣∣∣∣3 ≤ 4

 n∑
k=1

∣∣∣∣∣ T̃kk
∣∣∣∣∣
3

+
n∑
k=1

1

k3

 := I4 + I5.

We obviously have I5 = O(1) and by Lemma 5 with p = 3 we get boundedness
of I4 in L1, which completes the proof. �

Now we are in the position to prove the main theorem.

Proof of Theorem 1. Take an and bn as in the claim and denote ck =
E|X − µ|21{|X−µ|≤σk} so bn =

∑n
k=1(f(µ) + f ′′(µ) ck

2k
). By Taylor’s expansion,

f

(
Sk,k
k

)
= f(µ)+f ′(µ)

(
Sk,k
k
− µ

)
+
f ′′(µ)

2

(
Sk,k
k
− µ

)2

+O

(∣∣∣∣Sk,kk − µ
∣∣∣∣3
)

a.s.,

7
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as a consequence of the SLLN and the assumption of boundedness of f (3)

around µ. Using Lemma 6 we have∑n
k=1 f(Sk,k/k)− bn

an
=
f ′(µ)

an

n∑
k=1

(
Sk,k
k
− µ

)
+
f ′′(µ)

2an

n∑
k=1

[(
Sk,k
k
− µ

)2

− ck
k

]

+O

(
1

an

n∑
k=1

∣∣∣∣Sk,kk − µ
∣∣∣∣3
)

a.s.

=
f ′(µ)

an

n∑
k=1

(
Sk,k
k
− µ

)
+ oP(1).

By Lemma 2
f ′(µ)

an

n∑
k=1

(
Sk,k
k
− µ

)
d→ σf ′(µ)N ,

completing the proof. �
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