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Investigation of shear banding in three-dimensional foams
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Abstract. - We study the steady flow properties of different three-dimensional aqueous foams in
a wide gap Couette geometry. From local velocity measurements through Magnetic Resonance
Imaging techniques and from viscosity bifurcation experiments, we find that these foams do not
exhibit any observable signature of shear banding. This contrasts with the results of two previous
studies (Rodts et al., Europhys. Lett., 69 (2005) 636 and Da Cruz et al., Phys. Rev. E, 66
(2002) 051305); we discuss possible reasons for this dicrepancy. Our observations are not fitted by
the model of Denkov et al., Phys. Rev. Lett., 103 (2009) 118302, which tends to overestimate
the critical shear rate – if any – of the foams we studied. Local measurements of the constitutive
law finally show that these foams behave as simple Herschel-Bulkley yield stress fluids.

Introduction – Materials such as dense suspensions,
colloidal gels, concentrated emulsions, foams or granular
materials, present a jammed structure [1]. This results in
the existence of a yield stress τy below which they cannot
flow. It was recently shown that some of these materials
exhibit shear banding while others do not [2–4]. Shear
banding means that in some conditions (near τy), in a ho-
mogeneous shear stress field, there is coexistence of liquid
(sheared) and solid (unsheared) regions [3,5,6]. At the in-
terface between both regions, the material flows at a non-
zero critical shear rate1 γ̇c. This implies that shear band-
ing materials cannot flow steadily at a shear rate smaller
than γ̇c. If one shears such systems between two bound-
aries at a low macroscopic shear rate γ̇macro < γ̇c, local ve-
locity measurements [7] then reveal shear banding [3]: the
material splits into a region flowing at γ̇c and a non flowing
region, whose relative extent ensures that the shear rate
spatial average is equal to γ̇macro. In macroscopic rheo-
metric experiments, under applied stress, this leads to the
viscosity bifurcation phenomenon [8,9]. This implies that,
in addition to their yield stress, shear banding materi-

1The situation is different in heterogeneous stress fields where
shear localization occurs with any yield stress fluid. The shear rate
at the interface between the sheared and unsheared regions is then
naught for simple, non shear banding, yield stress fluids, whereas it
is non-zero for shear banding materials [3].

als are also characterized by a critical shear rate γ̇c, thus
defining a timescale which must have its origin at a mi-
croscopic scale. Therefore, two different classes of jammed
systems should be considered depending on whether they
exhibit shear banding or not. To understand the physical
origin of this phenomenon, it is thus of high importance
to identify which materials do exhibit shear banding and
which do not.
Shear banding of jammed systems is observed mostly in

colloidal gels [5,6,10], where aggregation due to attractive
interactions and thermally activated structuration mech-
anisms is in competition with shear. It is also observed
in suspensions of noncolloidal particles where it results
from competition between sedimentation-induced contact
formation (which can be seen as an attractive force) and
shear-induced resuspension [11]. Some yield stress fluids
seem not to exhibit shear banding, although experiments
only provide upper bounds on γ̇c: neutrally buoyant non-
colloidal suspensions [11], Carbopol gels [12], dense emul-
sions [13]. In all these cases, if a critical shear rate exists,
it should be smaller than 10−2 s−1. Hence, it is suggested
that attractive, thixotropic systems tend to develop shear
banding whereas repulsive and non-thermal systems do
not [3, 10, 12].
In this context, the case of foams is rather puzzling. Dis-

ordered foams and dense emulsions are both soft jammed
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packings of two immiscible fluids with similar structures
and mechanical behaviors [14]. Their solid-like proper-
ties arise from their density of interfacial energy, and
steady flow is accomplished by shear-induced structural re-
arrangements. Therefore, one could a priori expect foams
to behave like emulsions with respect to shear banding.
Shear banding in emulsions was reported once by Bécu et
al. [15] but this result was later contradicted by Ovarlez
et al. [13] who found γ̇c < 10−2 s−1 for several emulsions.
It is now believed that the shear bands observed in [15]
are transient shear bands (as observed in Carbopol gels
[16]), which disappear in steady state. Several cases of
shear banding in 2D and 3D foams have been reported
in the literature. Many observations of shear banding in
2D foams are now attributed to viscous damping at the
glass boundary [17–20] when the bubbles are confined by
one (or two) glass plate. The case of bubble rafts is still
unclear. On the one hand, Gilbreth et al. [21] have re-
ported a consistent set of shear banded velocity profiles
characterized by a unique γ̇c; these profiles are claimed to
be consistent with a single continuum model in a 10 to
20 bubbles-wide zone, although no stress measurement is
reported. On the other hand, Katgert et al. [20] do not
observe any signature of shear banding for rafts of equiv-
alent bubble size to gap ratios. Moreover their velocity
profiles are not consistent with a single constitutive law,
but can be described by a non-local model, such as what
is found in confined emulsions [22].

The only measurement of local bulk velocity profile we
are aware of in steadily sheared 3D foams was performed
by Rodts et al. [23] and revealed strong shear banding.
Velocity profiles were measured by MRI in a wet foam
(gas volume fraction φ = 92%) sheared in a Couette ge-
ometry. At low rotational velocity of the inner cylinder,
flow localization was observed with a discontinuity of the
shear rate at the interface between the sheared and the un-
sheared regions, thus providing a critical shear rate γ̇c ≃ 5
s−1. Consistently, macroscopic strain rate measurements
by Da Cruz et al. [9] in a similar 3D foam sheared in a ho-
mogeneous stress field (cone and plate geometry) showed
a viscosity bifurcation, characterized by a critical shear
rate γ̇c ≃ 10 s−1.

To account for the observed shear banding in 3D foams
and predict the value of γ̇c, Denkov et al. have proposed
a model based on the thinning dynamics of the films be-
tween bubbles [24]. Shear flow induces rearrangements
thus renewing bubble contacts. New films thin due to
the capillary pressure set by the curvature of the Plateau
borders. As their thickness reaches the range of van der
Waals interactions, the film may thin abruptly to a New-
ton black film (of a few nm thickness) providing a strong
adhesion between the bubbles and locally jamming the
bubble packing. A critical shear rate then results from
the competition between the timescale of shear-induced
rearrangements and that of the Newton black film forma-

tion. It reads:

γ̇c = 1.9
T 3/7A

4/7
H

η 〈d〉15/7 (1− φ)0.3
(1)

with AH the Hamaker constant, T and η the surface ten-
sion and the viscosity of the solution, and 〈d〉 the average
bubble diameter. This prediction seems to be in good
agreement with MRI data [23] and with recent qualitative
measurements [24].
Finally, these results tend to show that 3D foams are not

simple yield stress fluids, in contrast with dense emulsions.
However, whereas solely local measurements of bulk veloc-
ity profiles can unambiguously determine the existence of
steady shear banding in 3D foams, only one such measure-
ment exists in the literature [23]. In this letter, we present
a set of new experiments in 3D foams, with different gas
volume fractions, bubble size and interfacial rheological
properties. Local velocity profiles measured using MRI
show that, in contrast with [9, 23], 3D foams do not ex-
hibit any observable shear banding. Consistently, they do
not exhibit viscosity bifurcation. They appear to behave
as simple Herschel-Bulkley fluids, as previously found in
emulsions [13].
Materials and methods – We study a foam based

on a mixed surfactant aqueous solution, denoted SLES.
It contains Sodium Lauryl-dioxyethylene Sulfate (Stepan
Co., USA) with concentration 0.33% g/g, Cocoamido-
propyl Betaine (Goldschmidt, Germany) with concentra-
tion 0.17% g/g and 60% g/g Glycerol (Fluka, anhydrous
p.a. 99.5% GC). The chemicals are dissolved in water
(millipore milli-Q). The surface tension and the viscosity
of this solution at 21±1 C̊ are T = 31 mN/m and η = 10.8
mPa s [25]. Foam is produced by simultaneously flowing
the SLES solution and pressurized nitrogen gas saturated
with perfluorohexane vapor through a glass bead column
[26]. By adjusting the liquid flow rate and gas pressure,
we produce samples with different controlled gas volume
fractions φ. Using videomicroscopy, we characterize the
average 〈d〉 of the bubble diameter d distribution and its

dimensionless standard deviation µ =

√

〈d2〉 − 〈d〉
2
/ 〈d〉

for each foam sample. We prepare three materials with
same 〈d〉 = 73µm (and µ comprised between 0.5 and 0.6),
of different φ: (i) (88.4 ± 0.3)%, (ii) (92.5 ± 0.3)% , and
(iii) (95.3 ± 0.3)%. In addition, we have a sample with
〈d〉 = 45µm, µ = 0.7, and φ = (92.5± 0.3)%. We also use
Gillette shaving cream (Normal Regular), denoted Gillette
NR, as in previous studies [27] for the sake of comparison
with [9], with φ = (92.0±0.5)%, 〈d〉 = 41µm and µ = 0.6.
Its constitutive foaming solution has T = 28.6 mN/m and
η = 1.9 mPa s [25]. For the sake of comparison with [23],
we use another Gillette shaving cream (Haute Protection)
denoted Gillette HP. As the rigidity of the liquid-gas in-
terfaces plays a role on the behavior of steadily sheared
foams [28], it is interesting to test the influence of this
parameter on shear banding. This can be done from our
experiments (at φ = 92% and 〈d〉 ≃ 40µm) since in con-
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Fig. 1: a) Dimensionless velocity profiles V (R)/V (Ri) for the steady flows of SLES foam (φ = 92%, 〈d〉 = 45 µm), at various
rotational velocities ranging from 5 to 80 rpm; the solid line is the theoretical profile for a Newtonian fluid. b) Comparison
between localized velocity profiles of the foams we studied and that of Rodts et al. [23] (see φ and 〈d〉 in legend). c) Critical
shear rate vs. bubble radius for foams with φ = 92-93%: Denkov et al. data [24] (squares), Rodts et al. data [23] (star); range
of allowed critical shear rates for the SLES foams in this study (bars); the lines are Eq. 1 with AH = 410−20 J (dashed line:
T = 22.3 mN/m, φ = 93%, η = 3.8 mPa s; solid line: T = 31 mN/m φ = 92%, η = 10.8 mPa s).

trast to SLES foam, Gillette NR foam has rigid liquid-gas
interfaces [25, 28].

The material’s local behavior is studied in a wide-gap
Couette geometry (inner cylinder radius Ri=4.1 cm; outer
cylinder radius Ro=6 cm; height H=11 cm). The use of
a wide gap likely prevents (non-local) finite size effects
[13, 20, 22]. Sandpaper is glued to the walls to avoid slip-
page; there is no observable slip in the velocity profiles.
The rheometer is inserted in a 0.5-T vertical MRI spec-
trometer (24/80 DBX by Bruker). In all experiments, the
velocity Ω of the inner cylinder is controlled. We measure
the local velocity in the flowing sample for various constant
Ω ranging from 5 to 100 rpm; the torque exerted by the
material on the inner cylinder is measured using a Bohlin
C-VOR 200 rheometer. The orthoradial velocity profiles
Vθ(R) are obtained through MRI techniques as described
in [29,30]. The MRI setup also allows measurement of the
local water content [30]. In all experiments, we checked
that drainage can be neglected (it led to absolute volume
fraction variations of order 0.5% in the 4cm high measure-
ment zone over the duration of the experiments). We also
checked that there is no observable shear-induced radial
migration of water, as in emulsions [13].

As a complement and to allow for a direct compari-
son of our data with those of Da Cruz et al. [9], we have
performed macroscopic viscosity bifurcation experiments.
Such macroscopic experiments are convincing only if the
stress field is homogeneous; we thus use a 4̊ cone and plate
geometry (as in [9]), with serrated surfaces of 30 mm ra-
dius; the stress heterogeneity is then of the order of 0.5%.
Note however that the gap is small (the gap at the edge is
50 bubbles high); therefore, one cannot exclude finite size
(non-local) effects [20,22]. Experiments consist in first ap-
plying a preshear at high shear rate (20 s−1) during 60 s,
ensuring that the whole material flows initially, before ap-
plying a constant stress for 200 to 300 s. The macroscopic
shear rate is then plotted vs. time to check for the exis-

tence of a steady flow.

Velocity profiles and shear banding – In this
section, we focus on the stationary velocity profiles.
In Fig. 1a, we plot the dimensionless velocity profiles
V (R)/V (Ri) obtained with SLES foam (φ = 92%) for
various rotational velocities Ω. All the studied foams ex-
hibit similar behavior. We observe that the material is
sheared only in a fraction of the gap at low Ω: V (R) van-
ishes (within the measurement uncertainty) at some radius
Rc(Ω) < Ro. Rc increases with Ω. Beyond a critical ve-
locity (that depends on the foam and is of order 40 rpm
in Fig. 1a), the whole sample is sheared.

To analyze these observations, one should first be re-
minded that the shear stress distribution τ(R) is het-
erogeneous: it decreases with increasing radius R and
reads τ(R) = τ(Ri)R

2
i /R

2 from stress balance equations.
When shear extends over the whole gap, the velocity
profiles differ from those of a Newtonian fluid. Their
strong curvature is due to the stress heterogeneity (since
τ(Ri)/τ(Ro) = 2.1) and is typical of shear-thinning fluid:
the shear rate decreases more rapidly within the gap (i.e.
when τ decreases) than for a Newtonian fluid. The shear
localization observed at low velocity is a feature of yield
stress fluid flow in Couette geometry. At low Ω (or applied
stress slightly above the material yield stress τy), the flow
stops at a radius Rc within the gap where the local shear
stress τ(R) equals τy (i.e. Rc = Ri

√

τ(Ri)/τy). The de-
crease of Rc(Ω) as Ω is decreased then comes from the rate
dependence of the constitutive law at the approach of τy.
Note the discrepancy between this observation and that
of Katgert et al. in 2D foams [20] where dimensionless ve-
locity profiles superpose and extend over the whole gap at
any low Ω. We will discuss this differences in the section
devoted to the constitutive law measurements.

From the shear localized velocity profiles, we now ana-
lyze the possible shear banding behavior of the studied
foams. Two cases should be considered. On the one
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hand, if the material is a shear banding material, the
shear rate γ̇(R) should tend towards a critical shear rate
γ̇c 6= 0 as τ approaches τy i.e. as R tends to Rc. As
γ̇(R) = V/R − dV/dR, the local velocity should tend to
zero with a non-zero slope |dV/dR| = γ̇c, independent of
the velocity at the inner cylinder. Shear banding should
then result in a discontinuity of the slope of the velocity
profile at the interface between the sheared and the un-
sheared regions, as in a homogeneous stress field [3]. This
is precisely as observed by Rodts et al. [23] (see Fig. 1b).
For various Ω, they found a consistent set of shear banded
velocity profiles with a slope γ̇c ≈5 s−1 at the interface.
On the other hand, if the material is not a shear band-
ing material, γ̇(R) should tend continuously to zero as τ
approaches τy i.e. as R tends to Rc. This would mean
that dV/dR = 0 at the interface between the sheared and
the unsheared regions i.e. the velocity profile should tend
smoothly to zero.

In Fig. 1b, we plot shear localized velocity profiles ob-
tained by Rodts et al. and by us corresponding to a same
position of Rc (here ≃ 5.4 cm). We focus on the shape of
the velocity profiles at the interface between the sheared
and the unsheared regions. From this plot, it is clear that,
in contrast with the Rodts et al. data, all of our systems
exhibit a smooth transition from flow to rest and thus
seem to be not shear banding materials. Of course, due
to finite experimental resolution, we can never be certain
that no critical shear rate exists. We can only provide up-
per bounds on the critical shear rate – if any – as shown in
Tab. 1. Note that the accuracy of the shear rate measure-
ment depends on the spatial resolution and on the MRI
signal to noise ratio, which depends itself on the foaming
solution and on external factors. The best experimental
conditions were met with the 92% SLES foam, and led to
a rather low upper bound ≈ 0.04 s−1.

Foam φ 〈d〉 Upper bound Model
on γ̇c (Eq. 1)

SLES 92% 45 µm 0.04 s−1 1.45 s−1

SLES 88% 73 µm 0.2 s−1 0.45 s−1

SLES 92% 73 µm 0.2 s−1 0.52 s−1

SLES 95% 73 µm 0.3 s−1 0.6 s−1

Gillette NR 92% 41 µm 0.2 s−1 9.65 s−1

Gillette HP – – 0.6 s−1 –

Table 1: Upper bounds on the critical shear rate γ̇c obtained
from MRI measurements and predictions of Eq. 1 for all foams.

Viscosity bifurcation – It is striking that we find up-
per bounds much lower than the critical shear rates γ̇c pre-
viously observed by Rodts et al. as well as by Da Cruz et
al. on the same systems we studied (Gillette foams). From
macroscopic measurements, Da Cruz et al. evidenced a
viscosity bifurcation in the Gillette NR foam [9], with
γ̇c ≈10 s−1. To understand if viscosity bifurcation ex-
periments can be reconciled with our local measurements,
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Fig. 2: Viscosity bifurcation experiments: shear rate vs. time
at constant controlled stress in a cone and plate geometry.
Thick lines: SLES foam with φ = 92% and 〈d〉 = 45µm (in
grey scale, from black to light grey: 65 Pa, 45 Pa, 30 Pa, 20
Pa). Thin lines: Gillette HP as in [23] (black: 60 Pa, grey: 35
Pa). Empty symbols: Gillette NR as in [9], with 〈d〉 = 30µm
(squares: 60 Pa, circles: 50 Pa).

we have performed these experiments on some of our sys-
tems, including the Gillette NR foam of [9]. We focus on
measurements obtained for applied stress close to the yield
stress to estimate the lowest steady state shear rates than
can be achieved.

Fig. 2 shows that steady state flow can be achieved un-
der controlled stress conditions at shear rate values as low
as 0.1 s−1 for the two Gillette foams (in contrast with the
observations of [9]) and 0.02 s−1 for the SLES foam. Fur-
ther experiments would have to be performed to improve
the estimate of the upper bound of γ̇c from these indirect
measurements. At this stage, the conclusion is that local
and macroscopic measurements are consistent, and lead to
the same result: the absence of observable shear banding
in all foams we studied.

Analysis – We first discuss why the same experiments
performed on the same systems (the Gillette foams of
[9, 23]) provide so different results. Several clues show
that something went wrong in the previous experiments.
First, Da Cruz et al. [9] report a 200 s−1 preshear; we
observe that applying such high shear rate to the Gillette
NR foam with the geometry used in [9] leads to expelling
a large amount of the material from the gap by inertial
forces (this happens for shear rates higher than 30 s−1);
this means that none of the subsequent measurements is
correct. Then the yield stress reported is ≈180 Pa, a
value much higher than values reported in the literature
[14, 27, 31]. This would mean that the material on which
the measurements were performed in [9] was not what it
was supposed to be. The conclusion is that the Da Cruz
et al. results are not correct. The case of the Rodts et al.
data [23] is less obvious. They report a 7 Pa yield stress,
which is lower than data from the literature [14, 27, 31].
Such a low value may indicate a material that is wetter
than it should be, yet it is unclear why this would lead
to shear banding. It was recently shown that some non-
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shear-banding materials may exhibit transient shear band-
ing [16] when a low velocity is applied after a short resting
period; this is not observed when the low velocity is ap-
plied just after a high velocity. In order to check that the
observations of Rodts et al. were not due to such a tran-
sient effect, we have studied the role of the shear history.
MRI velocity measurements were performed under various
conditions, when going from high to low velocities, from
low to high velocities, and when rotating directly after a
long resting time: all procedures were found to provide
the same velocity profiles, i.e. no shear banding (even
transient) was observed. The occurrence of shear banding
in [23] might be due to traces of impurities in the system,
e.g. clay particles, which were also studied with the same
equipment. It was indeed shown that tiny amounts of
colloidal clay particles dispersed in the continuous phase
of a simple emulsion could form bridges between droplets
and lead to thixotropic effects and shear banding [32]; the
same might happen with a foam.
Finally, it seems that something went wrong with the

two previous experiments that reported that foams are
shear banding materials, whereas we provide here a consis-
tent set of data performed with five different foams, with
two different experiments, which do not suffer from the
above mentioned problems. The conclusion is the absence
of observable shear banding in all the foams we studied.
We now compare our upper bounds on γ̇c with the

model of Denkov et al. [24] (Eq. 1), which accounts for
the initial puzzling observations of strong shear banding
in foams by Rodts et al. Fig. 1c shows these bounds vs.
the bubble radius for SLES foam (φ = 92%) as well as the
γ̇c value reported in [23]. It also shows the data obtained
by Denkov et al. with foams of the same surfactants as
in SLES foam mixed with myristic acid. Note that these
last data were obtained in a 8 to 15 bubbles-wide gap, a
case where finite size effects are observed [20]. When the
timescale of shear 1/γ̇ is lower than the duration of bubble
rearrangements, there may be stress heterogeneities at the
bubble scale, leading to shear banding in a thin layer [33],
which is not bulk shear banding.
There is a strong discrepancy between the model and

our data; the model overestimates the critical shear rate
γ̇c for all the studied foams, as shown in Tab. 1. This
means that, while the proposed mechanism in [24] is cer-
tainly relevant in some cases, it may not apply to the foams
made from ionic surfactant solutions without salt addition
that are used in this study. Liquid films actually thin un-
til the balance between capillary and disjoining pressures
is reached, and form equilibrium common black films of
thickness in the range 10-100 nm rather than very thin
Newton black films. More experiments, in systems with
strong attraction between the films, are needed to further
test the model.
Nevertheless, as noted in the introduction, the absence

of shear banding in foams is consistent with the basic
mechanisms that tune shear banding in other complex flu-
ids [3]. In particular, it is consistent with observations in
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Fig. 3: Local constitutive laws measurements of a) Gillette
NR foam (〈d〉 = 41µm), and b) SLES foam (φ = 92%,
〈d〉 = 45µm). Each symbol corresponds to local measure-
ments performed at a same rotational velocity. The solid lines
are Herschel-Bulkley fits to the data τ = τy + ηHB γ̇n, with
τy = 24Pa, ηHB = 25Pa.sn, n = 0.27 for the Gillette NR foam,
τy = 32Pa, ηHB = 12Pa.sn , n = 0.46 for the SLES foam.

dense emulsions [13].

Constitutive law – The constitutive laws accounting
for the materials’ velocity profiles can be built from our
experimental data. From the torque measurements T and
the stress balance equations, one gets the shear stress dis-
tribution in the gap τ(R) = T/(2πHR2). The local shear
rate γ̇(R) in the gap is inferred from the velocity pro-
files V (R) through γ̇(R) = V/R − dV/dR. Both mea-
surements performed at a given radius R for a given ro-
tational velocity Ω thus provide a data point of the local
constitutive law. We checked that the materials remain
homogeneous unpon shear, which allows us to combine
the data measured at various radii. The local constitutive
laws τ(γ̇) obtained for two of the studied foams are plotted
in Fig. 3a and 3b.

We find that the local flows curves obtained from exper-
iments performed at various Ω are consistent with a single
– local – constitutive law for each foam. This contrasts
with recent results in 2D sheared foams [20] where no sin-
gle local constitutive law can account for flow profiles ob-
tained at different Ω. The same difference – non-local and
local constitutive laws – is observed with emulsions flows
in microchannels [22] or in our wide gap Couette geome-
try [13]. As in [13, 22], the main difference between our
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observations and those of Katgert et al. [20] may stand in
the bubble size to gap ratio (i.e. nonlocal effects are fi-
nite size effects). The gap of our geometry is indeed about
500 bubbles wide, whereas the gaps used in [20] are 20 to
40 bubbles wide. Leaving these possible finite size effects
apart, it can finally be concluded that foams, together
with emulsions [13] and Carbopol gels [12], belong to the
class of simple yield stress fluids [3].
The local constitutive laws we obtain are well fitted

to Herschel-Bulkley laws, with exponents consistent with
those of foams with rigid (n=0.27) or mobile (n=0.46) in-
terfaces [28]. We also remark that the Herschel-Bulkley
consistency ηHB of the SLES foam is in fair agreement
with the Denkov et al. prediction (see Eq. 5 of [28]). Note
finally that, due to the limited range of low strain rates
measurements, the yield stress for Gillette NR foam is
probably underestimated
Conclusion – Our measurements demonstrate that

three-dimensional foams do not exhibit observable signa-
tures of shear banding. This contrasts with the results of
Rodts et al. [23] and Da Cruz et al. [9], which we have
shown to pose several experimental problems. The ques-
tion remains open whether steady shear banding may oc-
cur in extremely dry foams since it has been observed upon
shear start-up [26]. Our results also disagree with the re-
cent model of Denkov et al. [24], which is shown here to
overestimate the critical shear rate – if any – of the foams
we studied. Further experiments with strong attraction
between films would be needed to test the mechanism pro-
posed in [24]. While nonlocal effects have been recently
evidenced [20], we have finally shown that the constitutive
law of foams measured locally in a wide gap geometry is
that of simple Herschel-Bulkley yield stress fluids, as emul-
sions [13] and Carbopol gels [12]. Experiments at both
small and large scales on a same system, as in of Goyon
et al. [22], remain to be performed to test the non-local
modelling of 3D foam flows.
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