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We derive a central limit theorem for sums of a function of independent sums of independent and identically distributed random variables. In particular we show that previously known result from Rempa la and Weso lowski (Statist. Probab. Lett. 74, 129), which can be obtained by applying the logarithm as the function, holds true under weaker assumptions.

Introduction

Throughout this paper let (X k,n ) k=1,...,n ; n = 1, 2 . . . be a triangular array of independent and identically distributed (iid) random variables (rv's) with the same distribution as X. Let us define the (mutually independent) partial sums S n,n = n k=1 X k,n . We will work with real functions f defined at least on an interval I such that P(X ∈ I) = 1. We will also write log + x for log(x ∨ 1).

The asymptotic behavior of the product of partial sums of a sequence of iid rv's has been studied in several papers (see e.g. [START_REF] Lu | A note on asymptotic distribution of products of sums[END_REF] for a brief review). In particular it was shown in Rempa la and Weso lowski (2002) that if (X n ) is a sequence of iid positive square integrable rv's with EX 1 = µ, Var(X 1 ) = σ 2 > 0, then setting S n = n k=1 X k and γ = σ/µ we have as

A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT n → ∞ n k=1 S k kµ 1 γ √ n d → e √ 2N ,
where d → stands for convergence in distribution and N is a standard normal random variable. This result was extended in [START_REF] Qi | Limit distributions for products of sums[END_REF] and [START_REF] Lu | A note on asymptotic distribution of products of sums[END_REF] to a general limit theorem covering the case when the underlying distribution is integrable and belongs to the domain of attraction of a stable law with index from the interval [1,2].

This study brought an interest to the array case, where we no longer consider a sequence (X n ) but a triangular array (X k,n ). In Rempa la and Weso lowski (2005) the analogous result was obtained, namely

n γ 2 2 n k=1 S k,k kµ 1 γ √ log n d → e N , (1) 
under the assumption E|X| p < ∞ for some p > 2. The purpose of this paper is to show that the above result holds true under the assumption EX 2 (log + |X|) 1/2 < ∞. However, it is no longer true in general when only EX 2 < ∞ is assumed. We will show that under this assumption, different normalisation is needed. Furthermore, we will set our discussion in a more general setting. It is straightforward that (1) is a simple corollary from

n k=1 f (S k,k /k) -b n a n d → N ,
if one sets f (x) = log x and chooses the sequences a n , b n properly.

Main result

Theorem 1. Suppose that E|X| 2 < ∞ and denote µ = EX, σ 2 = Var(X).

Let f be a real function with bounded third derivative on some neighbourhood of µ. Then as n → ∞

n k=1 f (S k,k /k) -b n a n d → σf (µ)N ,
where

a n = log n , b n = nf (µ) + f (µ) 2 n k=1 1 k E|X -µ| 2 1 {|X-µ|≤σk} .
Remark 1. If we strengthen the assumption of the square integrability of random variable X to EX 2 (log + |X|) 1/2 < ∞, then we can take the sequence bn

= nf (µ) + f (µ)σ 2 2 log n instead of b n . To see this we should show bn -b n = o( √ log n), which since log n -n k=1 1 k = O(1) is equivalent to Q n := n k=1 1 k σ 2 -E|X -µ| 2 1 {|X-µ|≤σk} = o( log n).
Observe that Q n is positive and

Q n = n k=1 1 k E|X -µ| 2 1 {|X-µ|>σk} = E|X -µ| 2 σk<|X-µ|, k≤n 1 k ∼ E|X -µ| 2 log + (n ∧ (|X -µ|/σ)) =: Qn . Therefore, if EX 2 (log + |X|) 1/2 < ∞, we can use the Dominated Convergence Theorem and infer that bn -b n = o( √ log n).
Remark 2. On the other hand, if for some ε > 0 we define a random variable X by setting

P(X = ±k n ) = C/(2k 2 n n 2 ) and P(X = 0) = 1-n P(|X| = k n ),
where k n = e n 2+ε and C = 6/π 2 . Then we simply have µ = 0, σ 2 = 1 and

EX 2 (log + |X|) 1/2 = ∞. Although, one can check that lim sup n Q n / √ log n = lim sup n Qn / √ log n = ∞,
which means that we cannot use bn in general. Now let us take any positive (i.e. I ⊂ (0, ∞)), nondegenerate random variable X with EX 2 (log + |X|) 1/2 < ∞ and f (x) = µ log (x/µ). Theorem 1 yields (1), that is the result from Rempa la and Weso lowski (2005) however under weaker assumptions. Our argument shows that their result holds true even under the assumption of square integrability, although the normalizing sequences should be different. Namely, instead of the term n

γ 2 2 in (1) we should have exp( 1 2µ 2 n k=1 1 k E|X -µ| 2 1 {|X-µ|≤σk} ).
The proof of Theorem 1 relies on the Taylor's expansion of a function f in the neighbourhood of µ. Linear term in this expansion obeys a version of the classical Central Limit Theorem. Other terms are negligible mainly due to the Strong Law of Large Numbers (SLLN). This assertion will be made valid by a series of lemmas.

Lemma 2. Under the assumptions of Theorem 1 with σ > 0

1 σ √ log n n k=1 S k,k k -µ d → N as n → ∞.
Proof. We may assume EX = 0 and EX 2 = 1 by a simple normalization argument. Since

Var

n k=1 S k,k k = n k=1 Var(S k,k ) k 2 = n k=1 1 k ∼ log n,
then to complete the proof it is sufficient to show the Lindeberg condition for the array (

S k,k k √ log n ) k≤n , that is ∀ r>0 1 log n n k=1 E S k,k k 2 1 {|S k,k /k|>r √ log n} = o(1). (2) Since {(S k,k / √ k) 2 } is uniformly integrable, sup k∈N E S k,k √ k 2 1 {|S k,k / √ k|>r √ log n} → 0 as n → ∞, proving (2). 
To establish the SLLN we will refer to [START_REF] Hsu | Complete convergence and the law of large numbers[END_REF] Law of Large Numbers (cf. [START_REF] Li | Complete convergence and almost sure convergence of weighted sums of random variables[END_REF] for partial bibliographies and brief discussions).

Lemma 3 (Hsu-Robbins LLN). For a sequence (X n ) of iid rv's with EX 1 = 0 and EX 2 1 < ∞ the series

∞ n=1 P(|S n /n| > t) (3) 
converges for every t > 0.

The condition (3) implies S n /n → 0 a.s. under the Borel-Cantelli lemma. Moreover if X 1 in Lemma 3 has the same distribution as X in Theorem 1, then P(|S n /n| > t) = P(|S n,n /n| > t), i.e S n,n /n → 0 a.s. as well.

Before we proceed, we need some technical results derived from the elementary fact about the moments of sums of iid rv's (e.g. Hall and Heyde, 1980, p. 23).

Lemma 4 (Rosenthal's inequality). If (X n ) is a sequence of iid rv's with the zero mean, then for any p ≥ 2

E|S n | p ≤ C p nE|X 1 | p + n p/2 (EX 2 1 ) p/2
, where C p is a constant depending only on p.

We will use this version of the Rosenthal's inequality to prove the following lemma, which on the other hand will simplify a number of steps in the next lemma. The later will play a crucial role in the proof of the main theorem.

Lemma 5. Under the assumptions of Theorem 1, for every p > 2

E ∞ k=1 | Tk | k p < ∞, where Tk = k i=1 X i,k 1 {|X i,k |≤k} -EX i,k 1 {|X i,k |≤k} . Proof. Let Y k d = X i,k 1 {|X i,k |≤k} -EX i,k 1 {|X i,k |≤k} , then by Lemma 4 E ∞ k=1 | Tk | k p ≤ C p ∞ k=1 1 k p kE|Y k | p + k p/2 (EY 2 k ) p/2 ≤ C p 2 p ∞ k=1 1 k p-1 E|X| p 1 {|X|≤k} + ∞ k=1 1 k p/2 (EX 2 ) p/2 = C p 2 p   E|X| p ∞ k≥|X| k 1-p + (EX 2 ) p/2 ∞ k=1 1 k p/2   ≤ C p 2 p CE|X| 2 + (EX 2 ) p/2 ∞ k=1 1 k p/2 < ∞,
for some positive constant C. Lemma 6. Under the assumptions of Theorem 1 we have

n k=1 S k,k -kµ k 2 - E|X -µ| 2 1 {|X-µ|≤σk} k = O P (1), ( 4 
) n k=1 S k,k -kµ k 3 = O P (1). (5) 
Proof. To simplify the notation we will write S k for S k,k . First note that to show (4) it is sufficient to prove that

n k=1 S 2 k k 2 - E|X| 2 1 {|X|≤k} k = O P (1),
for a normalized random variable X. Take any ε > 0 and let

T k := k i=1 X i,k 1 {|X i,k |≤k} . Then ∞ k=1 P(S k = T k ) ≤ ∞ k=1 kP(|X| > k) < ∞, because EX 2 < ∞. Hence we can take R big enough that ∞ k=R P(S k = T k ) < ε/3 and M big enough that P R-1 k=1 S 2 k k 2 - E|X| 2 1 {|X|≤k} k > M/2 < ε/3.
So all we need to show is

P n k=R T 2 k k 2 - E|X| 2 1 {|X|≤k} k > M/2 < ε/3, which is implied by n k=1 T 2 k -b k k 2 = O P (1) (6) with b k := kE|X| 2 1 {|X|≤k} . Observe that T k = k i=1 X i,k 1 {|X i,k |≤k} -EX i,k 1 {|X i,k |≤k} + c k := Tk + c k ,
where c k = kEX1 {|X|≤k} and

n k=1 T 2 k -b k k 2 = n k=1 T 2 k -b k k 2 + n k=1 c 2 k k 2 + 2 n k=1 c k Tk k 2 := I 1 + I 2 + I 3 .
Recall that EX = 0 so that

|c k | = |kEX1 {|X|≤k} | = |kEX1 {|X|>k} | ≤ E|X| 2 = 1, thus I 2 = O(1)
. We also have

I 3 = O P (1) because I 3 is bounded in L 2 E n k=1 c k Tk k 2 2 = n k=1 E c k Tk k 2 2 ≤ n k=1 1 k 4 k Var(X1 {|X|≤k} ) ≤ EX 2 n k=1 1 k 3 = O(1).
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I 1 can be rewritten as

I 1 = n k=1 T 2 k -E T 2 k k 2 - n k=1 c 2 k k 3 := I 11 -I 12 .
But I 12 = O(1) since |c k | ≤ 1. So in order to show (6) it is enough to show that

K n := n k=1 T 2 k -E T 2 k k 2 = O P (1),
where Tk is a sum of independent, mean zero rv's with the same distribution as X1 {|X|≤k} -EX1 {|X|≤k} . This however follows from Lemma 5 with p = 4. Indeed

EK 2 n = Var(K n ) = n k=1 1 k 4 Var( T 2 k ) ≤ E ∞ k=1 Tk k 4 < ∞,
so the proof of ( 4) is complete.

To prove (5) it suffices to show that n 

c k = E|X -µ| 2 1 {|X-µ|≤σk} so b n = n k=1 (f (µ) + f (µ) c k 2k ). By Taylor's expansion, f S k,k k = f (µ)+f (µ) S k,k k -µ + f (µ) 2 S k,k k -µ 2 +O S k,k k -µ A C
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