
HAL Id: hal-00505497
https://hal.science/hal-00505497v2

Preprint submitted on 31 Aug 2010 (v2), last revised 2 Sep 2011 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fluctuations of the extreme eigenvalues of finite rank
deformations of random matrices

Florent Benaych-Georges, Alice Guionnet, Mylène Maïda

To cite this version:
Florent Benaych-Georges, Alice Guionnet, Mylène Maïda. Fluctuations of the extreme eigenvalues of
finite rank deformations of random matrices. 2010. �hal-00505497v2�

https://hal.science/hal-00505497v2
https://hal.archives-ouvertes.fr


FLUCTUATIONS OF THE EXTREME EIGENVALUES OF FINITE

RANK DEFORMATIONS OF RANDOM MATRICES

F. BENAYCH-GEORGES*, A. GUIONNET†, M. MAIDA‡.

Abstract. Consider a deterministic self-adjoint matrix Xn with spectral measure con-
verging to a compactly supported probability measure, the largest and smallest eigen-
values converging to the edges of the limiting measure. We perturb this matrix by
adding a random finite rank matrix with delocalized eigenvectors and study the extreme
eigenvalues of the deformed model. We show that the eigenvalues converging out of the
bulk exhibit Gaussian fluctuations, whereas under additional hypotheses, the eigenvalues
sticking to the edges are very close to the eigenvalues of the non-perturbed model and
fluctuate in the same scale.
We can also generalise these results to the case when Xn is random and get similar
behaviour when we deform some classical models such as Wigner or Wishart matrices
with rather general entries or the so-called matrix models.
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1. Introduction

Most of the spectrum of a large matrix is not much altered if one adds a finite rank
perturbation to the matrix, simply because of Weyl’s interlacement properties of the eigen-
values. This is not the case for the extreme eigenvalues which, depending on the strength
of the perturbation, should either stick to the extreme eigenvalues of the non-perturbed
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matrix or deviate to some larger values. This phenomenon was made precise in [9], where
a sharp phase transition, known as the BBP transition [32, 25, 35, 27], was exhibited
for finite rank perturbations of a complex Gaussian Wishart matrix. In this case, it was
shown that either the extreme eigenvalues of the perturbed matrix deviate away from
the bulk and have then Gaussian fluctuations, or they stick to the bulk and fluctuate
according to the Tracy-Widom law. The fluctuations of the extreme eigenvalues which
deviate from the bulk were studied as well when the non-perturbed matrix is a Wishart
(or a Wigner) matrix but with non-Gaussian entries; they were shown to be Gaussian
if the perturbation is chosen randomly with i.i.d entries in [7], or with completely de-
localized eigenvectors [18, 19], whereas in [12], a non-Gaussian behaviour was exhibited
when the perturbation has localised eigenvectors. The influence of the localisation of the
eigenvectors of the perturbation was studied more precisely in [13].
In this paper, we focus also on the behaviour of the extreme eigenvalues of a finite rank
perturbation of a large matrix, this time in the framework where the large matrix is de-
terministic whereas the perturbation has delocalized random eigenvectors. We show that
the eigenvalues which deviate away from the bulk have Gaussian fluctuations whereas
those which stick to the bulk are extremely close to the extreme eigenvalues of the non-
perturbed matrix. In a one-dimensional perturbation situation, we can as well study the
fluctuations of the next eigenvalues, for instance showing that if the first eigenvalue deviate
from the bulk, the second eigenvalue will stick to the first eigenvalue of the non-perturbed
matrix, whereas if the first eigenvalue sticks to the bulk, the second eigenvalue will be very
close to the second eigenvalue of the non-perturbed matrix. Hence, for a one dimensional
perturbation, the eigenvalues which stick to the bulk will fluctuate as the eigenvalues of
the non-perturbed matrix. We can also extend these results beyond the case when the
non-perturbed matrix is deterministic. In particular, if the non-perturbed matrix is a
Wigner or a Wishart matrix with rather general entries, or a matrix model, we can use
the universality of the fluctuations of the extreme eigenvalues of these random matrices,
to show that the pth extreme eigenvalue which sticks to the bulk fluctuates according to
the pth dimensional Tracy-Widom law. This proves the universality of the BPP transition
at the fluctuation level, provided the perturbation is delocalized and random.

We consider a deterministic self-adjoint matrix Xn with eigenvalues λn
1 ≤ · · · ≤ λn

n

satisfying the following hypothesis

Hypothesis 1.1. The spectral measure µn := n−1
∑n

l=1 δλn
l
of Xn converges towards a

deterministic probability measure µX with compact support. Moreover, we shall assume
that the smallest and largest eigenvalues of Xn converge respectively to a and b, the lower
and upper bounds of the support of µX .

We study the eigenvalues λ̃n
1 ≤ · · · ≤ λ̃n

n of a perturbation X̃n := Xn+Rn obtained from
Xn by adding a finite rank matrix Rn =

∑r
i=1 θiu

n
i u

n∗

i . We shall assume r and the θi’s to
be deterministic and independent of n, but the eigenvectors (un

i )1≤i≤r chosen randomly
as follows. Let ν be a probability measure on R or C satisfying

Assumption 1.2. The probability measure ν satisfies a log-Sobolev inequality, is centred
and has variance one. If ν is a law on the complex plane, we assume moreover that its
real part and its imaginary part are independent and identically distributed (i.i.d.).
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We consider now a random vector vn = 1√
n
(x1, . . . , xn)

T with (xi)1≤i≤n i.i.d. real or

complex random variables with law ν. Then

(1) Either the un
i ’s (i = 1, . . . , r) are independent copies of vn

(2) Or (un
i )1≤i≤r are obtained by the Gram-Schmidt orthonormalization of r indepen-

dent copies of a vector vn.

We shall refer to the model (1) as the i.i.d. model and to the model (2) as the orthonor-
malized model.
Let us mention that in the orthonormalized model, if ν is the standard real (resp. com-
plex) Gaussian law, (un

i )1≤i≤r follows the uniform law on the set of orthogonal random
vectors on the unit sphere of Rn (resp. Cn) and by invariance by conjugation, the model
coincides with the one studied in [10].
In this case, the orthonormalized model is well defined but note that in general r i.i.d
copies of a random vector are not necessarily linearly independent almost surely so that the
orthonormal vectors described in (2) are not always almost surely well defined. However,
as the dimension goes to infinity, they are well defined with overwhelming probability.
This means the following : we shall say that a sequence of events (Cn)n≥1 occurs with
overwhelming probability1 if there exists two constants C, η > 0 independent of n such
that for n large enough,

P(Cn) ≥ 1− Ce−nη

.

We shall in the sequel restrict ourselves to the event when the model (2) is well defined
without mentioning it explicitly.

In this work, we study the asymptotics of the eigenvalues of X̃n outside of the spectrum
of Xn.

It has already been observed in similar situations, see [9], that these eigenvalues converge
to the boundary of the support of Xn if the θi’s are small enough, whereas for sufficiently
large values of the θi’s, they stay away from the bulk of Xn. More precisely, if we let GµX

be the Cauchy-Stieltjes transform of µX , defined, for z outside the support of µX , by the
formula

GµX
(z) =

∫
1

z − x
dµX(x),

then the eigenvalues of X̃n outside the bulk converge to the solutions of GµX
(z) = θ−1

i if
they exist.

Indeed, if we let

θ :=
1

limz↓b GµX
(z)

≥ 0, θ :=
1

limz↑a GµX
(z)

≤ 0

and

ρθ :=





G−1
µX

(1/θ) if θ ∈ (−∞, θ) ∪ (θ,+∞),

a if θ ∈ [θ, 0),

b if θ ∈ (0, θ],

then we have the following theorem.

1Note that this is a bit different from what is called overwhelming probability by Tao and Vu but will
be sufficient for our purpose.
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Theorem 1.3. Assume that Hypothesis 1.1 and Assumption 1.2 are satisfied. Let r0 ∈
{0, . . . , r} be such that

θ1 ≤ · · · ≤ θr0 < 0 < θr0+1 ≤ · · · ≤ θr.

Then for all i ∈ {1, . . . , r0} we have

λ̃n
i

a.s.−→ ρθi

and for all i ∈ {r0 + 1, . . . , r},
λ̃n
n−r+i

a.s.−→ ρθi .

Moreover, for all i > r0 (resp. for all i ≥ r − r0),

λ̃n
i

a.s.−→ a (resp. λ̃n
n−i

a.s.−→ b).

The uniform case was proved in [10, Theorem 2.1] and we will follow a similar strategy
to prove it under our assumptions in Section 2 (see Lemma 2.1).

We study the fluctuations of the extreme eigenvalues of X̃n. Precise statements will be
given in Theorems 3.2, 3.4, 4.3 and 4.4 and Corollary 4.5 but the results roughly state as
follows.

Theorem 1.4. Under certain additional hypotheses,

(1) Let α1 < · · · < αq be the different values of the θi’s such that ρθi /∈ {a, b} and
denote, for each j, by Ij the set of indices i so that θi = αj. Set kj = |Ij| and q0
the largest index so that αq0 < 0. Then, the law of the random vector

(√
n(λ̃n

i − ρθi), i ∈ Ij

)
1≤j≤q0

∪
(√

n(λ̃n
n−r+i − ραj

), i ∈ Ij

)
q0+1≤j≤q

converges to the law of the eigenvalues of (cjMkj )1≤j≤q of independent matrices
Mkj following the law of a kj × kj matrix from the GUE or the GOE, depending
whether ν is supported on the complex plane or the real line. The constant cj is
explicitly defined in Equation (4).

(2) With overwhelming probability, the extreme eigenvalues converging to a or b are
at distance at most n−1+ǫ of the extreme eigenvalues of Xn for some ǫ > 0.

(3) If r = 1 and θ > 0, we have the following more precise picture about the next

eigenvalues. If ρθ > b,
√
n(λ̃n

n−ρθ) converges towards a Gaussian variable, whereas

n1−ǫ(λ̃n
n−i−λn−i+1) vanishes in probability as n goes to infinity for any fixed i ≥ 1

and some ǫ > 0. If ρθ = b, n1−ǫ(λ̃n
n−i − λn−i) vanishes in probability as n goes to

infinity.

The first part of this theorem will be proved in Section 3, whereas Section 4 will be
devoted to the study of the eigenvalues sticking to the bulk, that is the proof of the
second and third parts of the theorem. Moreover, our results can be easily generalised
to non-deterministic self-adjoint matrices Xn that satisfy our hypothesis with probability
tending to one. This will allow us to study in Section 5 the deformations of various
classical models. This will include the study of the Gaussian fluctuations away from the
bulk for rather general Wigner and Wishart matrices, hence providing a new proof of
the first part of [18, Theorem 1.1] and of [5, Theorem 3.1] but also a new generalisation
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to non-white ensembles. The study of the eigenvalues that stick to the bulk requires a
finer control on the eigenvalues of Xn in the vicinity of the edges of the bulk, which we
prove for random matrices such as Wigner and Wishart matrices with entries having a
sub-exponential decay. This result complements [18, Theorem 1.1] where the fluctuations
of the largest eigenvalue of a non Gaussian Wishart matrix perturbed by a delocalized
but deterministic rank one perturbation was studied. One should remark that our result
depends very little on the law ν (only through its fourth moment in fact)

Our approach is based upon a determinant computation, see Lemma 6.1, which shows

that the eigenvalues of X̃n we are interested in are the solutions of the equation

fn(z) := det
([

Gn
i,j(z)

]r
i,j=1

− diag(θ−1
1 , . . . , θ−1

r )
)
= 0, (1)

with

Gn
i,j(z) := 〈un

i , (z −Xn)
−1un

j 〉,
where 〈·, ·〉 denotes the usual scalar product in Cn.
By the law of large numbers for i.i.d. vectors, [10, Proposition 5.1] for uniformly dis-
tributed vectors or by applying Theorem 6.4 (with An = (z − Xn)

−1), it is easy to see
that for any z outside the bulk,

lim
n→∞

Gn
i,j(z) = 1i=jGµX

(z)

and hence it is clear that one should expect the eigenvalues of X̃n outside of the bulk to
converge to the solutions of GµX

(z) = θ−1
i if they exist. Studying the fluctuations of these

eigenvalues amounts to analyse the behaviour of the solutions of (1) around their limit.
Such an approach was already developed in several papers (see e.g [7] or [12]). However,
to our knowledge, the model we consider, with a fixed deterministic matrix Xn, was not
yet studied and the fluctuations of the eigenvalues which stick to the bulk of Xn was never
achieved in such a generality.

For the sake of clarity, throughout the paper, we will call “hypothesis” any hypothesis
we need to make on the deterministic part of the model Xn and “assumption” any hy-
pothesis we need to make on the deformation Rn.
Moreover, because of concentration considerations that are developed in the Appendix
of the paper, the proofs will be quite similar in the i.i.d. and orthonormalized models.
Therefore, we will detail each proof in the i.i.d. model, which is simpler and then check
that the argument is the same in the orthonormalized model or detail the slight changes
to make in the proofs.

2. Almost sure convergence of the extreme eigenvalues

For the sake of completeness, we prove Theorem 1.3 in this section.

Using [10, Lemma 9.4], Theorem 1.3 will be a direct consequence of the following
Lemma.

Lemma 2.1. Assume that Hypothesis 1.1 and Assumption 1.2 are satisfied. Let δ > 0
and Sδ = [a− δ, b+ δ] ∪ (∪1≤i≤r[ρθi − δ, ρθi + δ]). Then, for any δ > 0, the eigenvalues of

X̃n belong to Sδ with overwhelming probability.
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Proof. To prove the first statement, by (1), it is enough to prove that fn does not vanish
on Sc

δ .
The i.i.d model. Fix some z ∈ Sc

δ and n large enough. By Proposition 6.2 with A =
(z −Xn)

−1, which is a matrix bounded by 2δ−1, we find that for any ǫ > 0, there exists
c > 0 such that

P

(∣∣∣∣G
n
i,j(z)− 1i=j

1

n
Tr((z −Xn)

−1)

∣∣∣∣ ≥
δ−1

n1/2−ǫ

)
≤ 4e−cn2ǫ

. (2)

By convergence of the spectral measure, 1
n
Tr((z −Xn)

−1) converges towards the Stieltjes
transform GµX

(z) and hence fn(z) is arbitrarily close to f(z) :=
∏r

i=1(GµX
(z)− 1

θi
) with

overwhelming probability.

Note now that z ∈ Sc
δ 7→ fn(z) is Lipschitz with constant of order δ−2 and therefore,

with zk = kn−1, k ∈ [−Mn,Mn] and M large enough, we have

sup
z∈[−M,M ]\Sδ

|fn(z)− f(z)| ≤ max
k∈[−Mn,Mn],zk∈Sc

δ

|fn(zk)− f(zk)|+ Cδ−2n−1 ,

which insures with the above control that for δ ≥ Cn− 1
2
+ǫ, for any ǫ > 0,

P

(
sup

z∈[−M,M ]\Sδ

|fn(z)− f(z)| ≥ 2δ−1

n1/2−ǫ

)
≤ 8Mne−cn2ǫ

. (3)

Note also that the eigenvalues are bounded by 1 + max{|a|, |b|} +
∑r

i=1 |θi| for n large
enough and take M greater than this constant. Since f does not vanish on Sc

δ , we conclude

that fn does not vanish either on Sc
δ and therefore that the extreme eigenvalues of X̃n

belong to Sδ with overwhelming probability.
The orthonormalized model can be treated similarly, by writing Un = W nGn with

√
nW n

a matrix converging to identity with overwhelming probability by Proposition 6.3.

�

3. Fluctuations of the eigenvalues away from the bulk

Let p+ be the number of i’s such that ρθi > b and p− be the number of i’s such that

ρθi < a. In this section we study the fluctuations of the eigenvalues of X̃n with limit out

of the bulk, that is (λ̃n
1 , . . . , λ̃

n
p−
, λ̃n

n−p+
, . . . , λ̃n

n). We shall assume throughout this section

that the spectral measure of Xn converges to µX faster than 1/
√
n. More precisely,

Hypothesis 3.1. For all z ∈ {ρα1 , . . . , ραq},
√
n(Gµn(z)−GµX

(z)) converges to 0.

Our theorem concerns the limiting joint distribution of the following random variables

γn
i =

√
n(λ̃n

i − ρθi) if i ≤ p−

γn
p−+i =

√
n(λ̃n

n−r+i − ρθi) if r − p+ ≤ i ≤ r.

Let us recall that for k ≥ 1, GOE(k) (resp. GUE(k)) is the distribution of a k × k
symmetric (resp. Hermitian) random matrix [gi,j]

k
i,j=1 such that the random variables

{ 1√
2
gi,i ; 1 ≤ i ≤ k} ∪ {gi,j ; 1 ≤ i < j ≤ k} (resp. {gi,i ; 1 ≤ i ≤ k} ∪ {

√
2ℜ(gi,j) ; 1 ≤

i < j ≤ k} ∪ {
√
2ℑ(gi,j) ; 1 ≤ i < j ≤ k}) are independent standard Gaussian random
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variables.

The limiting behaviour of the eigenvalues with limit outside the bulk will depend on
the law ν through the following quantity. Let us define the fourth cumulant of ν

κ4(ν) :=

{∫
x4dν(x) − 3 in the real case,∫
|z|4dν(z) − 2 in the complex case.

Note that if ν is Gaussian standard, then κ4(ν) = 0.

We recall that the αj ’s and the kj ’s have been defined in Theorem 1.4.

Theorem 3.2. Suppose that Assumption 1.2 holds with κ4(ν) = 0, as well as Hypotheses
1.1 and 3.1. Then the law of

(γn∑i−1
ℓ=1 kℓ+i

, 1 ≤ i ≤ kj)1≤j≤q

converges to the law of the eigenvalues of (cjMj)1≤j≤q with Mj being independent matrices
Mj following the law of a kj × kj matrix from the GUE (resp. the GOE) if ν is supported
on the complex plane (resp. the real line). The constant cj is given by

c2j =





1∫
(ραj−x)−2dµX(x)

in the i.i.d. model,

∫ dµX (x)

(ραj−x)2
− 1

α2
j

(
∫
(ραj−x)−2dµX(x))

2 in the orthonormalized model.

(4)

When κ4(ν) 6= 0, we need a bit more than Hypothesis 3.1, namely

Hypothesis 3.3. For all z ∈ R\[a, b], there is a finite number l(z) such that



1
n

∑n
i=1((z −Xn)

−1)2i,i −→
n→∞

l(z) in the i.i.d. model,

1
n

∑n
i=1(((z −Xn)

−1)i,i − 1
n
Tr((z −Xn)

−1))2 −→
n→∞

l(z) in the orthonormalized model.

We then have a similar result.

Theorem 3.4. In the case when Assumption 1.2 holds with κ4(ν) 6= 0, under Hypotheses
1.1, 3.1 and 3.3, Theorem 3.2 stays true, replacing the matrices cjMj by matrices cjMj +
Dj where the Dj’s are independent diagonal random matrices, independent of the Mj’s,
and such that for all j, the diagonal entries of Dj are independent centred real Gaussian
random variables, with variance −l(ραj

)κ4(ν)/G
′
µX

(ραj
).

Let us prove Theorems 3.2 and 3.4. For any real numbers x1(i) < y1(i) < x2(i) <
y2(i) < · · · < yki(i), 1 ≤ i ≤ q, since, by Theorem 1.3, for all ε > 0, for n large enough,
fn vanishes exactly at p− + p+ points in R\(a− ε, b+ ε), we have that

[
xℓ(i) < γn∑i−1

m=1 km+ℓ
< yℓ(i), ∀ℓ = 1, . . . , ki, ∀i = 1, . . . q

]

⇐⇒[
∀i = 1, . . . , q,

fn

(
ραi

+ y1(i)√
n

)
fn

(
ραi

+ x1(i)√
n

)
< 0, . . . , fn

(
ραi

+
yki (i)√

n

)
fn

(
ραi

+
xki

(i)√
n

)
< 0
]
.
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Therefore, to study the asymptotics of the joint law of the γn
i ’s, we have to understand

those of the fn(ραi
+ x√

n
)’s. They are given by the following

Lemma 3.5. Under the hypotheses of Theorem 3.2, each finite dimensional marginal of
the random process



n
ki
2

G′
µX

(ραi
)ki

det

([
Gn

s,t

(
ραi

+
x√
n

)]

s,t∈Ii
− 1

αi

I

)
∏

1≤s≤r
s/∈Ii

(
Gn

s,s

(
ραi

+
x√
n

)
− 1

θs

)



1≤i≤q, x∈R

converges weakly to the corresponding marginal of

det[xI − cαi

Mαi
]
∏

1≤s≤r
s/∈Ii

θs − αi

αiθs




1≤i≤q, x∈R

Theorem 3.2 is then a direct consequence of the following lemma, which shows that the
first order of fn around some ραi

is dominated by the convergence stated in Lemma 3.5, so
that it changes sign at the eigenvalues of cαi

Mαi
. We define in the sequel ρin(x) := ραi

+ x√
n
.

Lemma 3.6. Let us fix i ∈ {1, . . . , q}. The following convergence in probability holds
uniformly as x varies in any compact subset of R:

n
ki
2


fn(ρ

i
n(x))− det

(
[Gn

s,t(ρ
i
n(x))]s,t∈Ii −

1

αi

I

) ∏

1≤s≤r
s/∈Ii

(
Gn

s,s(ρ
i
n(x))−

1

θs

)

 −→

n→∞
0.

Proof of Lemma 3.5. By (2), we have the almost sure convergence (for each i and x)

∏

1≤s≤r
s/∈Ii

(
Gn

s,s

(
ραi

+
x√
n

)
− 1

θs

)
−→
n→∞

∏

1≤s≤r
s/∈Ii

θs − αi

αiθs
.

We shall only treat the i.i.d. model (the orthonormalized one can be treated in the same
way). This proof is based on a Central Limit Theorem for quadratic forms that we detail
in the Appendix. Indeed, we need to give the joint limit distribution, as n goes to infinity,
of

Mn
s,t(i, x) :=

√
n

(
Gn

s,t(ρ
i
n(x))−

1

αi

1s=t

)
=: Mn,1

s,t (i, x) +Mn,2
s,t (i, x) +Mn,3

s,t (i, x)

where

Mn,1
s,t (i, x) :=

√
n

(
〈un

s , (ρ
i
n(x)−Xn)

−1un
t 〉 − 1s=t

1

n
Tr((ρin(x)−Xn)

−1)

)
,

Mn,2
s,t (i, x) := 1s=t

√
n(Gµn(ρ

i
n(x))−Gµn(ραi

)),

Mn,3
s,t (i, x) := 1s=t

√
n(Gµn(ραi

)−GµX
(ραi

)).

By Remark 6.5, ((Mn,1
s,t (i, x))s,t∈Ii)1≤i≤q,x∈R converges to a family of Gaussian Wigner

matrices (Gi(x))1≤i≤q,x∈R, where the Gi(0)’s are independent and for all i, the matrices
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(Gi(x))x∈R are in fact all equal, with a variance given in Theorem 6.4 which depends on

lim
n→∞

1

n
Tr((ρin(x)−Xn)

−2) = −G′
µX

(ραi
). (5)

Moreover, again because ραi
is at distance of order one from the support of Xn, we can

expand x/
√
n in Mn,2

s,t (i, x) to deduce that

lim
n→∞

Mn,2
s,t (i, x) = xG′

µX
(ραi

)1s=t. (6)

Finally, by hypothesis (H2), we have

lim
n→∞

Mn,3
s,t (i, x) = 0. (7)

(5),(6) and (7) prove the lemma (since Mαi
has the same law as −Mαi

). �

Proof of Lemma 3.6. Note that by the convergence of Mn
s,t(i, x) obtained in the proof of

the previous lemma, we have for all s, t ∈ {1, . . . , r} such that s 6= t or s ∈ Ii, for all
κ < 1/2,

nκ

(
Gn

s,t(ρ
i
n(x))− 1s=t

1

θs

)
−→
n→∞

0 (convergence in probability). (8)

By the formula

fn(ρn) =
∑

σ∈Sr

sgn(σ)

r∏

s=1

(
Gn

s,σ(s)(ρ
i
n(x))− 1s=σ(s)

1

θs

)
,

it suffices to prove that for any σ ∈ Sr such that for some i0 ∈ {1, . . . , r}\Ii, σ(i0) 6= i0,

n
ki
2

r∏

s=1

(
Gµn

s,σ(s)
(ρin(x))− 1s=σ(s)

1

θs

)
−→
n→∞

0 (convergence in probability). (9)

It follows immediately from (8) since for any κ < 1/2, in the above product, all the terms
with index in Ii are of order at most n−κ, giving a contribution n−kiκ, and i0 is not in
Ii and satisfies σ(i0) 6= i0, yielding another term of order at most n−κ. Hence, the other
terms being bounded because ρn stays bounded away from [a, b], the above product is at
most of order n−κ(ki+1) and so taking κ ∈ ( ki

2(ki+1)
, 1
2
) proves (9). �

Remark 3.7 (Gelfand-Telstin pattern). Let us fix θ < θ and let the rank of the deforma-
tion increase in the following way: we define

γn
i (1) :=

√
n(λi(Xn + θun

1u
n∗

1 )− ρθ) (1 ≤ i ≤ n)

γn
i (2) :=

√
n(λi(Xn + θun

1u
n∗

1 + θun
2u

n∗

2 )− ρθ) (1 ≤ i ≤ n)

γn
i (3) :=

√
n(λi(Xn + θun

1u
n∗

1 + θun
2u

n∗

2 + θun
3u

n∗

3 )− ρθ) (1 ≤ i ≤ n)
...

...

One can easily adapt our proofs to prove the following: under Hypotheses 1.1 and 3.1, if
κ4(ν) = 0, the finite dimensional marginals of the process

γn
1 (1)

γn
1 (2) γn

2 (2)
γn
1 (3) γn

2 (3) γn
3 (3)

. . . . . . . . . . . .
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converge to the ones of the eigenvalues of the principal minors of cM , where M is an
infinite GUE (resp. GOE) matrix and the constant c is defined by (4).

4. The sticking eigenvalues

To study the fluctuations of the eigenvalues which stick to the bulk, we need a more
precise information on the eigenvalues of Xn in the vicinity of their extremes. More
precisely, we shall need the following additional hypothesis, which depends on a positive
integer p and a real number α ∈ (0, 1).

Hypothesis 4.1. [p, α] There exists a sequence mn of positive integers tending to infinity
such that mn = O(nα), η2 > 0 and η4 > 0, so that for any δ > 0, for n large enough

n∑

i=mn+1

1

(λn
p − λn

i )
2
≤ n2−η2 , (10)

n∑

i=mn+1

1

(λn
p − λn

i )
4
≤ n4−η4 (11)

and
1

n

n∑

i=mn+1

1

λn
p − λn

i

≥ 1

θ
− δ. (12)

(respectively we replace λn
p − λn

i , mn + 1 ≤ i ≤ n, by λn
n−p+1 − λn

n−i+1, mn + 1 ≤ i ≤ n
and the last inequality becomes

1

n

n∑

i=mn+1

1

λn
n−p+1 − λn

n−i+1

≤ 1

θ
+ δ ).

Moreover, we shall not study the critical case where for some i, θi ∈ {θ, θ}.
Assumption 4.2. For all i, θi 6= θ (respectively for all i, θi 6= θ).

The fact that the eigenvalues of the non-perturbed matrix are sufficiently spread at the
edges to insure the above hypothesis allow the eigenvalues of the perturbed matrix to be
very close to them.

Theorem 4.3. Let Ia = {i ∈ [1, r] : ρθi = a} = [p− + 1, r0] (resp. Ib = {i ∈ [1, r] :

ρθi = b} = [r0 + 1, r− p+]) be the set of indices corresponding to the eigenvalues λ̃i (resp.

λ̃n−r+i) converging to the lower (resp. upper) bound of the support of µX . Let us suppose
Hypothesis 1.1, Hypothesis 4.1[r, α] and Assumptions 1.2 and 4.2 to hold. Then for any
α′ > α, we have, for all i ∈ Ia (resp. i ∈ Ib),

min
1≤k≤i+r−r0

|λ̃n
i − λn

k | ≤ n−1+α′

,

(resp. min
n−r+i−r0≤k≤n

|λ̃n
n−r+i − λn

n| ≤ n−1+α′

)

with overwhelming probability.

Moreover, in the case where the perturbation has rank one, we can locate exactly in
the neighbourhood of which eigenvalues of the non-perturbed matrix the eigenvalues of
the perturbed matrix lie.
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We state hereafter the result for the smallest eigenvalues, but of course a similar state-
ment holds for the largest.

Theorem 4.4. Let (λ̃n
i )i≥1 be the eigenvalues of Xn + θu1u

∗
1. Then, under Assumption

1.2 and Hypothesis 1.1, if Hypothesis 4.1 [p,α] holds for some α ∈ (0, 1) and a positive
integer p, then for any α′ > α, we have

• If θ < θ, λ̃n
1 converges to ρθ < a whereas n1−α′

(λ̃n
i+1 − λn

i )1≤i≤p−1 vanishes in
probability as n goes to infinity,

• If θ ∈ (θ, 0), n1−α′

(λ̃n
i − λn

i )1≤i≤p vanishes in probability as n goes to infinity.

Note moreover that in the one dimensional case, we do not need (11) to hold (as it is
used to neglect the off diagonal terms (Gn

ij(z), 1 ≤ i < j ≤ r)). At least in the i.i.d model,
this is enough to precisely localise the eigenvalues which stick to the bulk, and precise
Theorem 4.3.

Corollary 4.5. Consider the i.i.d model and let (λ̃n
i )i≥1 be the eigenvalues of Xn +∑r

i=1 θiuiu
∗
i . We assume Assumptions 1.2 and 4.2, Hypothesis 1.1, that Hypothesis 4.1

[p,α] (at both extremes) holds for some α ∈ (0, 1) and a positive integer p, and that for
some α′ > α,

lim
n→∞

n1−α′

max
1≤i≤p

|λn
i − λn

i+1| = +∞ .

Then, with p− (resp. p+) the number of indices i so that ρθi < a (resp. ρθi > b), for all
finite integer i ≤ p− (p− + p+),

n1−α′

(λ̃n
p−+i − λn

p++i) and n1−α′

(λ̃n
n−p+−i − λn

n−p−−i)

both vanish in probability as n goes to infinity.

Let us first prove Theorem 4.3. Let us choose i0 ∈ Ia and study the behaviour of λ̃n
i0

(the case of the largest eigenvalues can be treated similarly). We assume throughout the
section that Hypotheses 1.1, 4.1 [r, α] and Assumptions 1.2 and 4.2 are satisfied.

We know, by Lemma 6.1, that the eigenvalues of X̃n which are not eigenvalues of Xn

are the z’s such that

the matrix Mn(z) :=
[
Gn

i,j(z)
]r
i,j=1

− diag(θ−1
1 , . . . , θ−1

r ) is not invertible, (13)

where for all i, j,
Gn

i,j(z) = 〈un
i , (z −Xn)

−1un
j 〉.

Recall that by Weyl’s interlacing inequalities,

λ̃n
i0 ≤ λn

i0+r−r0.

Let ζ be a fixed constant such that max1≤i≤p− ρθi < ζ < a. By Lemma 2.1, we know
that

Lemma 4.6. With overwhelming probability, λ̃n
i0
> ζ.

We want to show that (13) is not possible on

Ωn :=

{
z ∈ [ζ, λn

i0+r−r0
] ; min

1≤k≤i0+r−r0
|z − λn

k | > n−1+α′

}
.
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The following lemma deals with the asymptotic behaviour of the off-diagonal terms of
the matrix Mn(z) of (13).

Lemma 4.7. For i 6= j and κ > 0 small enough,

sup
z∈Ωn

|Gn
i,j(z)| ≤ n−κ

with overwhelming probability.

The following lemma deals with the asymptotic behaviour of the diagonal terms of the
matrix of (13).

Lemma 4.8. For any δ > 0,

inf
z∈Ωn

min
1≤i≤r

Gn
i,i(z) ≥

1

θ
− δ

with overwhelming probability, and there exists a finite M so that

sup
z∈Ωn

|Gn
i,i(z)| ≤ M (14)

with overwhelming probability.

Let us assume these lemmas proven for a while and complete the proof of Theorem 4.3.
By these two lemmas, for z ∈ Ωn, we find by expanding the determinant that

det(Mn(z)) =
r∏

i=1

(
Gn

i,i(z)−
1

θi

)
+O(n−κ).

But for all i ∈ Ia, by Lemma 4.8,

Gn
i,i(z)−

1

θi
≥ 1

θ
− 1

θi
− δ

is bounded from bellow by a positive constant if δ is chosen small enough because we have
θ < θi < 0.

Moreover, for z ∈ Ωn, z ≥ ζ , thus for all i /∈ Ia, G
n
i,i(z)− 1

θi
≤ Gn

i,i(ζ)− 1
θi
, which, with

overwhelming probability, is bounded from above by a negative constant, by definition of
ζ and by Proposition 6.2.

We conclude that det(Mn(z)), z ∈ Ωn, is bounded away from zero, and hence λ̃i0 6∈ Ωn,
by (13), with overwhelming probability. It completes the proof of the theorem. �

We finally prove the two last lemmas.

Proof of Lemma 4.7. We first prove this estimate for a fixed z ∈ Ωn. Moreover, we treat
simultaneously the orthonormalized model and the i.i.d. model (in the i.i.d model, one
just takes W n = I and replace ‖(Gn(W n)T )i‖2 by

√
n in the proof below). Observe that

if we write Xn = O∗DnO with Dn = (λn
1 , . . . , λ

n
n) and O a unitary or orthogonal matrix,

Gn
i,j(z) = 〈un

i , (z −Xn)
−1un

j 〉

=
n∑

l=1

(Oun
i )l(Oun

j )l

z − λn
l
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The first step is to show that for any ǫ > 0, with overwhelming probability,

max
l,i∈{1,...,n}

|(Oun
i )l| ≤ n− 1

2
+ǫ. (15)

Indeed, with Ol the lth row vector of O and using the notations of Section 6.2,

(Oun
i )l = 〈Ol, u

n
i 〉 =

1

‖(Gn(W n)T )i‖2

r∑

j=1

W n
i,j〈Ol, g

n
j 〉.

But g → 〈Ol, g
n
i 〉 is Lipschitz for the Euclidean norm with constant one. Hence, by

concentration inequality due to the log-Sobolev hypothesis (see e.g. [1, section 4.4]),
there exists c > 0 such that for all δ > 0,

P (|〈Ol, g
n
i 〉| > δ) ≤ 4e−cδ2

so that

P

(
max

l,i∈{1,...,n}
|〈Ol, g

n
i 〉| ≥ nǫ

)
≤ 4n4e−cn2ǫ

.

From Proposition 6.3, we know that with overwhelming probability, ‖(Gn(W n)T )i‖2 is
bounded below by

√
nn−ǫ and the entries of W n are of order one. This gives therefore

(15).

We now make the following decomposition

Gn
i,j(z) =

mn∑

l=1

(Oun
i )l(Oun

j )l

z − λn
l︸ ︷︷ ︸

:=An(z)

+

n∑

l=mn+1

(Oun
i )l(Oun

j )l

z − λn
l

︸ ︷︷ ︸
:=Bn(z)

.

Note that as |(Oun
i )l|, 1 ≤ l ≤ mn, are smaller than n− 1

2
+ǫ′ by (15), for any ǫ′ > 0, with

overwhelming probability, we have, uniformly on z ∈ Ωn,

|An(z)| ≤ mnn
1−α′

n−1+2ǫ′ = O(nα−α′+2ǫ′)

We choose 0 < ǫ′ ≤ (α′ − α)/4 and now study Bn(z) which can be written

Bn(z) = 〈un
i , P (z −Xn)

−1Pun
j 〉

with P the orthogonal projection onto the eigenvectors of Xn corresponding to the eigen-
values (λn

mn+1, . . . , λ
n
n). By the second point in Proposition 6.2, with z ∈ Ωn, for all

s 6= t,

P

(∣∣〈gns , P (z −Xn)
−1Pgnt 〉

∣∣ ≥ δ

√
Tr(P (z −Xn)−2) + κ

√
Tr(P (z −Xn)−4)

)

≤ 4e−cδ + 4e−cmin(κ,κ2).

Moreover, by Hypothesis 4.1, for n large enough, for all z ∈ Ωn,

Tr(P (z −Xn)
−2) ≤ n2−η2 and Tr(P (z −Xn)

−4) ≤ n4−η4 .

We deduce that there is C, η > 0 such that for all z ∈ Ωn,

P

(∣∣∣∣
1

n
〈gns , P (z −Xn)

−1Pgnt 〉
∣∣∣∣ > n− η2∧η4

8

)
≤ Ce−nη

(16)
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A similar control is verified for s = t since we have, by Proposition 6.2,

P

(∣∣∣∣
1

n
〈gi, P (z −Xn)

−1Pgi〉 −
1

n
Tr
(
P (z −Xn)

−1
)∣∣∣∣ ≥ δ

)
≤ 4e−cδ2nη2 (17)

whereas Hypothesis 4.1 insures that the term 1
n
Tr(P (z−Xn)

−1) is bounded uniformly on
Ωn. Thus, up to a change of the constants C and η, there is a constant M such that for
all z ∈ Ωn,

P

(∣∣∣∣
1

n
〈gi, P (z −Xn)

−1Pgi〉
∣∣∣∣ ≥ M

)
≤ Ce−nη

.

Therefore, with Proposition 6.3 and developing the vectors un
i ’s as the normalised column

vectors of Gn(W n)T , we conclude that, up to a change of the constants C and η, for all
z ∈ Ωn,

P

(
|Bn(z)| ≥ n− η2∧η4

8

)
≤ Ce−nη

. (18)

Hence, we have proved that there exists κ > 0, C and η > 0 so that for all z ∈ Ωn,

P
(∣∣Gn

i,j(z)
∣∣ ≥ n−κ

)
≤ Ce−nη

.

We finally obtain this control uniformly on z ∈ Ωn by noticing that z→Gn
i,j(z) is Lipschitz

on Ωn, with constant bounded by (min |z − λi|)−2 ≤ n−2+2α′

. Thus, if we take a grid
(znk )0≤k≤cn2 of Ωn with mesh ≤ n−2+2α′−κ (there are about n2 such znk ’s) we have

sup
z∈Ωn

∣∣Gn
i,j(z)

∣∣ ≤ max
1≤k≤cn2

∣∣Gn
i,j(z

n
k )
∣∣+ n−κ.

Since there are at most cn2 such k and n2 possible i, j, we conclude that

P

(
sup
z∈Ωn

|Gn
i,j(z)| ≥ 2n−κ

)
≤ c2n4Ce−nη

which completes the proof. �

Proof of Lemma 4.8. Again, we first prove the estimate for a fixed z ∈ Ωn, the uniform
estimate on z being obtained by a grid argument as in the previous proof (a key point being
that the constants C and η of the definition of overwhelming probability are independent
of the choice of z ∈ Ωn). We write, with P the orthogonal projection on the vector space
generated by the eigenvectors of Xn with eigenvalues (λn

mn+1, . . . , λ
n
n),

Gn
i,i(z) = 〈un

i , P (z −Xn)
−1Pun

i 〉+ 〈un
i , (1− P )(z −Xn)

−1(1− P )un
i 〉

≥ 〈un
i , P (λn

i0+r−r0 −Xn)
−1Pun

i 〉 − n1−α′‖(1− P )un
i ‖22,

where we used the inequalities z ≤ λn
i0+r−r0

, P (λn
i0+r−r0

−Xn)P ≤ 0 and |z−λn
k | > n−1+α′

for all 1 ≤ k ≤ mn. But as in the previous proof, we have

〈un
i , P (λn

i0+r−r0
−Xn)

−1Pun
i 〉 =

n

‖(Gn(W n)T )i‖22

i∑

j,k=1

W n
i,kW

n
i,j

1

n
〈gnj , P (λn

i0+r−r0
−Xn)

−1Pgnk 〉

with, by (16), the off diagonal terms j 6= k of order n−η2∧η4/8 with overwhelming probabil-
ity, whereas the diagonal terms are close to 1

n
Tr(P (λn

i0+r−r0 −Xn)
−1) with overwhelming

probability by (17). Hence, we deduce with Proposition 6.3 that for any δ > 0,
∣∣∣∣〈un

i , P (λn
i0+r−r0

−Xn)
−1Pun

i 〉 −
1

n
Tr(P ((λn

i0+r−r0
−Xn)

−1))

∣∣∣∣ ≤ δ
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with overwhelming probability. Hence, by Hypothesis 4.1, for any δ > 0 and n large
enough

〈un
i , P (λn

i0+r−r0
−Xn)

−1Pun
i 〉 ≥

1

θ
− δ (19)

with overwhelming probability. On the other hand

‖(1− P )un
i ‖22 =

1

‖(Gn(W n)T )i‖22

r∑

j,k=1

W n
i,jW

n
i,k〈(1− P )gnj , (1− P )gnk 〉

By Proposition 6.3, the denominator is of order n with overwhelming probability, whereas
by Proposition 6.2, the numerator is of order mn + nǫ√mn (since Tr(1 − P ) = mn) with
overwhelming probability. As W n is bounded by Proposition 6.3 we conclude that

‖(1− P )un
i ‖22 ≤ 2

mn

n

with overwhelming probability. Putting everything together we have proved that for any
z ∈ Ωn, any δ > 0,

Gn
i,i(z) ≥

1

θ
− δ

with overwhelming probability. Finally, we also have

Gn
i,i(z) ≤ 〈un

i , P (ζ −Xn)
−1Pun

i 〉+ n1−α′‖(1− P )un
i ‖22

and we can bound the above right hand side by the same arguments to obtain (14) for a
fixed z ∈ Ωn. We do not detail the grid argument which is similar to what we did in the
proof of the previous lemma. �

Proof of Theorem 4.4. In the one dimensional case, the eigenvalues of X̃n which do not
belong to the spectrum of Xn are the zeroes of

fn(z) =
1

n
〈g, (z −Xn)

−1g〉 − εn(g)
1

θ
(20)

with εn(g) = 1 or ‖g‖22/n according to the model we are considering. A straightforward

study of the function fn tells us that the eigenvalues of X̃n are distinct from those of Xn

as soon as Xn has no multiple eigenvalue and

(matrix of the eigenvectors of Xn)
∗ × g

has no null entry, which we can always assume up to modify Xn and g so slightly that
the fluctuations of the eigenvalues are not affected. We do not detail these arguments but
the reader can refer to Lemmas 8.4, 8.5 and 10.4 of [44] for a full proof in the finite rank
case.
Therefore, (20) characterises all the eigenvalues of X̃n. Moreover, by Weyl’s interlacing
properties, for θ < 0,

λ̃n
1 < λn

1 < λ̃n
2 < λn

2 < · · · < λ̃n
n < λn

n .

Theorems 1.3 and 4.3 thus already settle the study of λ̃n
1 . We consider α′ > α and

i ∈ {2, . . . , p} and define

Λn :=

]
λn
i−1 +

n−1+α′

2
, λn

i −
n−1+α′

2

[
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Note first that if Λn is empty, then the eigenvalue of X̃n which lies between λn
i−1 and λn

i

is within n−1+α′

to both λn
i−1 and λn

i , so we have nothing to prove. Now we want to prove
that fn does not vanish on Λn and that according to the sign of 1

θ
− 1

θ
, it vanishes on one

side or the other of Λn in ]λn
i−1, λ

n
i [.

The proof of this fact will follow the same lines as the proof of Lemma 4.8 and we recall
that P was defined above as the projection onto the eigenspace of the (λn

mn+1, . . . , λ
n
n).

We also denote by P ′ = 1 − P. Then, exactly as for (19), we can show that for all δ > 0
and n large enough,

sup
z∈[λn

1 ,λ
n
p ]

∣∣∣∣
1

n
〈g, P (z −Xn)

−1Pg〉 − 1

θ

∣∣∣∣ ≤ δ

with overwhelming probability. Moreover, for any z ∈ Λn, for any j ∈ [1, mn], we have

|z − λn
j | ≥ min{z − λn

i−1, λ
n
i − z} ≥ n−1+α′

2
and for any ǫ > 0,

sup
z∈Λn

∣∣∣∣
1

n
〈g, P ′(z −Xn)

−1P ′g〉
∣∣∣∣ ≤ 2n−α′〈g, P ′g〉 ≤ nǫn−α′

mn

with overwhelming probability. We choose ǫ in such a way that the latter right hand side
goes to zero. Therefore, since P + P ′ = I, we know that uniformly on Λn,

fn(z) =
1

θ
− 1

θ
+ o(1)

with overwhelming probability. Since for all n, fn is decreasing, going to +∞ (resp.
−∞) as z goes to any λn

i−1 on the right (resp. λn
i on the left), it follows that according

to the sign of 1
θ
− 1

θ
, the zero of fn in ]λn

i−1, λ
n
i [ is either in ]λn

i−1, λ
n
i−1 + n−1+α′

[ or in

]λn
i − n−1+α′

, λn
i [. �

Proof of Corollary 4.5. We can finally prove Corollary 4.5 by induction. We first add
the small perturbations to Xn, that is consider X̃

1
n = Xn + θuu∗ with θ ∈ (θ, θ). In this

setting, Theorem 4.4 shows that the pth extreme eigenvalues are at distance smaller than
n−1+α′

from the eigenvalues of Xn. Moreover, by the interlacing properties, for all p < i,

0 ≤ 1

λ̃n
i − λ̃n

p

≤ 1

λn
i−1 − λn

p+1

so that if Xn verifies Hypothesis 4.1[p,α], X̃1
n verifies Hypothesis 4.1[p-1,α]. Thus, we can

proceed with X̃1
n instead of Xn and conclude that when we have added all these small

perturbations, the resulting matrix have extreme eigenvalues which are at distance smaller
than n−1+α′

from the eigenvalues ofXn and it satisfies Hypothesis 4.1[p−r+p−+p+, α]. We

next add the big perturbation with positive coefficients, X̃r−p−−p++1
n = X̃r−p−−p+

n +θruru
∗
r.

We can apply Theorem 4.4 and conclude that the largest eigenvalues of X̃r−p−−p++1
n which

stick to the bulk are at distance smaller than n−1+α′

from the largest eigenvalues of Xn.
Moreover, the same argument as before shows that the same is true for the smallest
eigenvalues except the smallest eigenvalue of X̃r−p−−p++1

n sticks to the second smallest
eigenvalue ofXn, etc. Again, we check that Hypothesis 4.1[p−r+p−+p+−1, α] is satisfied.
We then can continue to add the p+th positive perturbation, giving a matrix X̃r−p−

n with
p+ eigenvalues away from the bulk, the ith (resp. n − i − p+th) eigenvalue of X̃r−p−

n
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being at distance of order n−1+α′

of the (i+ p+)th (resp. n− ith) eigenvalue of Xn. We
next add the perturbation with negative coefficients. Considering the largest eigenvalues,
we see that the new matrix keeps eigenvalues in the small n−1+α′

neighbourhood of the
large isolated non-perturbed matrix, whereas inside the bulk, the first pth eigenvalue
inside [λn

n−p− cn−1+α′

, λn
n−p+1+ cn−1+α′

] is close to λn
n−p. For the smallest, one eigenvalue

deviates from the bulk whereas the second one is close to λn
p+
. We can then continue by

induction to finish the proof of Corollary 4.5. �

5. Application to classical models of matrices

Our goal in this section is to show that if Xn belongs to some classical ensembles of
matrices, the extreme eigenvalues of perturbations of such matrices have their asymptotics
obeying to Theorems 1.3, 3.2 and 4.3. For that, a crucial step will be the following
statement. If (Xn) is a sequence of random matrices, we say that it satisfies an hypothesis
in probability if the probability that Xn satisfies this hypothesis converges to one as n
goes to infinity.

Theorem 5.1. Let (Xn) be a sequence of random matrices independent of the un
i ’s. Under

Assumption 1.2,

(1) If Hypothesis 1.1 holds in probability, Theorem 1.3 holds.
(2) If κ4(ν) = 0 and Hypotheses 1.1 and 3.1 hold in probability, Theorem 3.2 holds.

If κ4(ν) 6= 0 and Hypotheses 1.1 and 3.3 hold in probability, Theorem 3.4 holds.
(3) Under Assumption 4.2, if Hypotheses 1.1 and 4.1 hold in probability, Theorem 4.3

hold “with probability converging to one” instead of “with overwhelming probabil-
ity”; Theorems 4.4 and Corollary 4.5 hold.

This result follows from the results with deterministic sequences of matrices Xn. In-
deed, to prove that a sequence converges to a limit l in a metric space, it suffices to prove
that any of its subsequences has a subsequence converging to l. If the convergences of the
hypotheses hold in probability, then from any subsequence, one can extract a subsequence
for which they hold almost surely. Then up to a conditioning by the σ-algebra generated
by the Xn’s, the hypotheses of the various theorems hold.

The remaining of this section is devoted to showing that such results hold if Xn, inde-
pendent of (ui

n)1≤i≤r, is a Wigner or a Wishart matrix or a random matrix which law has
density proportional to e−TrV for a certain potential V . In each case, we have to check
that the hypotheses hold in probability.

5.1. Wigner matrices. Let µ1 be a centred distribution on R (respectively on C) and
µ2 be a centred distribution on R, both having a finite fourth moment (in the case where
µ1 is not supported on the real line, we assume that the real and imaginary part are
independent). We define σ2 =

∫
z∈C |z|2dµ1(z).

Let (xi,j)i,j≥1 be an infinite Hermitian random matrix which entries are independent
up to the condition xj,i = xi,j such that the xi,i’s are distributed according to µ2 and the
xi,j ’s (i 6= j) are distributed according to µ1. We take Xn = 1√

n
[xi,j ]

n
i,j=1 , which is said
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to be a Wigner matrix. For certain results, we will also need an additional hypothesis,
which we present here:

Hypothesis 5.2. The probability measures µ1 and µ2 on R have a sub-exponential decay,
that is there exists positive constants C,C ′ such that if X is distributed according to µ1

or µ2, for all t ≥ C ′,

P(|X| ≥ tC) ≤ e−t.

Moreover, µ1 and µ2 are symmetric.

The following Proposition generalises some results of [33, 18, 12, 13] which study the
effect of a finite rank perturbation on a non-Gaussian Wigner matrix. In particular, it
includes the study of the eigenvalues which stick to the bulk.

Proposition 5.3. Let Xn be a Wigner matrix. Assume that for all i, θi 6∈ {−σ, σ} and

Assumption 1.2 holds. The limits of the extreme eigenvalues of X̃n are given by Theorem
1.3 and the fluctuations of the ones which limits are out of [−2σ, 2σ] are given by Theorem
3.2, where the parameters a, b, ρθ, cα are given by the following formulas : b = −a = 2σ,

ρθ :=





θ + σ2

θ
if |θ| > σ,

2σ if 0 < θ ≤ σ,

−2σ if −σ ≤ θ < 0,

and

cα =





√
α2 − σ2 in the i.i.d. model,

σ
√
α2−σ2

α
in the orthonormalized model.

If, moreover, Hypothesis 5.2 holds, the fluctuations of the first extreme eigenvalues of

X̃n which sticks to the bulk follow the Tracy-Widom law.
If the perturbation has rank one, we have the following precise description : either |θ| > σ,
which implies that the smallest (resp. largest) eigenvalue deviates from the bulk and that
for all p, the pth smallest (resp. largest) eigenvalue fluctuates as the p−1th Tracy Widom
law, or |θ| < σ which implies that the smallest (resp. largest) eigenvalue sticks to the bulk
and that for all p, the pth smallest (resp. largest) eigenvalue fluctuates as the pth Tracy
Widom law.

Remark 5.4. All the Tracy-Widom laws involved in the statement of the Theorem above,
are the ones corresponding respectively to the GOE if µ1 is supported on R and to the
GUE if µ1 is supported on C.

As explained above, it suffices to verify that the hypotheses hold in probability for
(Xn)n≥1. We study separately the eigenvalues which stick to the bulk and those which
deviate from the bulk.

•Deviating eigenvalues.

If Xn is a Wigner matrix with entries having a finite fourth moment, Hypothesis 1.1 is
a well known result (see for example [4, Th. 5.2]) for µX the semicircle law with support
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[−2σ, 2σ]. The formulas for ρθ and cα can be checked with the well known formula [1,
Sect. 2.4]:

∀z ∈ R\[−2σ, 2σ], GµX
(z) =

z − sgn(z)
√
z2 − 4σ2

2σ2
.

Moreover, [5, Th. 1.1] shows that Tr(f(Xn)) − n
∫
f(x)dσ(x) converges in law to a

Gaussian distribution for any function f which is analytic in a neighbourhood of [−2σ, 2σ].
For any fixed z /∈ [−2σ, 2σ], applied for f(t) = 1

z−t
, we get that n(Gµn(z) − GµX

(z))

converges in law to a Gaussian distribution, hence
√
n(Gµn(z) − GµX

(z)) converges in
probability to zero, so that Hypothesis 3.1 holds.

•Sticking Eigenvalues.

We now assume moreover that the law of the entries are symmetric and have a uniform
sub-exponential decay. Let us first recall that by [38, 36], the extreme eigenvalues of
the non-perturbed matrix Xn, once re-centred and renormalised by n2/3, converge to the
Tracy-Widom law (which depends on whether the entries are complex or real). Therefore,
it is enough to show that the distance of the extreme sticking eigenvalues to the extreme
eigenvalues of Xn is negligible with respect to n−2/3. To this end, we need to verify that
Hypothesis 4.1[p,α] for any finite p and an α < 1/3 is fulfilled with probability converging
to one. By [38], the spacing between the two smallest eigenvalues of Xn is of order greater
than n−γ for γ > 2/3 with probability going to one and therefore, by the inequality

n∑

i=mn+1

1

(λn
p − λn

i )
k
≤ (λn

p+1 − λn
p )

k−1 ×
n∑

i=mn+1

1

λn
i − λn

p

, (k = 2 or 4),

it is sufficient to prove the third point of Hypothesis 4.1[p,α]. We shall prove it by
replacing first the smallest eigenvalue by the edge −2 due to a lemma that Benjamin
Schlein [37] kindly communicated to us. We will then prove that the sum of the inverse
of the distance of the eigenvalues to the edge indeed converges to the announced limit,
thanks to both Soshnikov paper [38] (for sub-Gaussian tails) or [36] (for finite moments),
and Tao and Vu article [39].

Lemma 5.5 (B. Schlein). Suppose the entries of Xn have a uniform sub-exponential tail.
Then for all δ > 0, for all integer number p,

lim
n→∞

P

(∣∣∣∣∣
1

n

n∑

j=p+1

1

λn
j − λn

p

− 1

n

n∑

j=p+1

1

λn
j + 2

∣∣∣∣∣ ≥ δ

)
= 0.

Proof. We write

1

n

n∑

j=p+1

1

λn
j − λn

p

− 1

n

n∑

j=p+1

1

λn
j + 2

=
λn
p + 2

n

n∑

j=p+1

1

(λn
j − λn

p )(λ
n
j + 2)

.

Hence for any K1 > 0,

P

(∣∣∣∣∣
1

n

n∑

j=p+1

1

λn
j − λn

p

− 1

n

n∑

j=p+1

1

λn
j + 2

∣∣∣∣∣ ≥ δ

)
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≤ P(|λn
p + 2| ≥ K1n

−2/3)

+P

(
K1

n5/3

n∑

j=p+1

1

|(λn
j − λn

p)(λ
n
j + 2)| ≥ δ and |λn

p + 2| < K1n
−2/3

)
. (21)

Now, for any K2 > K1, on the event {|λn
p + 2| < K1n

−2/3}, for any κ > 0, we have

K1

n5/3

n∑

j=p+1

1

|(λn
j − λn

p)(λ
n
j + 2)| ≤ K1

n5/3

+∞∑

ℓ=0

Nn[2K2n
−2/3 + ℓn−κ, 2K2n

−2/3 + (ℓ+ 1)n−κ]

(K2n−2/3 + ℓn−κ)2

+
K1

n5/3

n∑

j=p+1

1λj+2≤2K2n−2/3

|(λn
j − λn

p)(λ
n
j + 2)| , (22)

where Nn[a, b] := ♯{i ; −2 + a ≤ λn
i ≤ −2 + b}. Note that, from the upper bound on the

density of eigenvalues in microscopic intervals, due to [15, Theorem 4.6], we know that
for any κ < 1, there is a constant M independent of n so that for all ℓ ≥ 1

E(Nn[2K2n
−2/3 + ℓn−κ, 2K2n

−2/3 + (ℓ+ 1)n−κ]) ≤ Mn1−κ. (23)

Let us fix κ ∈ (2
3
, 1). It follows that the first term of the r.h.s. of (22) can be estimated

by

P

(
K1

n5/3

+∞∑

ℓ=0

Nn[2K2n
−2/3 + ℓn−κ, 2K2n

−2/3 + (ℓ+ 1)n−κ]

(K2n−2/3 + ℓn−κ)2
≥ δ

2

)

≤ 2K1

δn5/3

+∞∑

ℓ=0

E(Nn[2K2n
−2/3 + ℓn−κ, 2K2n

−2/3 + (ℓ+ 1)n−κ])

(K2n−2/3 + ℓn−κ)2

≤ 2MK1

δn2/3

1

nκ

+∞∑

ℓ=0

1

(K2n−2/3 + ℓn−κ)2

≤ 2MK1

δn2/3

1

nκ(K2n−2/3)2
+

2MK1

δn
2
3

∫ +∞

0

dt

(t +K2n
− 2

3 )2

≤ 2MK1

δK2
2n

κ−2/3
+

2MK1

δK2
. (24)

Let us now estimate the second term of the r.h.s. of (22). For any positive integer K3,
we have

P

(
K1

n5/3

n∑

j=p+1

1|λn
j +2|≤2K2n−2/3

|(λn
j − λn

p )(λ
n
j + 2)| ≥

δ

2

)

≤ P
(
Nn(−∞, 2K2n

−2/3] ≥ K3

)
+ P

(
K1K3

n5/3

1

minp+1≤j≤K3 |(λn
j − λn

p )(λ
n
j + 2)| ≥

δ

2

)

≤ P
(
λn
K3

≤ −2 + 2K2n
−2/3

)
+ P

(
min

p≤j≤K3

|λn
j + 2| ≤

√
2K1K3n

−5/6

√
δ

)

+P

(
|λn

p − λn
p+1| ≤

√
2K1K3n

−5/6

√
δ

)
(25)
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From (21), (22), (24) and (25), we conclude that

P

(∣∣∣∣∣
1

n

n∑

j=p+1

1

λn
j − λn

1

− 1

n

n∑

j=p+1

1

λn
j + 2

∣∣∣∣∣ ≥ δ

)

≤ P(|λn
1 + 2| ≥ K1n

−2/3) +
2MK1

δK2

+ P
(
λK3 ≤ −2 + 2K2n

−2/3
)

+P

(
min

1≤j≤K3

|λn
j + 2| ≤

√
2K1K3n

−5/6

√
δ

)
+ P

(
|λn

2 − λn
1 | ≤

√
2K1K3n

−5/6

√
δ

)

for arbitrary 0 < K1 < K3 and K3 ≥ 1. Taking the limit n → ∞, the last two terms
disappear, because by [39, Th. 1.16], the distribution of the smallest K3 eigenvalues lives
on scales of order n−2/3 ≫ n−5/6. Therefore,

limn→∞ P

(∣∣∣ 1n
∑n

j=2
1

λn
j −λn

1
− 1

n

∑n
j=2

1
λn
j +2

∣∣∣ ≥ δ
)

≤ limn→∞ P(|λn
1 + 2| ≥ K1n

−2/3) + 2MK1

δK2
+ limn→∞ P

(
λK3 ≤ −2 + 2K2n

−2/3
)
,

still for any 0 < K1 < K3 and K3 ≥ 1. Now, note that for K1 large enough, the first term
can be made as small as we want. Then, keeping K1 fixed, K2 can be chosen in such a
way to make the second term as small as we want too. At last, keeping K2 fixed, one can
choose K3 large enough to make the third term as small as we want (as can be computed
since the limit is given by the K3 correlation function of the Airy kernel). �

To complete the proof of Hypothesis 4.1, we therefore need to show that

Lemma 5.6. Assume that the entries of Xn have a symmetric law with sub-exponential
decay. Then, for any δ > 0, any finite integer number p,

lim
n→∞

P

(∣∣∣∣∣
1

n

n∑

j=p+1

1

λn
j + 2

− 2

∣∣∣∣∣ > δ

)
= 0

Proof. Notice that by [38, 36] we know that the p smallest eigenvalues of Xn converge
in law towards the Tracy-Widom law, so that

lim
ǫ↓0

lim
n→∞

P

(
min
1≤j≤p

|λn
j + 2| < ǫn−2/3

)
= 0.

Thus, for any finite p, with large probability,

1

n

p∑

j=2

1

|λn
j + 2| ≤ pǫ−1n− 1

3

and therefore it is enough to prove the lemma for any particular p. As in the previous
proof, we choose p large enough so that λn

p ≥ −2 + n− 2
3 with probability greater than

1 − δ(p) with δ(p) going to zero as p goes to infinity. We shall prove that with high
probability

lim
γ↓0

lim
n→∞

1

n

[γn]∑

j=p

1

λn
j + 2

≤ 0. (26)

This is enough to prove the statement as for any γ > 0, 2+λn
[nγ] converges to δ(γ) > 0 so

that µsc([δ(γ), 2]) = 1− γ, see [40, Theorem 1.3],
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lim
n→∞

1

n

n∑

i=[nγ]

1

λn
i + 2

=

∫ 2

δ(γ)

1

2 + x
dµsc(x),

which converges as γ goes to zero to
∫
(2 + x)−1dµsc(x) = 2. To prove (26), we choose

ρ ∈ (2/3,
√
2/3) and write, on the event λn

j + 2 ≥ λn
p + 2 ≥ n− 2

3 ≥ n−ρ for j ≥ p,

1

n

[γn]∑

j=p

1

λn
j + 2

≤
∑

1≤k≤K

nρk−1Nn[n
−ρk , n−ρk+1

] +

[γn]∑

j=2

1λn
j ≥−2+n−ρK+1

n(λn
j + 2)

=: An +Bn.

For the first term, we use Sinai-Soshnikov bound, which under the weakest hypothesis are
given in [36, Theorem 2.1] which implies that with probability going to one with M going
to infinity, for sn = o(n2/3) going to infinity,

n∑

i=1

(
λn
i

2

)sn

≤ M
n

s
3
2
n

.

This implies, by Tchebychev’s inequality and taking sn = n+ρk+1
that

Nn[n
−ρk , n−ρk+1

] ≤ ♯

{
i :

∣∣∣∣
λi

2

∣∣∣∣ ≥ 1− n−ρk+1

}
≤ (1− n−ρk+1

)−sn

n∑

i=1

∣∣∣∣
λn
i

2

∣∣∣∣
sn

≤ eMn1− 3
2
ρk+1

.

Consequently we deduce that

An ≤ eM
∑

1≤k≤K

nρkn− 3
2
ρk+1 ≤ Cn−ρK( 3

2
ρ−1)

which goes to zero as ρ > 2/3. For the second term Bn, note that by [39, Theorem 1.10],
for any ǫ > 0 small enough,

∣∣Nn[n
−ǫℓ, n−ǫ(ℓ+ 1)]− nµsc([−2 + n−ǫℓ,−2 + n−ǫ(ℓ+ 1)])

∣∣ ≤ n1−δ(ǫ)

with δ(ǫ) = 2ǫ−1
10

. Hence, since µsc([−2+ n−ǫℓ,−2+n−ǫ(ℓ+1)]) ∼ n− 3ǫ
2

√
ℓ, we deduce for

ǫ small enough that for all ℓ ≥ 1,

Nn[n
−ǫℓ, n−ǫ(ℓ+ 1)] ≤ 2n1− 3ǫ

2

√
ℓ.

This allows to bound Bn by

Bn ≤ 2

[γnǫ]∑

ℓ=1

nǫ

ℓ
n− 3ǫ

2

√
ℓ ≤ 2

∫ γ

0

1√
x
dx = 2

√
γ

which goes to zero as n goes to infinity and then γ goes to zero. �

5.2. Coulomb Gases. We can also consider random matrices Xn with law which is
invariant under the action of the unitary or the orthogonal group and with eigenvalues
with law given by

dPn(λ1, . . . , λn) =
1

Zn
|∆(λ)|βe−nβ

∑n
i=1 V (λi)

n∏

i=1

dλi

with a strictly convex polynomial function V of even degree and positive leading coefficient
and β = 1, 2 or 4. This includes the classical Gaussian ensembles.
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Proposition 5.7. The spectral measure of Xn converges towards a probability measure µX

with compact connected support [aV , bV ]. The extreme eigenvalues of Xn converge to the

boundary of the support. The extreme eigenvalues of X̃n are given by Theorem 1.3. They
fluctuate following a Gaussian law if they deviate away from the bulk, whereas otherwise
they fluctuate according to the Tracy-Widom law.
If the perturbation is one dimensional and is strong (resp. weak) enough so that the
largest eigenvalues deviates (resp. sticks) from the bulk, the rescaled kth largest eigenvalues

n
2
3 (λ̃n

n−i−bV )1≤i≤k (resp. n
2
3 (λ̃n

n−i−bV )0≤i≤k−1) converge weakly towards the Tracy Widom
law of the corresponding β ensemble.

Proof. As explained above, it suffices to verify that the hypotheses hold in probability
for (Xn)n≥1.

Note that the convergence of the spectral measure, of the edges and the fluctuations
of the extreme eigenvalues were obtained in [14]. The fact that

√
n(Gµn(z) − Gsc(z))

converges in probability to zero is a consequence of [26] so that Hypothesis 3.1 holds.

We next check hypothesis 4.1[p,α] for the matrix model Pn which includes the GOE
and the GUE (with V (x) = x2/4 and β = 1, 2). We shall prove it for any α > 1/3 and
any integer p. We first show that

lim
n→∞

E

[
1

n

∑

i 6=p

1

λn
i − λn

p

]
= −V ′(aV ) . (27)

Indeed, the joint distribution of (λn
1 , . . . , λ

n
n) is

1

Zβ
n

e−n
∑

i=1 V (λi)
n∏

1≤i<j≤n

(λi − λj)
β1∆ndλ1 · · ·dλn,

with β = 1, 2 or 4, Zβ
n is the normalising constant and ∆n = {λ1 < · · · < λn}.

Therefore,

E

[
β
∑

i 6=p

1

λn
i − λn

p

]
= − 1

Zβ
n

∫

∆n

e−nβ
∑n

i=1 V (λi)
∂

∂λp

n∏

1≤i<j≤n

(λi − λj)
βdλ1 · · ·dλn,

=
1

Zβ
n

∫

∆n

∂

∂λp

(
e−nβ

∑n
i=1 V (λi)

) n∏

1≤i<j≤n

(λi − λj)
βdλ1 · · ·dλn,

= −nβE
[
V ′(λn

p )
]
,

by integration by parts. Equation (27) follows, since λn
p converges almost surely to aV

(and concentration inequalities insures V ′(λn
p) is uniformly integrable). But, for any ǫ > 0,

1

n

∑

i 6=p

1

λn
i − λn

p

≥ 1

n

∑

i 6=p

1

ǫ+ λn
i − λn

p

with, by convergence of the spectral measure and of λn
p , the right hand side converging

to −GµX
(−aV − ǫ) which converges as ǫ decreases to zero to −GµX

(−aV ) = −V ′(aV ).
Hence, 1

n

∑
i 6=p

1
λn
i −λn

p
is bounded below by −V ′(aV ) with large probability for large n, and

converges in expectation to −V ′(aV ), and therefore converges in probability to −V ′(aV ).
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Moreover, by [14] (see [42] in the Gaussian case), the joint law of
(
n2/3(λn

1 − aV ), n
2/3(λn

2 − aV ), . . . , n
2/3(λn

p − aV )
)

converges weakly towards a probability measure which is absolutely continuous with re-
spect to Lebesgue measure. As a consequence, we also deduce from the first point that
n−1

∑
i<mn

(λn
p − λn

i )
−1 vanishes as n goes to infinity in probability for mn ≪ n1/3 and

therefore (27) proves the last point of Hypothesis 4.1.

For the two other points, observe that [14] implies that for any ǫ > 0, P(|λn
2 − λn

1 | ≤
n− 2

3
−ǫ) −→

n→∞
0. On the event {|λn

2 − λn
1 | > n− 2

3
−ǫ}, we have |λn

i − λn
1 | > n− 2

3
−ǫ for all

i ∈ [2, n− 1], so that

1

n2

n∑

i=2

1

(λn
i − λn

1 )
2
≤ n− 1

3
+ǫ 1

n

n∑

i=2

1

λn
i − λn

1

1

n4

n∑

i=2

1

(λn
i − λn

1 )
4
≤ n−1+3ǫ 1

n

n∑

i=2

1

λn
i − λn

1

so that by (27) and Markov’s inequality, Hypothesis 4.1 holds in probability for any
η < 1/3, η4 < 1 and α > 1/3. �

5.3. Wishart matrices. Let Gn be an n×m real (or complex) matrix with i.i.d. centred
entries with law µ such that

∫
zdµ(z) = 0,

∫
|z|2dµ(z) = 1 and

∫
|z|4dµ(z) < ∞. Let

Xn = GnG
∗
n/m. The following Proposition generalises some results first appeared in

[9, 19].

Proposition 5.8. Let n,m tend to infinity in such a way that n/m → c ∈ (0, 1). The

limits of the extreme eigenvalues of X̃n are given by Theorem 1.3 and the fluctuations
of those which limits are out of [a, b] are given by Theorem 3.2, where the parameters
a, b, ρθ, cα are given by the following formulas: a = (1−√

c)2, b = (1 +
√
c)2

ρθ :=





θ + θ
θ−c

if |θ − c| > √
c,

b if |θ − c| ≤ √
c and θ > 0,

a if |θ − c| ≤ √
c and θ < 0,

and

c2α =





α2
(
1− c

(α−c)2

)
in the i.i.d. model,

α2c
(α−c)2

(
1− c

(α−c)2

)
in the orthonormalized model.

Moreover, if the law of the entries satisfy Hypothesis 5.2, the fluctuations of the extreme

eigenvalues of X̃n which stick to the bulk follow the Tracy-Widom law of the corresponding
ensemble. Moreover, if the perturbation is one dimensional, the pth extreme eigenvalues
which stick to the bulk follow the Tracy-Widom law.

Proof. Again, it suffices to verify that the hypotheses hold in probability for (Xn)n≥1.
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It is known, [30], that the spectral measure of Xn converges to the so-called Marčenko-
Pastur distribution

dµX(x) :=
1

2πcx

√
(b− x)(x− a)1[a,b](x)dx,

where a = (1 − √
c)2 and b = (1 +

√
c)2. It is known, [4, Th. 5.11], that the extreme

eigenvalues converge to the bounds of this support. The formula

GµX
(z) =

z + c− 1− sgn(z − a)
√
(z − c− 1)2 − 4c

2cz
(z ∈ R\[a, b])

allows to compute ρθ and cα. Moreover, by [3, Th. 1.1] or [4, Th. 9.10], we also know
that a central limit theorem holds for the linear statistics of Wishart matrices, giving
Hypothesis 3.1 as in the Wigner case.

For Hypothesis 4.1, the proof is similar to the Wigner case. The convergence to the
Tracy-Widom law of the non-perturbed matrix is due to S. Péché [34] (see [31] and [20] for
the Gaussian case). The approximation of the eigenvalues by the quantiles of the limiting
law can be found in [17, Theorem 9.1] whereas the absolute continuity property needed
to prove Lemma 5.5 is derived in [17, Lemma 8.1]. This allows to prove Hypothesis 4.1
in this setting as in the Wigner case, we omit the details. �

5.4. Non-white ensembles. In the case of non-white matrices, we can only study the
fluctuations away from the bulk (since we do not have the appropriate information about
the top eigenvalues to prove Hypothesis 4.1). We illustrate this generalisation in a few
cases, but it is rather clear that Theorem 3.2 applies in a much wider generality.

5.4.1. Non-white Wishart matrices. The first statement of Proposition 5.8 can be gener-

alised to matrices Xn of the type Xn = 1
m
T

1/2
n GnG

∗
nT

1/2
n or 1

m
GnTnG

∗
n, where Gn satisfies

the hypotheses of section 5.3 and Tn is a positive non random Hermitian n × n matrix
with bounded operator norm, with a converging empirical spectral law and with no eigen-
values outside the support of the limiting measure for sufficiently large n. Indeed, in
this case, everything, in the proof, stays true (use [2, Th.1.1] instead of [30] and [4, Th.
5.11]). However, when the limiting empirical distribution of Tn is not a Dirac mass, the
computation of the ρθ’s and the cα’s is not easy.

5.4.2. Non-white Wigner matrices. There are less results in the literature about the cen-
tral limit theorem for band matrices (with centring with respect to the limit) and the con-
vergence of the spectrum. We therefore concentrate on a special case, namely a Hermitian
matrix XN with independent Gaussian centred entries so that E[|Xij |2] = n−1σ(i/n, j/n)
with a stepwise constant function

σ(x, y) =
k∑

i,j=1

1 i−1
k

≤x< i
k

i−1
k

≤y< i
k

σi,j .

In [29], matrices of the form Sn =
∑k(k+1)

j=1 aj⊗X
(n)
j with some independent matrices X

(n)
j

from the GUE and self-adjoint matrices aj were studied. Taking aj = (ǫp,ℓ + ǫℓ,p)σp,ℓ or
i(ǫp,ℓ − ǫℓ,p)σp,ℓ with ǫp,ℓ the matrix with null entries except at (p, ℓ) and 1 ≤ p ≤ ℓ ≤ k,
we find that Xn = Sn. Then it was proved [29, (3.8)] that there exists α, ǫ, γ > 0 so that
for z complex greater than n−γ for some γ > 0,
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|E[
1

n
Tr(z −Xn)

−1]−G(z)| ≤ (ℑz)−αn−1−ǫ (28)

which entails the convergence of the spectrum of Xn towards the support of the limiting
measure [29, Proposition 11] with exponential speed by [29, Proof of Lemma 14]. Thus
Xn satisfies (H1). (H2) can be checked by modifying slightly the proof of (28) which is
based on an integration by parts to be able to take z on the real line but away from the
limiting support. Indeed, as in [23, Section 3.3], we can add a smooth cut-off function
in the expectation which vanishes outside of the event An that Xn has all its eigenvalues
within a small neighbourhood of the limiting support. This additional cut-off will only
give a small error in the integration by parts due to the previous point. Then, (28), but
with an expectation restricted to this event, is proved exactly in the same way, except
that ℑz can be replaced by the distance of z to the neighbourhood of the limiting support
where the eigenvalues of Xn lives. Finally, concentration inequalities, in the local version
[22, Lemma 5.9 and Part II], insure that on An,

1

n
Tr(z −Xn)

−1 −E[1An

1

n
Tr(z −Xn)

−1]

is at most of order n−1+ǫ with overwhelming probability. This completes the proof of
Hypothesis 3.1.

6. Appendix

6.1. Determinant formula. We here prove formula (1), which can also be deduced from

the well known formula det

(
A B
C D

)
= det(D) det(A− BD−1C).

Lemma 6.1. Let z ∈ C\{λn
1 , . . . , λ

n
n} and θ1, . . . , θr 6= 0. Set D = diag(θ1, . . . , θr) and

let V be any n× r matrix. Then

det (z −Xn − V DV ∗) = det(z −Xn)
−1 det(D) det

(
D−1 − V ∗(z −Xn)

−1V
)

Proof. Let us denote, for any square matrix M , χM(z) = det(z −M). First note that for
any matrices A,B with respective sizes n× r and r × n, χAB(z) = zn−rχBA(z): it is well
known when n = r, and can be extended to the general case r ≤ n by extending A and
B to n× n matrices by adding zeros. It follows that for z such that det(z −Xn) 6= 0,

det(z −Xn − V DV ∗) = det(z −Xn) det(In − (z −Xn)
−1V DV ∗)

= det(z −Xn)χ(z−Xn)−1V DV ∗(1)

= det(z −Xn)χDV ∗(z−Xn)−1V (1)

= det(z −Xn)
−1 det(D) det

(
D−1 − V ∗(z −Xn)

−1V
)
.

�

6.2. Concentration estimates.

Proposition 6.2. Under Assumption 1.2, there exists a constant c > 0 so that for any
matrix A := (ajk)1≤j,k≤n with complex entries, for any δ > 0, for any g = (g1, . . . , gn)

T

with i.i.d. entries (gi)1≤i≤n with law ν,

P (|〈g, Ag〉 − E[〈g, Ag〉]| > δ) ≤ 4e−cmin{ δ
C
, δ

2

C2 }
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if C2 = Tr(AA∗) and if g̃ is an independent copy of g, for any δ, κ > 0,

P

(
|〈g, Ag̃〉| > δ

√
Tr(AA∗) + κ

√
Tr((AA∗)2)

)
≤ 4e−cδ2 + 4e−cmin{κ,κ2}.

Proof. The first point is due to Hanson-Wright Theorem [24], see also [15, Proposition
4.5]. For the second, we use concentration inequalities, see e.g. [1, Lemma 2.3.3], based

on the remark that for any fixed g̃, g → 〈g, Ag̃〉 is Lipschitz with constant
√

〈g̃, AA∗g̃〉
and therefore, conditionally to g̃, for any δ > 0,

P

(
|〈g, Ag̃〉| > δ

√
〈g̃, AA∗g̃〉

)
≤ 4e−cδ2

On the other hand, the previous estimate shows that

P

(
|〈g̃, AA∗g̃〉 − Tr(AA∗)| > κ

√
Tr(AA∗)2

)
≤ 4e−cmin{κ,κ2} .

As a consequence, we deduce the second point of the proposition. �

Let Gn =
[
gn1 · · · gnr

]
be an n × r matrix which columns gn1 , . . . , g

n
r , are independent

copies of an n× 1 matrix with i.i.d. entries with law ν and define

V n
i,j =

1

n
〈gni , gnj 〉, 1 ≤ i, j ≤ r,

and, for j ≤ i− 1, if det[V n
k,l]

i−1
k,l=1 6= 0,

W n
i,j =

det[γn,j
k,l ]

i−1
k,l=1

det[V n
k,l]

i−1
k,l=1

, with γn,j
k,l =

{
V n
k,l, if l 6= j,

−V n
k,i, if l = j.

On det[V n
k,l]

i−1
k,l=1 = 0, we give to W n

i,j an arbitrary value, say one. Putting W n
ii = 1 and

W n
ij = 0 for j ≥ i + 1, it is a standard linear algebra exercise to check that the column

vectors

vni =

r∑

j=1

W n
i,jg

n
j = ith column of Gn(W n)T

are orthogonal in C
n. Let us introduce, for M an r× r matrix, ‖M‖∞ = sup1≤i,j≤r |Mi,j|.

We next prove

Proposition 6.3. For any γ > 0, there exists finite positive constants c, C (depending on
r) so that for Zn = V n or W n,

P

(
‖Zn − I‖∞ ≥ n− 1

2γ
)
≤ C

[
e−4−1cγ2

+ e−c
√
n
]
.

Moreover, with ‖v||22 =
∑n

i=1 |vi|2, for any γ ∈ (0,
√
n(2−r − ǫ) for some ǫ > 0,

P

(
max
1≤i≤r

∣∣∣∣∣
1

n
‖

r∑

j=1

Zn
ijg

n
j ‖22 − 1

∣∣∣∣∣ ≥ n− 1
2γ

)
≤ C

[
e−4−1c2−rγ2

+ 4e−c
√
n
]
.

Proof. We first consider the case Zn = V n. The maximum of |V n
ij − δij| is controlled by

the previous proposition with A = n−1I, and the result follows from TrAA∗ = n−1 and
Tr((AA∗)2) = n−3, and choosing δ = γ/

√
2, κ =

√
n. The result for W n follows as on

‖V n − I‖∞ ≤ γn− 1
2 ≤ 1

| det[Vk,l]
i−1
k,l=1 − 1| ≤ 2rγn− 1

2 ,
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whereas
| det[γn,j

k,l ]
i−1
k,l=1| ≤ 2rγn− 1

2 .

For the last point, we just notice that since 1
n
‖∑r

j=1Z
n
i,jg

n
j ‖22 = (ZV Z∗)i,i, we have

max
1≤i≤r

∣∣∣∣∣
1

n
‖

r∑

j=1

Zn
ijg

n
j ‖22 − 1

∣∣∣∣∣ ≤ C(r) max
Zn=V n or Wn

‖Zn‖2∞ max
Zn=V n or Wn

‖Zn − I‖∞

for a finite constant C(r) which only depends on r. Thus the result follows from the
previous point. �

6.3. Central Limit Theorem for quadratic forms.

Theorem 6.4. Let us fix r ≥ 1 and let, for each n, An(s, t) (1 ≤ s, t ≤ r) be a family
of n× n real (resp. complex) matrices such that for all s, t, An(t, s) = An(s, t)∗ and such
that for all s, t = 1, . . . , r,

• in the i.i.d. model,

1

n
Tr[An(s, t)An(s, t)∗] −→

n→∞
σ2
s,t,

1

n

n∑

i=1

|An(s, s)i,i|2 −→
n→∞

ωs, (29)

• in the orthonormalized model,

1

n
Tr[|An(s, t)− 1

n
TrAn(s, t)|2] −→

n→∞
σ2
s,t,

1

n

n∑

i=1

∣∣∣∣A
n(s, s)i,i −

1

n
TrAn(s, t)

∣∣∣∣
2

−→
n→∞

ωs.

(30)

for some finite numbers σs,t, ωs (in the case where κ4(ν) = 0, the part of the hypothesis
related to ωs can be removed). For each n, let us define the r × r random matrix

Gn :=

[√
n

(
〈un

s , A
n(s, t)un

t 〉 − 1s=t
1

n
Tr(An(s, s))

)]r

s,t=1

.

Then the distribution of Gn converges weakly to the distribution of a real symmetric (resp.
Hermitian) random matrix G = [gs,t]

r
s,t=1 such that the random variables

{gs,t ; 1 ≤ s ≤ t ≤ r}
(resp. {gs,s ; 1 ≤ s ≤ r} ∪ {ℜ(gs,t) ; 1 ≤ s < t ≤ r} ∪ {ℑ(gs,t) ; 1 ≤ s < t ≤ r})

are independent and for all s, gs,s ∼ N (0, 2σ2
s,s + κ4(ν)ωs) (resp. gs,s ∼ N (0, σ2

s,s +

κ4(ν)ωs)) and for all s 6= t, gs,t ∼ N (0, σ2
s,t) (resp. ℜ(gs,t),ℑ(gs,t) ∼ N (0, σ2

s,t/2)).

Remark 6.5. Note that if the matrices An(s, t) depend on a real parameter x in such a
way that for all s, t, for all x, x′ ∈ R,

1

n
Tr(An(s, t)(x)−An(s, t)(x′))2 −→

n→∞
0,

then it follows directly from Theorem 6.4 and from a second moment computation that
each finite dimensional marginal of the process[√

n

(
〈un

s , A
n(s, t)(xs,t)u

n
t 〉 − 1s=t

1

n
Tr(An(s, s)(xs,s))

)]

1≤s,t≤r , xs,t∈R , xs,t=xt,s

converges weakly to the law of [gs,t]1≤s,t≤r , xs,t∈R , xs,t=xt,s.
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Proof. • Let us first consider the model where the (
√
nun

s )1≤s≤r are i.i.d vectors with i.i.d
entries with law ν satisfying Assumption 1.2. Note that for all s, t = 1, . . . , r, by (29),
the sequence 1

n

∑n
i,j=1A

n(s, t)2i,j is bounded. Hence up to the extraction of a subsequence,
one can suppose that it converges to a limit τs,t ∈ C. Since the conclusion of the theorem
does not depend on the numbers τs,t and the weak convergence is metrizable, one can
ignore the fact that these convergences are only along a subsequence. In the case where
κ4(ν) = 0, we can in the same way add the part of the hypothesis related to ωs.

We have to prove that for any real symmetric (resp. Hermitian) matrix B := [bs,t]
r
s,t=1,

the distribution of Tr(BGn) converges weakly to the distribution of Tr(BG). Note that

Tr(BGn) =
1√
n
(U∗

nC
nUn − TrCn),

where Cn is the rn× rn matrix and Un is the rn× 1 random vector defined by

Cn =



b1,1A

n(1, 1) · · · b1,rA
n(1, r)

...
...

br,1A
n(r, 1) · · · br,rA

n(r, r)


 , Un =

√
n



un
1
...
un
r


 .

In the real (resp. complex) case, let us now apply Theorem 7.1 of [7] in the case K = 1.
It follows that the distribution of

Tr(BGn) =
r∑

s=1

bs,sGn,s,s +
∑

1≤s<t≤r

2ℜ(bs,t)ℜ(Gn,s,t) + 2ℑ(bs,t)ℑ(Gn,s,t)

converges weakly to a centred real Gaussian law with variance
{∑r

s=1 b
2
s,s(2σ

2
s,s + κ4(ν)ωs) +

∑
1≤s<t≤r(2bs,t)

2σ2
s,t in the real case,

∑r
s=1 b

2
s,s(σ

2
s,s + κ4(ν)ωs) +

∑
1≤s<t≤r(2ℜ(bs,t))2

σ2
s,t

2
+ (2ℑ(bs,t))2 σ2

s,t

2
in the complex case.

It completes the proof in the i.i.d. model.

• In the orthonormalized model, we can write un
s = 1

‖
∑s

i=1 W
n
sigi‖2

∑s
j=1W

n
sjgj, where the

matrix W n is the one introduced in this section. It follows that, with

Bn(s, t) = An(s, t)− 1

n
Tr(An(s, t)),

by orthonormalization of the un
s ’s

√
n

(
〈un

s , A
n(s, t)un

t 〉 −
1s=t

n
Tr(An(s, t))

)

=
√
n〈un

s , B
n(s, t)un

t 〉

=
n

‖∑s
i=1W

n
sigi‖2‖

∑t
i=1W

n
tigi‖2

r∑

j,i=1

W n
siW̄

n
tj

1√
n
〈gi, Bn(s, t)gj〉.

But, by the previous result, if i 6= j,

1√
n
〈gi, B(s, t)gj〉

converges in distribution to a Gaussian law, whereas if i = j,

1√
n
〈gi, B(s, t)gi〉
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=
1√
n
(〈gi, A(s, t)gi〉 − E[〈gi, A(s, t)gi〉]) +

Tr(A(s, t))√
n

(〈gi, gi〉 − E[〈gi, gi〉])

where both terms converge to a Gaussian. Thus this term is also bounded as n goes to
infinity.

Hence, by Proposition 6.3, we may and shall replace W n by the identity (since the error

term would be of order at most n− 1
2
+ǫ), which yields

√
n〈un

s , B
n(s, t)un

t 〉 ≈
√
n
−1〈gs, B(s, t)gt〉

so that we are back to the previous setting with B instead of A. �
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