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ORBITAL STABILITY OF SPHERICAL GALACTIC MODELS

. In this work, we show how this approach combined with a new generalized Antonov type coercivity property implies the orbital stability of spherical models under general perturbations.

Introduction and main results

1.1. The gravitational Vlasov Poisson system. We consider the three dimensional gravitational Vlasov-Poisson system   

∂ t f + v • ∇ x f -∇φ f • ∇ v f = 0, (t, x, v) ∈ R + × R 3 × R 3 f (t = 0, x, v) = f 0 (x, v) ≥ 0, (1.1) 
where, throughout this paper,

ρ f (x) = R 3 f (x, v) dv and φ f (x) = - 1 4π|x| * ρ f (1.2)
are the density and the gravitational Poisson field associated to f . This nonlinear transport equation is a well known model in astrophysics for the description of the mechanical state of a stellar system subject to its own gravity and the dynamics of galaxies, see for instance [START_REF] Binney | Galactic Dynamics[END_REF][START_REF] Fridmann | Physics of gravitating systems[END_REF].

The global Cauchy problem is solved in [START_REF] Lions | Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system[END_REF][START_REF] Pfaffelmoser | Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data[END_REF][START_REF] Schaeffer | Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions[END_REF] where unique global classical solutions f (t) in C 1 c , the space of C 1 compactly supported functions, are derived. Two fundamental properties of the nonlinear transport flow (1.1) are then first the preservation of the total Hamiltonian

H(f (t)) = 1 2 R 6 |v| 2 f (t, x, v)dxdv - 1 2 R 3 |∇φ f (t, x)| 2 dx = H(f (0)), (1.3) 
and second the preservation of all the so-called Casimir functions: ∀G ∈ C 1 ([0, +∞), R + ) such that G(0) = 0,

R 6 G(f (t, x, v)) dxdv = R 6
G(f 0 (x, v)) dxdv .

(1.4)

Equivalently, consider the distribution function associated to f :

∀s ≥ 0, µ f (s) = meas (x, v) ∈ R 6 : f (x, v) > s , (1.5) 
then (1.4) means the conservation law associated to nonlinear transportation:

∀t ≥ 0, µ f (t) = µ f 0 . (1.6) 
In this paper, we will deal with weak solutions in the natural energy space

E = f ≥ 0 with f ∈ L 1 ∩ L ∞ (R 6
) and |v| 2 f ∈ L 1 (R 6 ) .

(1.7)

For all f 0 ∈ E, (1.1) admits a weak solution f (t), constructed for instance in [START_REF] Arsen'ev | Global existence of a weak solution of Vlasov's system of equations[END_REF][START_REF] Horst | Weak solutions of the initial value problem for the unmodified nonlinear Vlasov equation[END_REF][START_REF] Illner | An existence theorem for the unmodified Vlasov equation[END_REF], which is also a renormalized solution, see [START_REF] Diperna | Global weak solutions of kinetic equations[END_REF][START_REF] Diperna | Solutions globales d'équations du type Vlasov-Poisson[END_REF]. Moreover, this solution still satisfies (1.4), belongs to C([0, +∞), L 1 (R 6 )) and the energy conservation (1.3) is replaced by an inequality:

∀t ≥ 0, H(f (t)) ≤ H(f 0 ). (1.8)
1.2. Previous results. Jean's theorem [START_REF] Batt | Stationary spherically symmetric models in stellar dynamics[END_REF] gives a complete classification of radially symmetric steady state solutions to (1.1). Recall that radial symmetry in our setting means f (x, v) ≡ f (|x|, |v|, x • v). They are of the form

Q(x, v) = F (e, ℓ)
where e, ℓ are respectively the microscopic energy and the kinetic momentum

e(x, v) = |v| 2 2 + φ Q (x), ℓ = |x ∧ v| 2 (1.9) 
and are the only two invariants of the radially symmetric characteristic flow associated to the transport operator

τ = v • ∇ x -∇φ Q • ∇ v .
A canonical problem which has attracted a considerable amount of works both in the physical and the mathematical community is the question of the nonlinear stability of steady states models. The linear stability of all nonincreasing anisotropic models satisfying ∂F ∂e < 0 (1.10) is derived by Doremus, Baumann and Feix [START_REF] Doremus | Stability of a Self Gravitating System with Phase Space Density Function of Energy and Angular Momentum[END_REF] (see also [START_REF] Gillon | Stability of self-gravitating spherical systems in which phase space density is a function of energy and angular momentum, for spherical perturbations[END_REF][START_REF] Kandrup | A simple proof of dynamical stability for a class of spherical clusters[END_REF][START_REF] Sygnet | Stability of gravitational systems and gravothermal catastrophe in astrophysics[END_REF] for related works), following the pioneering work by Antonov in the 60's [START_REF] Antonov | Remarks on the problem of stability in stellar dynamics[END_REF][START_REF] Antonov | Solution of the problem of stability of a stellar system with the Emden density law and spherical velocity distribution[END_REF]. This analysis is based on some coercivity properties of the linearized Hamiltonian under constraints formally arising from the linearization of the Casimir conservation laws (1.4), see Lynden-Bell [START_REF] Lynden-Bell | The Hartree-Fock exchange operator and the stability of galaxies[END_REF], known as Antonov's coercivity property. At the nonlinear level, the full orbital stability in the natural energy space E has been obtained for specific subclasses of steady states as a direct consequence of Lions' concentration compactness principle [START_REF] Lions | The concentration-compactness principle in the calculus of variations. The locally compact case. I[END_REF][START_REF] Lions | The concentration-compactness principle in the calculus of variations. The locally compact case. II[END_REF], see [START_REF] Wolansky | On nonlinear stability of polytropic galaxies[END_REF][START_REF] Guo | Variational method for stable polytropic galaxies[END_REF][START_REF] Guo | Stable steady states in stellar dynamics[END_REF][START_REF] Guo | Isotropic steady states in galactic dynamics[END_REF][START_REF] Guo | On the generalized Antonov's stability criterion[END_REF][START_REF] Dolbeault | Asymptotic behaviour for the Vlasov-Poisson system in the stellar-dynamics case[END_REF][START_REF] Schaeffer | Steady States in Galactic Dynamics[END_REF][START_REF] Lemou | Orbital stability and singularity formation for Vlasov-Poisson systems[END_REF][START_REF] Lemou | On the orbital stability of the ground states and the singularity formation for the gravitational Vlasov-Poisson system[END_REF][START_REF] Lemou | Stable ground states for the relativistic gravitational Vlasov-Poisson system[END_REF][START_REF] Sánchez | Orbital stability for polytropic galaxies[END_REF]. This powerful strategy however only applies to specific models which are global minimizers of the Hamiltonian (1.3) under at most two Casimir type conservation laws, see [START_REF] Lemou | On the orbital stability of the ground states and the singularity formation for the gravitational Vlasov-Poisson system[END_REF][START_REF] Lemou | Stable ground states for the relativistic gravitational Vlasov-Poisson system[END_REF] for a more complete introduction.

A first attempt to treat the general case and use the full rigidity provided by the continuum of conservation laws (1.4) is proposed in [START_REF] Guo | A non-variational approach to nonlinear Stability in stellar dynamics applied to the King model[END_REF], [START_REF] Guo | Unstable and stable galaxy models[END_REF] where the first result of stability against radially symmetric perturbations is obtained for the King model F (e) = (exp(e 0 -e) -1) + . The approach is based on Antonov's coercivity property and a direct linearization of the Hamiltonian near the King profile.

We proposed in [START_REF] Lemou | A new variational approach to the stability of gravitational systems[END_REF] a different approach based on fine monotonicity properties of the Hamiltonian under suitable generalized symmetric rearrangements as first observed in pioneering breakthrough works in the physics litterature, see in particular Lynden-Bell [START_REF] Lynden-Bell | The Hartree-Fock exchange operator and the stability of galaxies[END_REF], Gardner [START_REF] Gardner | Bound on the energy available from a plasma[END_REF], Wiechen, Ziegler, Schindler [START_REF] Wiechen | Relaxation of collisionless self gravitating matter: the lowest energy state[END_REF], Aly [START_REF] Aly | On the lowest energy state of a collisionless self-gravitating system under phase volume constraints[END_REF]. This approach avoids the delicate step of linearization of the Hamiltonian and reduces the stability problem for the full distribution function f to a minimization problem for a generalized energy involving the Poisson field φ f only. The main outcome is the radial stability of nondecreasing anisotropic models, proved in [START_REF] Lemou | A new variational approach to the stability of gravitational systems[END_REF]: Theorem 1.1 (Radial stability of nonincreasing anisotropic models, [START_REF] Lemou | A new variational approach to the stability of gravitational systems[END_REF]). Let Q(x, v) = F (e, ℓ) be a continuous, nonnegative compactly supported steady state solution to (1.1). Assume that Q is nonincreasing in the following sense: there exists e 0 < 0 such that F is C 1 on O = {(e, ℓ) ∈ R × R + : F (e, ℓ) > 0} ⊂ (-∞, e 0 ) × R + and ∂F ∂e < 0 on O.

Then Q is stable in the energy norm by radially symmetric perturbations, ie: for all M > 0, for all ε > 0, there exists η > 0 such that given f 0 ∈ C 1 c radially symmetric with

f 0 -Q L 1 ≤ η, f 0 L ∞ ≤ Q L ∞ + M, |H(f 0 ) -H(Q)| ≤ η, (1.11) 
the corresponding global strong solution f (t) to (1.1) satisfies:

∀t ≥ 0, (1 + |v| 2 )(f (t) -Q) L 1 ≤ ε.
(1.12)

1.3. Statement of the result. Our aim in this paper is to extend the stability result of Theorem 1.1 to the full set of non radial perturbations. Here we recall that the radial problem enjoys an additional rigidity because for f (x.v) radially symmetric, the Casimir conservation laws (1.4) can be extended as follows: ∀G(h, ℓ) ≥ 0,

C 1 with G(0, ℓ) = 0, R 6 G(f (t, x, v), |x ∧ v| 2 )dxdv = R 6 G(f 0 (x, v), |x ∧ v| 2 )dxdv. (1.13)
This additional conservation law is fundamental in the proof of Theorem 1.1, and at the linear level, it is intimately connected to Antonov's coercivity property which is essentially equivalent to the coercivity of the Hessian of the Hamiltonian (1.3) under the full set of linearized constraints generated by (1.13).

For the full non radial problem, (1.13) is lost. However, we claim that the strategy developped in [START_REF] Lemou | A new variational approach to the stability of gravitational systems[END_REF] coupled with a new generalized Antonov coercivity property allows us to derive the classical conjecture of orbital stability of nonincreasing spherical models.

Theorem 1.2 (Orbital stability of spherical models). Let Q be a continuous, nonnegative, non zero, compactly supported steady solution to (1.1). Assume that Q is a nonincreasing spherical model in the following sense: there exists a continuous function

F : R → R + such that ∀(x, v) ∈ R 6 , Q(x, v) = F |v| 2 2 + φ Q (x) , (1.14) 
and there exists e 0 < 0 such that F (e) = 0 for e ≥ e 0 , F is C 1 on (-∞, e 0 ) and

F ′ < 0 on (-∞, e 0 ). (1.15)
Then Q is orbitally stable in the energy norm by the flow (1.1): for all M > 0, for all ε > 0, there exists η > 0 such that, given f 0 ∈ E with

f 0 -Q L 1 ≤ η, H(f 0 ) ≤ H(Q) + η, f 0 L ∞ ≤ Q L ∞ + M, (1.16) 
for any weak solution f (t) to (1.1), there exists a translation shift z(t) such that ∀t ≥ 0,

(1 + |v| 2 )(f (t, x, v) -Q(x -z(t), v)) L 1 (R 6 ) ≤ ε.
(1.17)

Comments on Theorem 1.2.

1. On the assumption on Q. Jean's theorem [START_REF] Batt | Stationary spherically symmetric models in stellar dynamics[END_REF] ensures that the assumptions we make on Q are very general. Note that we allow F ′ to blow up on the boundary e → e 0 which is known to happen for many standard models. We in particular extract from [START_REF] Binney | Galactic Dynamics[END_REF] two models of physical relevance which fit into our analysis:

-The generalized polytropic models:

F (e) = 0≤i,j≤N α ij (e 0 -e) q i + , 0 < q i < 7 2 , α ij ≥ 0.
-The King model:

F (e) = (exp(e 0 -e) -1) + for some e 0 < 0.

2. Anisotropic models. Note that Theorem 1.2 deals with spherical models Q = F (e) while the full class of anisotropic models Q = F (e, ℓ) is considered in Theorem 1.1.

Let us insist that the orbital stability of all anisotropic models with respect to non radial perturbations is not expected to hold in general (see [START_REF] Binney | Galactic Dynamics[END_REF]) and nonradial instability mechanisms may happen induced by the non trivial dependence on kinetic momentum. We present a full non radial approach for spherical models only which is a canonical class, but which is likely not to be optimal. The derivation of sharp criterions of stability or instability for anisotropic models under non radial perturbations remains to be done.

3. Quantitative bounds. The proof of Theorem 1.2 will rely on a compactness argument, and one could ask for more quantitative bounds. Such bounds are available for the Poisson field and a consequence of our analysis is that for f ∈ E satisfying (1.16), we can find z f ∈ R 3 such that

H(f ) -H(Q) + φ f L ∞ f * -Q * L 1 ≥ c 0 ∇φ f -∇φ Q (• -z f ) 2 L 2
for some universal constant c 0 > 0, see (4.4), where f * and Q * denote respectively the usual symmetric decreasing rearrangements of f and Q, as defined in Lemma 2.3. The quantitative control of the full distribution function however seems to involve more subtle norms and would rely on weighted estimates for the bathtub principles, see (2.25). Such estimates were derived in the context of the incompressible 2D Euler in [START_REF] Marchioro | Some considerations on the nonlinear stability of stationary planar Euler flows[END_REF][START_REF] Wan | Nonlinear Stability of Circular Vortex Patches[END_REF], but they seem to be more involved in our case due to the nonlinear structure of the generalized symmetric rearrangement that we consider, see (1.19).

1.4. Strategy of the proof. Let us give a brief insight into the strategy of the proof of Theorem 1.2 which extends the approach introduced in [START_REF] Lemou | A new variational approach to the stability of gravitational systems[END_REF].

Step 1. Monotonicity of the Hamiltonian under generalized symmetric rearrangements.

Let us define the Schwarz symmetrization of f as

f * (s) = inf{τ ≥ 0 : µ f (τ ) ≤ s}, (1.18) 
where µ f is defined by (1.5), which is the unique decreasing function on R + with

µ f = µ f * .
Given a potential φ in a suitable "Poisson field" class, we define the generalized symmetric nonincreasing rearrangement of f with respect to the microscopic energy e = |v| 2 2 + φ(x) as the unique function of e which is equimeasurable to f , explicitely

f * φ (x, v) = f * • a φ (e(x, v)), a φ (e) = meas{(x, v) ∈ R 6 , |v| 2 2 + φ(x) < e}. (1.19)
Any nonincreasing spherical steady state solution to (1.1) is a fixed point of this transformation when generated by its own Poisson field:

Q * φ Q = Q. (1.20)
Moreover, the Hamiltonian (1.3) enjoys a nonlinear monotonicity property which was first observed in the physics litterature, see in particular Aly [START_REF] Aly | On the lowest energy state of a collisionless self-gravitating system under phase volume constraints[END_REF]:

H(f ) ≥ H(f * φ f ). (1.21) 
For perturbations which are equimeasurable to Q ie

f * = Q * , (1.22) 
we can more precisely lower bound the Hamiltonian by a functional which depends on the Poisson field only:

H(f ) -H(Q) ≥ J (φ f ) -J (φ Q ) (1.23)
where J can be interpreted as a generalized energy, [START_REF] Lynden-Bell | The Hartree-Fock exchange operator and the stability of galaxies[END_REF]:

J (φ f ) = H(Q * φ f ) + 1 2 R 3 |∇φ Q * φ f -∇φ f | 2 .
Step 2. Coercivity of the Hessian: a Poincaré inequality.

We now linearize the functional J at φ Q . The linear term drops thanks to the Euler-Lagrange equation (1.20) and the Hessian takes the following remarkable form

D 2 J (φ Q )(h, h) = R 3 |∇h| 2 - R 6 |F ′ (e)|(h -Πh) 2 dxdv (1.24)
where Π, defined by (3.8), denotes after a suitable phase space change of variables the projection of h onto the functions which depend only on the microscopic energy e. A similar structure occured in [START_REF] Lemou | A new variational approach to the stability of gravitational systems[END_REF] where the corresponding quadratic form was

R 3 |∇h| 2 - R 6 ∂F ∂e (e, ℓ) (h -Π e,ℓ h) 2 dxdv (1.25)
and where Π e,ℓ corresponds to the projection onto functions which depend on (e, ℓ) only (e and ℓ being defined by (1.9)). The strict coercivity of the quadratic form (1.25) was then equivalent to Antonov's stability result, but this statement is no longer sufficient in our setting as (1.25) is lower bounded by (1.24). We now claim the positivity of (1.24) for spherical models

D 2 J (φ Q )(h, h) = R 3 |∇h| 2 - R 6 |F ′ (e)|(h -Πh) 2 dxdv ≥ 0, (1.26) 
and in fact the quadratic form is coercive up to the degeneracy induced by translation invariance 1 . For this, we reinterpret (1.26) as a generalized Poincaré inequality with sharp constant, and we claim that the classical approach developed by Hörmander [START_REF] Hörmander | An Introduction to Complex Analysis in Several Variables[END_REF][START_REF] Hörmander | L2 estimates and existence theorems for the ∂ operator[END_REF] for the proof of sharp weighted L 2 Poincaré inequalities:

dµ = e -V (x) dx, R N (f -f ) 2 dµ R N |∇f | 2 dµ, f = R N f dµ R N dµ under the convexity assumption ∇ 2 V 1 (1.27
) can be adapted to our setting. In particular, the non trivial convexity property (1.27) appears in the setting of (1.26) as a consequence of the non linear structure of the steady state equation (1.20), see (3.48).

Step 3. Compactness up to translations.

The outcome of Step 2 is the variational characterization of Q, φ Q respectively as the locally unique (up to translation shift) minimizers of the respectively constrained and unconstrained minimization problems

inf f * =Q * H(f ), inf J (φ).
More precisely, we will show that J (φ) -J (φ Q ) controls the distance of φ to the manifold of translated Poisson fields φ Q (• + x), x ∈ R 3 , see Proposition 3.1.

From standard continuity arguments, the conservation law (1.6) and the inequality (1.8) ensure that Theorem 1.2 is now equivalent to the relative compactness in the energy space up to translation of generalized minimizing sequences:

f * n → Q * in L 1 and lim sup n→+∞ H(f n ) ≤ H(Q).
A slight improvement of the lower bound (1.23) implies first the relative compactness up to translations

∇φ fn (• + x n ) → ∇φ Q in L 2 (R 3
). The strong convergence in the energy norm of the full distribution function now follows from a further use of the extra terms in the monotonicity property (1.21) which yields:

(1 + |v| 2 )|f n (x + x n , v) -Q(x, v)|dxdv → 0 as n → +∞
and enables to conclude the proof of Theorem 1.2.

The paper is organized as follows. In section 2, we show how a suitable phasespace symmetrization allows to reduce the study of the Hamiltonian H to the study of a functional J which depends on the Poisson field φ f only. In section 3, we show that φ Q is a local minimizer of this new functional and that J (φ) -J (φ Q ) controls the distance of φ to the manifold of translated functions φ Q (• + z), z ∈ R 3 , 1 see Proposition 3.6 for precise statements Proposition 3.1. In section 4, a sharp use of the monotonicity properties for both functionals H and J yields the compactness of the whole minimizing distribution functions. The proof of Theorem 1.2 then follows in section 5.
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Reduction to a functional of the gravitational potential

In this section, we introduce the notion of rearrangement with respect to a given Poisson type field, and show the monotonicity of the Hamiltonian under the corresponding transformation which allows to compare the minimization problem of H(f ) under the constraint f * = Q * to an unconstrained minimization problem on the Poisson field φ f only. Our approach extends the one we developed in [START_REF] Lemou | A new variational approach to the stability of gravitational systems[END_REF] to the case of non radial potentials, and most arguments are in fact simplified by the absence of kinetic momentum. Notice that (2.1) implies:

∀φ, φ ∈ X , ∀λ > 0, m(φ + φ) ≥ m(φ) + m( φ), m(λφ) = λm(φ), (2.2) 
and thus X is convex. Moreover, there holds:

Lemma 2.1 (Properties of Poisson fields). Let f ∈ E nonzero and φ f be its Poisson field given by (1.2), then φ f ∈ X .

Proof. Let f ∈ E, nonzero. From standard interpolation estimates,

ρ f ∈ L 5/3 ∩ L 1 .
Hence, by elliptic regularity,

φ f ∈ W 2,5/3 loc , ∇φ f ∈ L 2 (R 3
) and φ f ∈ C 0, 1 5 by Sobolev embedding. Also φ f ≤ 0 and φ f (x) → 0 as |x| → +∞ from (1.2). In particular, φ f attains its infimum on R 3 with -∞ < min φ f ≤ 0.

It remains to show that m(φ) > 0 which follows from the existence of C f > 0 such that:

∀x ∈ R 3 , φ(x) ≤ - C f 1 + |x| . (2.3) Indeed, pick R > 0 such that |y|<R ρ f (y)dy ≥ f L 1 2 > 0,
and estimate for |x| > R:

-φ(x) = R 3 ρ f (y) 4π|x -y| dy ≥ |y|<R ρ f (y) 4π(|x| + R) dy ≥ f L 1 8π(|x| + R) ,
which yields (2.3). The proof of Lemma 2.1 is complete.

Let us now associate to φ ∈ X the following Jacobian function:

Lemma 2.2 (Properties of the Jacobian a φ ). Let φ ∈ X . We define the Jacobian function a φ : R * -→ R + as:

∀e < 0, a φ (e) = meas (x, v) ∈ R 6 : |v| 2 2 + φ(x) < e .

Then:

(i) There holds the explicit formula:

∀e < 0, a φ (e) = 8π √ 2 3 R 3 (e -φ(x)) 3/2 + dx.
(2.4)

In particular, a φ (e) = 0 for all e < min φ;

(ii) a φ is C 1 on (-∞, 0) and is a strictly increasing C 1 diffeomorphism from [min φ, 0) onto R + .
Proof. Let us prove (i). We have the inclusion

(x, v) ∈ R 6 : |v| 2 2 + φ(x) < e ⊂ (x, v) ∈ R 6 : φ(x) < e and |v| 2 ≤ 2(e -min φ) .
Let e < 0. Since φ is continuous and goes to zero at the infinity, the set in the right-hand side is bounded in R 6 , thus a φ (e) < +∞. The formula (2.4) now follows after passing to the spherical coordinates in velocity. We now prove (ii). Since, for all e < 0, the set x ∈ R 3 : φ(x) < e is bounded, we may apply the dominated convergence theorem and get the continuity and differentiability of a φ on R * -, with

a ′ φ (e) = 4π √ 2 R 3 (e -φ(x)) 1/2 + dx. (2.5)
Hence a ′ φ is nonnegative and clearly continuous. Moreover, if a ′ φ (e) = 0 then eφ(x) ≤ 0 for all x ∈ R 3 , which means that e ≤ min φ. Therefore, if e > min φ, then a ′ φ (e) > 0. It remains to prove that lim e→0-a φ (e) = +∞. Since φ ∈ X , we have

a φ (e) ≥ C R 3 e + m(φ) 1 + |x| 3/2 + dx → +∞ as e → 0, from R 3 dx (1+|x|) 3/2 = +∞, m ( 
φ) > 0 and the monotone convergence theorem. This concludes the proof of Lemma 2.2.

2.2.

Rearrangement with respect to the microscopic energy. We introduce in this section the generalized rearrangement of f with respect to a Poisson field φ ∈ X . Let us start with recalling standard properties of the Schwarz symmetrization, [START_REF] Kavian | Introduction à la théorie des points critiques et applications aux problèmes elliptiques[END_REF][START_REF] Lieb | Loss, Analysis[END_REF][START_REF] Mossino | Inégalités isopérimétriques et applications en physique[END_REF].

Lemma 2.3 (Schwarz symmetrization or radial rearrangement). Let f ∈ L 1

+ ∩ L ∞ , then the Schwarz symmetrization f * of f is the unique nonincreasing function on R + such that f and f * have the same distribution function:

∀s ≥ 0, µ f (s) = µ f * (s)
with µ f given by (1.5) and µ f * defined analogously 2 . Equivalently, f * is the pseudoinverse of µ f :

∀t ≥ 0, f * (t) = inf {s ≥ 0 : µ f (s) ≤ t} . The following properties hold: (i) f * ∈ L 1 + ∩ L ∞ with f * (0) = f L ∞ , Supp(f * ) ⊂ [0, meas(Supp(f ))]; (ii) for all β ∈ C 1 (R + , R + ) with β(0) = 0, R + β(f * (t))dt = R 6 β(f (x, v))dxdv. (2.6)
Observe that the above definition of f * is equivalent to

∀t ≥ 0, f * (t) = sup {s ≥ 0 : µ f (s) > t} ,
with the convention that f * (t) = 0 when the set {s ≥ 0 : µ f (s) > t} is empty. Note also that if f is continuous then f * is continuous [START_REF] Talenti | Elliptic equations and rearrangements[END_REF]. In particular, Q * is continuous.

Given φ ∈ X , we now define the rearrangement of f with respect to the microscopic energy |v| 2 2 + φ(x) as follows: Lemma 2.4 (Symmetric rearrangement with respect to a microscopic energy). Let f ∈ E and let φ ∈ X . Let f * be the Schwarz rearrangement in R 6 given by Lemma 2.3. We define the function

f * φ (x, v) =      f * a φ |v| 2 2 + φ(x) if |v| 2 2 + φ(x) < 0 0 if |v| 2 2 + φ(x) ≥ 0 (2.7) on R 6
, where a φ is defined by (2.4). Then:

(i) f * φ is equimeasurable with f , i.e. f * φ ∈ Eq(f ) = {g ∈ L 1 + ∩ L ∞ with µ f = µ g }. (2.8) (ii) f * φ belongs to the energy space, i.e. f * φ ∈ E with R 6 |v| 2 2 f * φ dxdv ≤ C ∇φ 4/3 L 2 f 7/9 L 1 f 2/9 L ∞ .
(2.9)

Proof. Let us prove (i). The equimeasurability of f and f * φ relies on the following elementary change of variable formula: let two nonnegative function

α ∈ C 0 (R) ∩ L ∞ (R) and γ ∈ L 1 (R + ), then |v| 2 2 +φ(x)<0 α |v| 2 2 + φ(x) γ a φ |v| 2 2 + φ(x) dxdv = 0 min φ α(e)γ(a φ (e))a ′ φ (e)de = +∞ 0 α a -1 φ (s) γ(s)ds. (2.10)
2 through the one dimensional Lebesgue measure

To obtain the first equality in (2.10), we pass to the spherical coordinates in velocity u = |v| and perform the change of variable e = u 2 2 + φ(x) in the integral of u:

|v| 2 2 +φ(x)<0 α |v| 2 2 + φ(x) γ a φ |v| 2 2 + φ(x) dxdv = 4π √ 2 R 3 dx 0 φ(x)
α(e)γ(a φ (e)) (e -φ(x)) 1/2 de.

= 4π √ 2 0 min φ α(e)γ(a φ (e))de R 3 (e -φ(x)) 1/2 + dx.
We conclude thanks to the formula (2.5) of a ′ φ . The second equality comes after the change of variable s = a φ (e). Recall from Lemma 2.2 that a φ is a

C 1 diffeomorphism from [min φ, 0) onto R + . Let β ∈ C 1 (R + , R + ) such that β(0) = 0. From (2.10
) and the definition (2.7), we get

R 6 β f * φ (x, v) dxdv = +∞ 0 β(f * (s))ds = R 6 β(f (x, v))dxdv,
where we use (2.6). This proves that f * φ ∈ Eq(f ).

Let us now prove (ii). From the equimeasurability of f and f * φ , we already deduce that

f L 1 = f * φ L 1 , f L ∞ = f * φ L ∞ .
(2.11) Moreover, we have

R 6 |v| 2 2 f * φ dxdv = R 6 |v| 2 2 + φ(x) f * φ dxdv - R 6 φ(x)f * φ dxdv ≤ - R 6 φ(x)f * φ dxdv ≤ φ L ∞ f * L 1 < +∞,
where we used (2.7). More precisely:

R 6 |v| 2 2 f * φ dxdv ≤ - R 6 φ(x)f * φ dxdv = R 3 ∇φ • ∇φ f * φ dx ≤ C ∇φ L 2 |v| 2 f * φ 1/4 L 1 f * φ 7/12 L 1 f * φ 1/6 L ∞
where we used the Cauchy-Schwarz inequality and the following standard interpolation inequality: for all g ∈ E,

∇φ g 2 L 2 ≤ C |v| 2 g 1/2 L 1 g 7/6 L 1 g 1/3 L ∞ , (2.12) 
and (2.9) follows. This concludes the proof of Lemma 2.4.

We end this subsection with an elementary lemma which will be useful in the sequel.

Lemma 2.5 (Pseudo inverse of f * • a φ ). Let f ∈ E, nonzero, and φ ∈ X . We define the pseudo inverse of f * • a φ for s ∈ (0, f L ∞ ) as: (f * • a φ ) -1 (s) = sup{e ∈ [min φ, 0) : f * • a φ (e) > s}.
(2.13)

Then (f * • a φ ) -1 is a nonincreasing function from (0, f L ∞ ) to [min φ, 0) and for all (x, v) ∈ R 6 and s ∈ (0, f L ∞ ), f * φ (x, v) > s =⇒ |v| 2 2 + φ(x) ≤ (f * • a φ ) -1 (s), (2.14) 
f * φ (x, v) ≤ s =⇒ |v| 2 2 + φ(x) ≥ (f * • a φ ) -1 (s), (2.15) 
where f * φ is defined by (2.7).

Proof. Let s ∈ (0, f L ∞ ), then from f * (0) = f L ∞ , f * (t) → 0 as t → +∞ and Lemma 2.2, {e ∈ [min φ, 0) : f * • a φ (e) > s} is not empty (2.16)
and (f * • a φ ) -1 (s) defined by (2.13) is strictly negative. The monotonicity of (f * • a φ ) -1 follows from the monotonicity of f * and a φ . Assume that f * φ (x, v) > s, then from the definition (2.7), we have min φ ≤ |v| 2 2 + φ(x) < 0. We also have We now reinterpret the assumptions on Q in Theorem 1.2 and claim that spherical models are fixed points of the f → f * φ f transformation3 . Lemma 2.6 (Q is a fixed point of the f * φ f rearrangement). Let Q be a radially symmetric spherical models as in the assumptions of Theorem 1.2. Then we have

f * • a φ ( |v| 2 2 + φ(x)) > s, therefore |v| 2 2 + φ(x) ≤ (f * • a φ ) -1 (s)
F (e) = Q * • a φ Q (e), ∀e ∈ [φ Q (0), 0),
and

Q * φ Q = Q on R 6 . (2.17)
Proof. Observe first that, since the boundary of {Q(x, v) > 0} is the level set

|v| 2 2 + φ Q (x) = e 0 , we have µ Q (0) = meas (Supp(Q)).
From the equimeasurability of Q and Q * , we have

µ Q (F (e)) = meas (x, v) ∈ R 6 , F |v| 2 2 + φ Q (x) > F (e) = meas{s ∈ R * + , Q * (s) > F (e)},
for all e ≤ e 0 . Since F is strictly decreasing on (-∞, e 0 ], this is equivalent to

µ Q (F (e)) = a φ Q (e) = meas s ∈ R * + , Q * (s) > F (e) , ∀e ≤ e 0 . (2.18) 
In particular a φ Q (e 0 ) = meas(Supp(Q)) > 0, which implies that φ Q (0) < e 0 . From (2.18) and the invertibility of both continuous functions F and

a φ Q on [φ Q (0), e 0 ], we deduce that µ Q is continuous and one-to-one from [0, F (φ Q (0))] to [0, a φ Q (e 0 )].
In particular, Q * is the inverse of µ Q on this interval (and not only its pseudo-inverse) and we have

Q * • a φ Q (e) = F (e), ∀e ∈ [φ Q (0), e 0 ]. (2.19) 
Identity (2.19) is still valid for e 0 < e < 0. Indeed, in this case, we have F (e) = 0, and

a φ Q (e) > a φ Q (e 0 ) = meas(Supp(Q)), which implies that Q * • a φ Q (e) = 0.
The first identity of (2.17) is then proved. Now, the identity Q * φ Q = Q is a straightforward consequence of the first identity of (2.17). Indeed, we first observe that

|v| 2 2 + φ Q (x) ≥ φ Q (0). If |v| 2 2 + φ Q (x) ≥ 0 then F |v| 2 2 + φ Q (x) = 0 and Q * φ Q (x, v) = 0 from the definitions of F and Q * φ Q . If |v| 2 2 + φ Q (x)
< 0, then we apply the first identity to e = |v| 2 2 + φ Q (x) and get the desired equality. The proof of Lemma 2.6 is complete.

Monotonicity of the Hamiltonian under symmetric rearrangement.

We are now in position to derive the monotonicity of the Hamiltonian under the generalized rearrangement which is the first key to our analysis and was already observed in the physics litterature, see [START_REF] Aly | On the lowest energy state of a collisionless self-gravitating system under phase volume constraints[END_REF] and references therein. Given f ∈ E \ {0}, by Lemma 2.1 we have φ f ∈ X and we will note to ease notation:

f = f * φ f .
(2.20)

Given φ ∈ X , we define the functional

J f * (φ) = H(f * φ ) + 1 2 ∇φ -∇φ f * φ 2 L 2 (2.21)
which is well defined from Proposition 2.4. We claim:

Proposition 2.7 (Monotonicity of the Hamiltonian under the f * φ f rearrangement).

Let f ∈ E \ {0} and f given by (2.20), then:

H(f ) ≥ J f * (φ f ) ≥ H( f ). (2.22) Moreover, H(f ) = H( f ) if and only if f = f .
Proof. First compute for all (f, g) ∈ E:

H(f ) = 1 2 R 6 |v| 2 f - 1 2 R 3 |∇φ f | 2 = R 6 |v| 2 2 + φ f (f -g) + 1 2 R 6 |v| 2 g + R 3 φ f g + 1 2 |∇φ f | 2 = H(g) + 1 2 ∇φ f -∇φ g 2 L 2 + R 6 |v| 2 2 + φ f (x) (f -g). (2.23) 
Replacing g by f = f * φ f yields from (2.21):

H(f ) = J f * (φ f ) + R 6 |v| 2 2 + φ f (x) (f -f * φ f ) dxdv, (2.24) 
and hence (2.7) follows from

R 6 |v| 2 2 + φ f (x) (f -f ) dxdv ≥ 0, (2.25) 
with equality if and only if f = f . The proof of (2.25) is reminiscent from the standard inequality for symmetric rearrangement, see [START_REF] Lieb | Loss, Analysis[END_REF]:

R 6 |x|f * ≤ R 6 |x|f.
Indeed, use the layer cake representation

f (x, v) = f L ∞ t=0 ✶ t<f (x,v) dt
and Fubini to derive:

R 6 |v| 2 2 + φ f (f -f ) dxdv = f L ∞ t=0 dt R 6 ✶ t<f (x,v) -✶ t< b f (x,v) |v| 2 2 + φ f dxdv = f L ∞ t=0 dt R 6 ✶ b f (x,v)≤t<f (x,v) -✶ f (x,v)≤t< b f (x,v) |v| 2 2 + φ f dxdv = f L ∞ t=0 dt S 1 (t) |v| 2 2 + φ f dxdv - S 2 (t) |v| 2 2 + φ f dxdv (2.26)
with

S 1 (t) = { f (x, v) ≤ t < f (x, v)}, S 2 (t) = {f (x, v) ≤ t < f (x, v)}.
Observe from f ∈ Eq(f ) that:

for a.e. t > 0, meas(S 1 (t)) = meas(S 2 (t)).

(2.27)

We thus conclude from (2.14) and (2.27

): ∀t ∈ (0, f L ∞ ), S 2 (t) |v| 2 2 + φ f (x) dxdv ≤ meas(S 2 (t))(f * •a φ f ) -1 (t) = S 1 (t) (f * •a φ f ) -1 (t)dxdv.
Injecting this into (2.26) together with (2.15) yields:

R 6 |v| 2 2 + φ f (f -f ) dxdv ≥ f L ∞ 0 dt S 1 (t) |v| 2 2 + φ f (x) -(f * • a φ f ) -1 (t) dxdv ≥ 0
and (2.25) is proved. We also have the analogous inequality for S 2 (t):

R 6 |v| 2 2 + φ f (f -f ) dxdv ≥ f L ∞ 0 dt S 2 (t) (f * • a φ f ) -1 (t) - |v| 2 2 -φ f (x) dxdv ≥ 0.
Let us now study the case of equality in (2.25). If

R 6 |v| 2 2 + φ f (x) (f -f ) dxdv = 0,
the above chain of equalities implies that for a.e t > 0, either meas(S

1 (t)) = meas(S 2 (t)) = 0 or, a.e. (x 1 , v 1 ) ∈ S 1 (t), a.e (x 2 , v 2 ) ∈ S 2 (t), |v 1 | 2 2 + φ f (x 1 ) = (f * • a φ f ) -1 (t) = |v 2 | 2 2 + φ f (x 2 ).
The last assertion contradicts the fact that f (x 1 , v 1 ) ≤ t < f (x 2 , v 2 ). Therefore, for a.e t ∈ (0, f L ∞ ), we have meas(S 1 (t)) = meas(S 2 (t)) = 0. On the other hand, f L ∞ = f * L ∞ and hence meas(S 1 (t)) = meas(S 2 (t)) = 0 for t > f L ∞ . Hence meas(S 1 (t)) = meas(S 2 (t)) = 0 for a.e. t > 0, which implies f = f . This concludes the proof of Proposition 2.7.

Study of the reduced functional J

In this section, we focus onto the functional on X :

J (φ) = J Q * (φ) = H(Q * φ ) + 1 2 ∇φ -∇φ Q * φ 2 L 2 (3.1)
We claim that locally near φ Q , J (φ) -J (φ Q ) is equivalent to the distance of φ to the manifold of translated Poisson fields φ Q (• + x), x ∈ R 3 .

Proposition 3.1 (Coercive behavior of J near φ Q ). There exist universal constants c 0 , δ 0 > 0 and a continuous map φ → z φ from ( Ḣ1 , • Ḣ1 ) → R 3 such that the following holds true. Let φ ∈ X with

inf z∈R 3 ( φ -φ Q (• -z) L ∞ + ∇φ -∇φ Q (• -z) L 2 ) < δ 0 , (3.2) 
then:

J (φ) -J (φ Q ) ≥ c 0 ∇φ -∇φ Q (• -z φ ) 2 L 2 . (3.3) 
This section will be devoted to the proof of Proposition 3.1 which relies first on the second order Taylor expansion of J at φ Q , Proposition 3.3, and then on the coercivity of the Hessian which is the second main key to our analysis, Proposition 3.6, and corresponds to a generalized Antonov's coercivity property.

3.1. Differentiability of J . Our aim in this section is to prove the differentiability of J at φ Q and to compute the first two derivatives.

Let us start with differentiability properties of the function φ → a φ defined in Lemma 2.2, see Appendix A for the proof. (e -φ(x) -λh(x))

1/2 + h(x)dx. (3.4) (ii) Let s ∈ R * + . Then the function λ → a -1 φ+λh (s) is differentiable on [0, 1] and we have ∂ ∂λ a -1 φ+λh (s) = R 3 (a -1 φ+λh (s) -φ(x) -λh(x)) 1/2 + h(x)dx R 3 (a -1 φ+λh (s) -φ(x) -λh(x)) 1/2 + dx . (3.5) 
We are now in position to differentiate the functional J .

Proposition 3.3 (Differentiability of J ). The functional J defined by (3.1) on X satisfies the following properties.

(i) Differentiability of J . Let φ, φ ∈ X , then the function

λ → J (φ + λ( φ -φ))
is twice differentiable on [0, 1].

(ii) Taylor expansion of J near φ Q . There holds the Taylor expansion near φ Q : ∀φ ∈ X ,

J (φ)-J (φ Q ) = 1 2 D 2 J (φ Q )(φ-φ Q , φ-φ Q )+η ( φ -φ Q L ∞ ) ∇φ-∇φ Q 2 L 2 (3.6)
where η(δ) → 0 as δ → 0. Moreover, the second derivative of J at φ Q in the direction h is given by

D 2 J (φ Q )(h, h) (3.7) = R 3 |∇h| 2 dx - R 6 F ′ |v| 2 2 + φ Q (x) (h(x) -Πh(x, v)) 2 dxdv ,
where Πh is the projector: 2 + φ Q (x). Proof. Let us decompose J into a kinetic and a potential part:

Πh(x, v) = R 3 |v| 2 2 + φ Q (x) -φ Q (y) 1/2 + h(y)dy R 3 |v| 2 2 + φ Q (x) -φ Q (y) 1/2 + dy . ( 3 
J (φ) = J Q * (φ) = H(Q * φ ) + 1 2 ∇φ -∇φ Q * φ 2 = 1 2 |∇φ| 2 dx + J 0 (φ) (3.9) 
with

J 0 (φ) = R 6 |v| 2 2 + φ(x) Q * φ (x, v) dxdv. (3.10) 
Note from Proposition 2.4 that Q * φ ∈ E and is supported in

|v| 2 2 + φ < 0, thus -∞ < J 0 (φ) ≤ 0.
Let φ, φ ∈ X and let h = φ -φ. We shall differentiate with respect to λ the function J 0 (φ + λh).

Step 1. First derivative of J 0 .

Introduce the following primitive of Q * :

G(s) = s 0 Q * (σ)dσ, (3.11) 
which is a uniformly bounded C 1 function with bounded derivative, since by assumption Q (thus Q * ) is continuous and compactly supported. We first transform the expression (3.10) of J 0 . By making the change of variable in velocity e = |v| 2 2 +φ and using (2.5), we get

J 0 (φ) = 0 min φ eQ * (a φ (e)) a ′ φ (e) de = 0 min φ e (G • a φ ) ′ (e) de = [eG(a φ (e))] 0 min φ - 0 min φ G (a φ (e)) de = - 0 -∞
G (a φ (e)) de.

Note that the boundary term is dropped thanks to the definition (3.11) and the following properties:

a φ (min φ) = 0, lim e→0- a φ (e) = +∞, +∞ 0 Q * (σ)dσ = Q L 1 < +∞.
In order to differentiate J 0 (φ + λh) with respect to λ, we now use (3.4) and the

C 1 smoothness of G to derive: ∀e < 0 ∂ ∂λ G(a φ+λh (e)) = -4π √ 2 Q * (a φ+λh (e)) R 3 
(e -φ(x) -λh(x))

1/2 + h(x)dx .
Recall that we have Supp

(Q * ) = [0, L 0 ], with L 0 = meas (Supp Q) < +∞.
Hence, from Lemma 3.2 (i), we deduce that there exists e 1 < e 2 < 0 such that

(λ, e) ∈ [0, 1] × R * -: a φ+λh (e) ∈ Supp(Q * ) ⊂ [0, 1] × [e 1 , e 2 ]. (3.12) 
Moreover, we have the following uniform bound: for all (λ, e),

∂ ∂λ G(a φ+λh (e)) ≤ 4π √ 2 Q * L ∞ R 3 (e 2 -(1 -λ)φ(x) -λ φ(x)) 1/2 + h(x)dx ≤ 4π √ 2 Q * L ∞ R 3 (e 2 -φ(x) -φ(x)) 1/2 + h(x)dx < +∞.
Therefore, Lebesgue's derivation theorem ensures:

∂ ∂λ J 0 (φ + λh) = - ∂ ∂λ 0 -∞ G (a φ+λh (e)) de = 4π √ 2 0 -∞ R 3 Q * (a φ+λh (e)) (e -φ(x) -λh(x)) 1/2 + h(x) dxde. (3.13)
Step 2. Second derivative of J 0 .

Let us now compute the second derivative of J 0 (φ + λh) with respect to λ. First, an integration by parts of (3.13) with respect to the variable e gives

∂ ∂λ J 0 (φ+λh) = - 8π √ 2 3 0 -∞ R 3 Q * ′ (a φ+λh (e)) a ′
φ+λh (e)(e-φ(x)-λh(x))

3/2 + h(x) dxde.
Applying the change of variable s = a φ+λh (e), we obtain

∂ ∂λ J 0 (φ + λh) = - 8π √ 2 3 L 0 0 ds Q * ′ (s) R 3 (a -1 φ+λh (s) -φ(x) -λh(x)) 3/2 + h(x)dx = - 8π √ 2 3 L 0 0 R 3 Q * ′ (s)g(λ, x, s)h(x)dsdx, (3.14) 
with g(λ, x, s) = (a -1 φ+λh (s) -φ(x) -λh(x))

3/2 + . Recall that, by (3.12), the quantity e = a -1 φ+λh (s) can be restricted to some interval [e 1 , e 2 ] in this integral, with e 1 < e 2 < 0. Moreover, as in Step 1 of the proof of Lemma 3.2, one deduces from the decay at the infinity of φ and φ that the domain

x ∈ R 3 : φ(x) + λh(x) ≤ e 2
is bounded independently of λ. Therefore, the variable x in the integral (3.14) can be restricted to a bounded domain.

Let us differentiate (3.14) with respect to λ. From (3.5), one gets

∂ ∂λ g(λ, x, s) = - 3 2 (a -1 φ+λh (s) -φ(x) -λh(x)) 1/2 + h(x) + 3 2 (a -1 φ+λh (s) -φ(x) -λh(x)) 1/2 + R 3 (a -1 φ+λh (s) -φ(x) -λh(x)) 1/2 + h(x) dx R 3 (a -1 φ+λh (s) -φ(x) -λh(x)) 1/2 + dx
with the uniform estimate: for all s ∈ [0,

L 0 ], λ ∈ [0, 1], x ∈ R 3 ∂ ∂λ g(λ, x, s) ≤ 3(e 2 + | min φ| + | min φ|) 1/2 + h L ∞ . (3.15)
Since the function s → Q * (s) is monotone decreasing from Q L ∞ to 0, the function Q * ′ belongs to L 1 (0, L 0 ), and hence the uniform domination (3.15) allows us to apply Lebesgue's derivation theorem and get:

∂ 2 ∂λ 2 J 0 (φ + λh) = 4π √ 2 L 0 0 ds Q * ′ (s) R 3 (a -1 φ+λh (s) -φ(x) -λh(x)) 1/2 + (h(x)) 2 dx -4π √ 2 L 0 0 ds Q * ′ (s) R 3 (a -1 φ+λh (s) -φ(x) -λh(x)) 1/2 + h(x) dx 2 R 3 (a -1 φ+λh (s) -φ(x) -λh(x)) 1/2 + dx . (3.16) 
Step 3. Identification of the first and second derivative of J at φ Q .

Let φ ∈ X and h = φ -φ Q . We claim that

DJ (φ Q )(h) = 0. (3.17)
Indeed, first remark from (3.9) that

DJ (φ Q )(h) = DJ 0 (φ Q )(h) + R 3 ∇φ Q • ∇h dx. (3.18)
Next, by (3.13) and (2.17):

DJ 0 (φ Q )(h) = 4π √ 2 0 -∞ R 3 Q * a φ Q (e) (e -φ Q (x)) 1/2 + h(x) dxde = 4π √ 2 0 -∞ R 3 F (e)(e -φ Q (x)) 1/2 + h(x) dxde.
Applying the change of variable e → u = 2(e -φ Q (x)), it comes

DJ 0 (φ Q )(h) = 4π +∞ 0 R 3 F u 2 2 + φ Q (x) h(x)u 2 dudx = R 6 Q(x, v)h(x) dxdv,
where we used the expression (1.14) of Q. Hence, from the Poisson equation, we deduce after an integration by parts that

DJ 0 (φ Q )(h) = - R 3 ∇φ Q • ∇h dx,
which together with (3.18) implies (3.17).

Let us now identify the right second derivative of J at φ Q . We have

D 2 J (φ Q )(h, h) = D 2 J 0 (φ Q )(h, h) + R 3 |∇h| 2 dx (3.19)
and, by (3.16),

D 2 J 0 (φ Q )(h, h) = 4π √ 2 L 0 0 ds Q * ′ (s) R 3 (a -1 φ Q (s) -φ Q (x)) 1/2 + (h(x)) 2 dx -4π √ 2 L 0 0 ds Q * ′ (s) R 3 (a -1 φ Q (s) -φ Q (x)) 1/2 + h(x) dx 2 R 3 (a -1 φ Q (s) -φ Q (x)) 1/2 + dx .
Using first the change of variable s → e = a -1 φ Q (s), (2.5) and

F = Q * • a φ Q , we get D 2 J 0 (φ Q )(h, h) = 4π √ 2 0 -∞ de F ′ (e) R 3 (e -φ Q (x)) 1/2 + (h(x)) 2 dx -4π √ 2 0 -∞ F ′ (e) R 3 (e -φ Q (x)) 1/2 + h(x) dx 2 R 3 (e -φ Q (x)) 1/2 + dx .
We next apply the change of variable e → u = 2(e -φ Q (x)) to get

D 2 J 0 (φ Q )(h, h) = R 6 F ′ (e)(h(x)) 2 dxdv - R 6 F ′ (e)h(x)Πh(e)dxdv = - R 6 |F ′ (e)|(h(x) -Πh(e)) 2 dxdv,
where we used the shorthand notation e = |v| 2 2 + φ Q (x) and the fact that Π given by (3.8) is the projector onto the functions which depend only on e. This together with (3.19) concludes the proof of (3.7).

Step 4. Proof of the Taylor expansion (3.6).

Let φ ∈ X and h = φ -φ Q . We first deduce from the fact that J (φ Q + λh) is twice differentiable with respect to λ that

J (φ Q + h) -J (φ Q ) = 1 0 (1 -λ) ∂ 2 ∂λ 2 J (φ Q + λh) dλ and hence: J (φ Q + h) -J (φ Q ) - 1 2 D 2 J (φ Q )(h, h) (3.20) = 1 0 (1 -λ) D 2 J (φ Q + λh) -D 2 J (φ Q ) (h, h) dλ = ∇h 2 L 2 1 0 (1 -λ) D 2 J 0 (φ Q + λh) -D 2 J 0 (φ Q ) h ∇h L 2 , h ∇h L 2 dλ.
We now claim the following continuity property:

sup λ∈[0,1]
sup

∇ e h L 2 =1 D 2 J 0 (φ Q + λ(φ -φ Q )) -D 2 J 0 (φ Q ) ( h, h) → 0 (3.21) as φ -φ Q L ∞ → 0. Assume (3.21), then lim h L ∞ →0 1 0 (1 -λ) D 2 J 0 (φ Q + λh) -D 2 J 0 (φ Q ) h ∇h L 2 , h ∇h L 2 dλ = 0
and (3.20) now yields the Taylor expansion (3.6).

Proof of (3.21). We argue by contradiction and assume that there exists ε > 0, H n , h n and λ n ∈ [0, 1] such that

H n L ∞ ≤ 1 n , ∇ h n L 2 = 1 , (3.22) 
and

D 2 J 0 (φ Q + λ n H n )( h n , h n ) -D 2 J 0 (φ Q )( h n , h n ) > ε. (3.23)
We denote h n = λ n H n . Recall from (3.16): φ Q +hn (s). We claim that:

D 2 J 0 (φ Q + h n )( h n , h n ) = = 4π √ 2 L 0 0 ds Q * ′ (s) (a -1 φ Q +hn (s) -(φ Q + h n )(x)) 1/2 + ( h n (x)) 2 dx -4π √ 2 L 0 0 ds Q * ′ (s) (a -1 φ Q +hn (s) -(φ Q + h n )(x)) 1/2 + h n (x) dx 2 (a -1 φ Q +hn (s) -(φ Q + h n (x)) 1/2 + dx . ( 3 
∀s ∈ (0, L 0 ), lim n→+∞ e n = a -1 φ Q (s). (3.25) 
Indeed, we observe

s = a φ Q +hn (e n ) ≥ 8π √ 2 3 (e n -φ Q (x) -h n L ∞ ) 3/2 + dx ≥ a φ Q e n - 1 n
which yields e n ≤ a -1 φ Q (s) + 1/n. Similarly, we also have e n ≥ a -1 φ Q (s) -1/n and (3.25) follows.

Let us now pass to the limit in (3.24). Note first that the domain of integration in x of these integrals is uniformly bounded as n → +∞. Indeed, the set of integration is

D n (e n ) := x ∈ R 3 : φ Q (x) + h n (x) < e n ⊂ x ∈ R 3 : φ Q (x) ≤ e n + 1/n , which is bounded for n large enough, since e n ≤ a -1 φ Q (L 0 ) + 1/n ≤ 1 2 a -1 φ Q (L 0 )
, and the continuous function φ Q converges to zero at infinity. Now the local compactness of the Sobolev embedding Ḣ1 ֒→ L p loc for 1 ≤ p < 6 implies that there exists h ∈ Ḣ1 rad such that -up to a subsequence-

h n → h in L 2 loc as n → +∞. (3.26)
Hence, for all s ∈ (0, L 0 ) and for i = 0, 1, 2, (3.25), (3.26) ensure:

R 3 (a -1 φ Q +hn (s) -(φ Q + h n )(x)) 1/2 + ( h n (x)) i dx = |x|≤R (a -1 φ Q +hn (s) -(φ Q + h n )(x)) 1/2 + ( h n (x)) i dx → R 3 (a -1 φ Q (s) -φ Q (x)) 1/2 + ( h(x)) i dx as n → +∞.
Moreover, by Cauchy-Schwarz and a -1

φ Q +hn (s) ≤ 0: (a -1 φ Q +hn (s) -φ Q -h n ) 1/2 + h n dx 2 (a -1 φ Q +hn (s) -φ -h n ) 1/2 + dx ≤ (a -1 φ Q +hn (s) -φ Q -h n ) 1/2 + ( h n ) 2 dx |x|≤R ( φ Q L ∞ + h n L ∞ ) 1/2 ( h n ) 2 dx 1.
Recall now that the function

Q * ′ is L 1 on [0, L 0 ], since Q * is decreasing and bounded.
Therefore, Lebesgue's convergence theorem applied to (3.24) yields:

D 2 J 0 (φ Q + h n )( h n , h n ) → D 2 J 0 (φ Q )( h, h).
A similar argument gives:

D 2 J 0 (φ Q )( h n , h n ) → D 2 J 0 (φ Q )( h, h) (3.27) 
as n → +∞. This contradicts (3.23) and concludes the proof of (3.21). The proof of Proposition 3.3 is complete.

Remark 3.5. We have proved in this last Step 4 that for all sequence h n bounded in Ḣ1 , after extraction of a subsequence, we have the strong convergence (3.27).

Hence the quadratic form D 2 J 0 (φ Q ) is compact on Ḣ1 .

3.2.

A new Antonov type inequality. We now turn to the second key of our analysis which is a generalization of the celebrated Antonov's stability property -see Proposition 4.1 in [START_REF] Lemou | A new variational approach to the stability of gravitational systems[END_REF] for a precise statement-: Proposition 3.6 (Generalized Antonov's stability property). Let Q satisfy the assumptions of Theorem 1.2 and consider the linear operator generated by the Hessian (3.7):

Lh = -∆h - R 3 |F ′ (e)|(h -Πh)dv.
Then L is a compact perturbation of the Laplacian operator on Ḣ1 and is positive:

∀h ∈ Ḣ1 , (Lh, h) = D 2 J (φ Q )(h, h) ≥ 0. (3.28)
Moreover,

Ker(L) = {h ∈ Ḣ1 with Lh = 0} = Span(∂ x i φ Q ) 1≤i≤3 .
In particular, there exists c 0 > 0 such that

∀h ∈ Ḣ1 , (Lh, h) ≥ c 0 ∇h 2 L 2 - 1 c 0 3 i=1 R 3 h∆(∂ x i φ Q ) 2 .
(3.29)

Remark 3.7. The fact that the kernel is completely explicit and purely generated by the symmetry group is remarkable and reminiscent from similar statements in dispersive equations, see Weinstein [START_REF] Weinstein | Modulational stability of ground states of nonlinear Schrödinger equations[END_REF], the coercivity on the radial sector being always the most delicate problem.

Proof of Proposition 3.6

Step 1. Positivity away from radial modes.

Let h ∈ Ḣ1 rad , and let us introduce the projection of h onto the radial sector

h 0 (r) = 1 4π S 2 h(rσ)dσ,
where S 2 denotes the unit sphere in R 3 and dσ denotes the surface measure on S 2 induced by the Lebesgue measure. We have the decomposition

h = h 0 + h 1 , h 0 ∈ Ḣ1 rad , h 1 ∈ ( Ḣ1 rad ) ⊥ .
The angular integration in (3.8) ensures Πh 1 = 0 and thus

(Lh, h) = (Lh 0 , h 0 ) + R 3 |∇h 1 | 2 - R 3 V Q h 2 1 with V Q (r) = R 3 |F ′ (e)|dv = 4π √ 2 0 φ Q (0) |F ′ (e)| (e -φ Q (r)) 1/2 + de,
where we applied the change of variable e = |v| 2 2 + φ Q (r). Since F ′ (e) < 0 and F is bounded on [φ Q (0), 0], the function |F ′ | belongs to L 1 . Therefore by dominated convergence, the function V Q is continuous. Moreover, since F (e) = 0 for e ≥ e 0 and since φ Q is strictly increasing, we have:

Supp(V Q ) = [0, (φ Q ) -1 (e 0 )].
Hence, V Q being continuous and compactly supported, the Schrödinger operator -∆ -V Q is a compact perturbation of the Laplacian on Ḣ1 . Observe that φ ′ Q (and also

∂ x i φ Q for i = 1, • • • , 3) belongs to Ḣ1 (R 3 ). Translating the φ Q equation yields: ∆φ Q (x + x 0 ) = ρ Q (x + x 0 ) = 8π √ 2 3 0 -∞ |F ′ (e)|(e -φ Q (x + x 0 )) 3/2 + de
and differentiating this relation with respect to 0 yields at x 0 = 0:

L(∇φ Q ) = 0.
(3.30)

We now claim from standard argument that this implies the positivity of L away from radial modes, see [START_REF] Weinstein | Modulational stability of ground states of nonlinear Schrödinger equations[END_REF] for related statements:

∀h ∈ Ḣ1 rad ⊥ , (Lh, h) ≥ 0, (3.31) and {h ∈ ( Ḣ1 rad ) ⊥ with Lh = 0} = Span(∂ x i φ Q ) 1≤i≤3 , (3.32) 
Let us briefly recall the argument. Let us decompose h ∈ ( Ḣ1

rad ) ⊥ into spherical harmonics, h = k≥1 j h k,j Y k,j (x)
where x = x r is the spherical variable and -∆ S 2 Y k,j = λ k Y k,j . Then the radiality of V Q ensures the orthogonal decomposition Step 2. Coercivity away from radial modes.

Lh = k≥1 j A k h k,j with A k = -∂ 2 r - 2 r ∂ r + λ k r 2 -V Q (r), λ k = k(k + 1). (3.33) For k = 1, we have ∇φ Q = φ ′ Q (r)x and (3.30) implies A 1 φ ′ Q = 0. Since φ ′ Q > 0 for r > 0, φ ′ Q ∈ Ḣ1 , φ ′ Q is from
We now claim:

∀h ∈ ( Ḣ1 rad ) ⊥ , (Lh, h) ≥ c 1 ∇h 2 L 2 - 1 c 1 3 i=1 R 3 h∆(∂ x i φ Q ) 2 (3.34)
for some universal constant c 1 > 0. Let us briefly recall the argument which is standard. From (3.31),

I = inf (Lh, h), h ∈ ( Ḣ1 rad ) ⊥ , R 3 V Q h 2 = 1, R 3 h∆(∂ x i φ Q ) = 0 ≥ 0.
We argue by contradiction and assume I = 0, then there exists a sequence

h n ∈ ( Ḣ1 rad ) ⊥ with R 3 V Q h 2 n = 1, R 3 |∇h n | 2 - R 3 V Q h 2 n ≤ 1 n , R 3 h n ∆(∂ x i φ Q ) = 0.
From Sobolev embeddings, h n → h in L p loc , 1 ≤ p < 6, up to a subsequence. Moreover, from (3.30), ∆(∂ x i φ Q ) is compactly supported and in L 2 from which passing to the limit yields

(Lh, h) ≤ 0, R 3 h∆(∂ x i φ Q ) = 0, R 3 V Q h 2 = 1 (3.35)
and hence h = 0 attains the infimum. From Lagrange multipier theory, we thus can find (λ i ) 1≤i≤3 with

Lh = λ 0 V Q h + 3 i=1 λ i ∆(∂ x i φ Q ).
Taking the inner product with h yields λ 0 = 0, then with ∂ x i φ Q yields λ i = 0, and thus Lh = 0. From (3.32), h ∈ Span(∂ x i φ Q ) 1≤i≤3 , but this contradicts the orthogonality relations (3.35), and (3.34) follows.

Step 3. Strategy: Hörmander's proof of Poincaré inequality.

The relative compactness of L with respect to ∆ in Ḣ1 follows from Remark 3.5. It thus remains to prove (3.29) which from (3.34) and the Fredholm alternative is equivalent to:

∀h ∈ Ḣ1 rad , h = 0, (Lh, h) > 0. (3.36) 
Our main observation is now from (3.7) that (3.36) is nothing but a Poincaré inequality with sharp constant, and we now claim that we can adapt the celebrated proof by Hörmander [START_REF] Hörmander | An Introduction to Complex Analysis in Several Variables[END_REF][START_REF] Hörmander | L2 estimates and existence theorems for the ∂ operator[END_REF] to our setting. Hörmander's approach involves two key steps: the introduction of a self-adjoint operator adapted to the projection involved, and a suitable convexity property. The operator will be given by

T f (e, r) = 1 r 2 2(e -φ Q (r)) ∂ r f (3.37)
which essentially satisfies the requirement

Πh = 0 implies h ∈ Im(T ),
and the convexity will correspond to the lower bound:

- T 2 g g ≥ 3 (r 2(e -φ Q (r))) 4 ρ Q (r) + φ ′ Q (r) r (3.38) 
with g(r, e) = r 2(e -φ Q (r))

3

.

Note that the original proof of Antonov's stability criterion can be revisited as well using the transport operator

τ = v • ∇ x -∇ x φ Q • ∇ v
in the radial case as differential operator and whose image can be realized in the radial setting as the kernel of the full projection including the kinetic momentum ℓ, see [START_REF] Guo | A non-variational approach to nonlinear Stability in stellar dynamics applied to the King model[END_REF], [START_REF] Lemou | A new variational approach to the stability of gravitational systems[END_REF] for more details.

Step 4. Integration by parts.

Recalling that φ Q (r) is strictly increasing, for all e ∈ (φ Q (0), 0), we shall denote

r(e) = φ -1 Q (e). Let h ∈ Ḣ1 rad non zero. Let U = {(r, e) : r > 0, e ∈ (φ Q (0), 0), e -φ Q (r) > 0} = {(r, e) : e ∈ (φ Q (0), 0), r ∈ (0, r(e))} .
Given ε > 0, we let 0 ≤ χ ε (e) ≤ 1 be a smooth cut off function such that

Supp(χ ε ) ⊂ (φ Q (0) + ε, e 0 -ε), χ ε ≡ 1 on [φ Q (0) + 2ε, e 0 -2ε].
We let

r ε = r(φ Q (0) + ε). Observe that r(e) 0 e -φ Q (τ ) τ 2 dτ ≥ c ε > 0 on Supp(χ ε ),
and hence the radial interpolation estimate

√ rh(r) L ∞ (R 3 ) ∇h L 2 (R 3 ) (3.39) 
and (3.8) ensure:

|Πh(e)| ≤ C ε on Supp(χ ε ). (3.40) 
Let us then define on U = U ∩ (0, r(e 0 )) × (φ Q (0), e 0 ):

f (r, e) = r 0 (h(τ ) -Πh(e)) 2(e -φ Q (τ )) τ 2 dτ. (3.41) 
Then f is C 1 with respect to the variable r > 0 with

T f = h -Πh (3.42)
on U, where T is given by (3.37). Moreover, (3.39) and (3.40) yield the bound at the origin: ∀e ∈ Supp(χ ε ),

|f (r, e)| ≤ C ε r 5/2 , (3.43) 
and from (3.8) we get

f (r(e), e) = √ 2 +∞ 0 (h(τ ) -Πh(e))(e -φ Q (τ )) 1/2 + τ 2 dτ = 0.
Hence, near the boundary r = r(e), we estimate using (3.40

): ∀r ≥ r ε , ∀e ∈ Suppχ ε , |f (r, e)| = r(e) r (h(τ ) -Πh(e)) 2(e -φ Q (τ ))τ 2 dτ ≤ C ε (e -φ Q (r)) 3/2 , (3.44) 
where we used e -φ Q (r) ∼ C(r(e) -r)

deduced from φ ′ Q (r) φ ′ Q (r ε ) > 0.
We now integrate by parts from (3.42) using the cancellations at the boundary of U given by (3.43), (3.44) and the bounds (3.40), (3.39):

R 6 χ ε |F ′ (e)|(h -Πh) 2 dxdv = 16π 2 0 φ Q (0) χ ε |F ′ (e)|de r(e) 0 (h -Πh)T f 2(e -φ Q (r) r 2 dr = 16π 2 0 φ Q (0) χ ε |F ′ (e)|de r(e) 0 (h -Πh)∂ r f dr = -16π 2 e U χ ε |F ′ (e)|f ∂ r h dedr.
We now use Cauchy-Schwarz together with the identity

ρ Q (r) = 8π √ 2 3 0 φ Q (0) |F ′ (e)|(e -φ Q (r)) 3/2 + de to estimate: R 6 χ ε |F ′ (e)|(h -Πh) 2 dxdv ≤ (4π) 3/2 ∇h L 2 (R 3 )   r(e 0 ) 0 dr r 2 e 0 φ Q (r) χ ε |F ′ (e)|f de 2   1/2 ≤ (4π) 3/2 ∇h L 2 (R 3 ) 3 8π √ 2 r(e 0 ) 0 ρ Q (r) r 2 dr e 0 φ Q (r) χ ε |F ′ (e)| f 2 (e -φ Q (r)) 3/2 de 1/2 = ∇h L 2 (R 3 ) 3 χ ε ρ Q (r) f 2 r 4 ( 2(e -φ Q )) 4 |F ′ (e)|dxdv 1/2 . ( 3.45) 
We now claim the following Hardy type control:

3 χ ε ρ Q + φ ′ Q r f 2 r 4 ( 2(e -φ Q )) 4 |F ′ (e)|dxdv ≤ χ ε |F ′ (e)|(T f ) 2 dxdv.
(3.46) Assume (3.46), then (3.42) and (3.45) yield:

R 6 χ ε |F ′ (e)|(h-Πh) 2 dxdv+3 χ ε φ ′ Q r f 2 r 4 ( 2(e -φ Q )) 4 |F ′ (e)|dxdv ≤ R 3 |∇h| 2 dx.
Letting ε → 0 now yields (Lh, h) ≥ 0. Moreover (Lh, h) = 0 implies f = 0 in Ũ, thus h(r) = Πh(e) on Ũ and (Lh, h) = |∇h| 2 = 0 and thus h is zero. This concludes the proof of (3.36).

Step 5. Hardy type control.

The Hardy control (3.46) is a consequence of the convexity estimate (3.38). Indeed, let g be a given smooth function in Ũ, let f = qg and compute:

(T f ) 2 = (gT q + qT g) 2 = g 2 (T q) 2 + g(T g)T (q 2 ) + q 2 (T g) 2 = g 2 (T q) 2 + T (q 2 g(T g)) -q 2 ((T g) 2 + gT 2 g) + q 2 (T g) 2 ≥ T (q 2 gT g) -q 2 gT 2 g = T (q 2 gT g) - T 2 g g f 2 . (3.47) 
We now look for g such that andthus:

- T 2 g g ≥ 3 r 2(e -φ Q ) 4 ρ Q + φ ′ Q r . (3.48) Let u = 2(e -φ Q ) so that T g(r, u) = ∂ r g r 2 u - φ ′ Q r 2 u 2 ∂ u g,
T 2 g = 1 r 4 u 2 ∂ 2 rr g - 2 r ∂ r g - ρ Q r 4 u 3 ∂ u g + φ ′ Q r 4 u 4 ∂ r g + 4 u r ∂ u g -2u∂ 2 ru g + (φ ′ Q ) 2 r 4 u 5 u∂ 2 uu g -2∂ u g ,
where we used the Poisson equation satisfied by φ Q . The choice g = r 3 u 3 yields:

- T 2 g g = 3 r 4 u 4 ρ Q + φ ′ Q r .
Injecting this into (3.47) and integrating on Ũ yields:

χ ε |F ′ (e)|(T f ) 2 dxdv ≥ 3 χ ε ρ Q + φ ′ Q r f 2 r 4 ( 2(e -φ Q )) 4 |F ′ (e)|dxdv + χ ε |F ′ (e)|T f 2 T g g dxdv.
The bounds (3.43), (3.44) now justify the integration by parts Step 1. Implicit function theorem

χ ε |F ′ (e)|T f 2 T g g dxdv = 16π 2 e 0 φ Q (0) χ ε |F ′ (e)|de
Given α > 0, let U α = {φ ∈ Ḣ1 (R 3 ); ∇φ -∇φ Q L 2 < α}, and for φ ∈ Ḣ1 , z ∈ R 3 , define ε z (x) = φ(x + z) -φ Q (x). (3.49) 
We claim that there exists α > 0, a neighbourhood V of the origin in R 3 and a unique C 1 map U α → V such that if φ ∈ U α , there is a unique z ∈ V such that ε z defined as in (3.49) satisfies

∀1 ≤ i ≤ 3, R 3 ε z ∆(∂ x i φ Q )dx = 0. (3.50) 
Moreover, there exists a constant C > 0 such that if u ∈ U α , then

|z| + ∇ε z L 2 ≤ C ∇φ -∇φ Q L 2 . (3.51) 
Indeed, we define the following functionals of (φ, z):

F i (φ, z) = R 3 ε z ∆(∂ x i φ Q )dx, 1 ≤ i ≤ 3
and obtain at the point (φ, z) = (φ Q , 0),

∂F i ∂z j = -δ ij ∇∂ x i φ Q 2 L 2 .
The Jacobian of the above functional is -Π 3 i=1 ∇∂ x i φ Q 2 L 2 < 0, hence the implicit function theorem ensures the existence of α > 0, a neighbourhood V of the origin in R 3 and a unique C 1 map U α → V such that (3.50) holds.

Step 2. Conclusion

Let φ ∈ X with inf z∈R 3 ( φ -φ Q (• -z) L ∞ + ∇φ -∇φ Q (• -z) L 2 ) < δ 0
for some small enough δ 0 > 0 to be chosen later. Then there exists z 1 such that

φ -φ Q (• -z 1 ) L ∞ + ∇φ -∇φ Q (• -z 1 ) L 2 < 2δ 0 .
(3.52)

For δ 0 ≤ α 2 small enough, we may apply Step 1 to φ(x + z 1 ) and find z 2 ∈ R 3 , ε ∈ Ḣ1 satisfiying the orthogonality conditions (3.50) and the smallness (3.51) such that φ(x

+ z 1 ) = (φ Q + ε)(x -z 2 ), or equivalently φ(x) = (φ Q + ε)(x -z φ ), z φ = z 1 + z 2 .
(3.53)

In fact, for δ 0 small enough, a shift z φ satisfying (3.53), the orthogonality conditions (3.50) and the smallness condition (3.51), is unique. This is a simple consequence of the uniqueness of the pair (z 2 , ε z 2 ) in Step 1. The continuity of the map φ → z φ from ( Ḣ1 , • Ḣ1 ) → R 3 then follows. Moreover, from (3.51), (3.52):

ε L ∞ = φ(x + z 1 + z 2 ) -φ Q (x) L ∞ ≤ φ(x + z 1 + z 2 ) -φ Q (x + z 2 ) L ∞ + φ Q (x + z 2 ) -φ Q (x) L ∞ ≤ φ(x + z 1 ) -φ Q (x) L ∞ + C|z 2 | ≤ φ(x + z 1 ) -φ Q (x) L ∞ + C ∇φ(x + z 1 ) -∇φ Q (x) L 2 ≤ Cδ 0 .
Provided δ 0 small enough, we may now apply the Taylor expansion (3.6) together with the coercivity (3.29) and the orthogonality conditions (3.50), and obtain from the translation invariance of J :

J (φ) -J (φ Q ) = J (φ Q + ε) -J (φ Q ) ≥ c 0 ∇ε 2 L 2 -η( ε L ∞ ) ∇ε 2 L 2 ≥ c 0 2 ∇ε 2 L 2 ≥ c 0 2 ∇φ -∇φ Q (• -z φ ) 2 L 2 .
This concludes the proof of Proposition 3.1.

Compactness of local minimizing sequences of the Hamiltonian

The aim of this section is to prove the following compactness result which is the heart of the proof of Theorem 1.2. 

( φ fn -φ Q (• -z) L ∞ + ∇φ fn -∇φ Q (• -z) L 2 ) < δ 0 , (4.1) 
and lim sup n→+∞

H(f n ) ≤ H(Q), f * n → Q * in L 1 (R + ) as n → +∞. (4.2) Then (1 + |v| 2 )|f n -Q(x -z φ fn )| → 0 as n → +∞. (4.3) 
Proof.

Step 1: Compactness of the potential

We first claim the following quantitative lower bound which generalizes the monotonicity formula (2.22): let f ∈ E such that φ f satisfies (3.2), let z φ f given by Proposition 3.1, then

H(f ) -H(Q) + φ f L ∞ f * -Q * L 1 ≥ c 0 ∇φ f -∇φ Q (• -z φ f ) 2 L 2 . (4.4)
Indeed,

H(f ) -H(Q) ≥ J f * (φ f ) -J (φ Q ) = J f * (φ f ) -J (φ f ) + J (φ f ) -J (φ Q ), (4.5) 
where we have used that H(Q) = J (φ Q ). Now, we recall that

J f * (φ) = R 6 |v| 2 2 + φ f * φ (x, v)dxdv + 1 2 R 3 |∇φ| 2 dx.,
and deduce from the change of variables formula (2.10) that

J f * (φ f ) -J (φ f ) = +∞ 0 a -1 φ f (s) (f * (s) -Q * (s)) ds. Since |a -1 φ f (s)| ≤ -min φ f = φ f L ∞ , we have J f * (φ f ) -J (φ f ) ≥ -φ f L ∞ f * -Q * L 1 .
Inserting this estimate into (4.5) and using Proposition (4.4) yields (4.4) .

Let us now consider a sequence f n ∈ E satisfying the assumptions of Proposition 4.1, then (4.4) applied to f n ensures:

∇φ fn (. + z φ fn ) -∇φ Q L 2 → 0, as n → ∞. (4.6)
Step 2: Strong convergence of f n to Q

To ease notations, we shall still denote by f n the translated function f n (. + z φ fn , v).

We then observe the identity:

H(f n ) -H(Q) + 1 2 ∇φ fn -∇φ Q 2 L 2 = R 6 |v| 2 2 + φ Q (x) (f n -Q)dxdv (4.7)
which implies, from (4.2) and (4.6), that

R 6 |v| 2 2 + φ Q (x) (f n -Q)dxdv → 0, as n → ∞. (4.8) 
Now, we observe from the change of variables (2.10) that

R 6 |v| 2 2 + φ Q (x) (Q -f * φ Q n )dxdv = +∞ 0 a -1 φ Q (s) (Q * (s) -f * n (s)) ds. Since |a -1 φ Q (s)| ≤ -φ Q (0) we get R 6 |v| 2 2 + φ Q (x) (Q -f * φ Q n )dxdv ≤ |φ Q (0)| Q * -f * n L 1 ,
which implies from (4.2) that

R 6 |v| 2 2 + φ Q (x) (Q -f * φ Q n )dxdv → 0, as n → ∞. (4.9) 
Summing (4.8) and (4.9) yields

T n = R 6 |v| 2 2 + φ Q (x) (f n -f * φ Q n )dxdv → 0, as n → ∞. (4.10) 
We now argue as in the proof of (2.25), and write (4.10) in the following equivalent form

T n = +∞ t=0 dt S n 1 (t) |v| 2 2 + φ Q (x) dxdv - S n 2 (t) |v| 2 2 + φ Q (x) dxdv → 0, (4.11) where S n 1 (t) = {(x, v) ∈ R 6 , f * φ Q n (x, v) ≤ t < f n (x, v)}, S n 2 (t) = {(x, v) ∈ R 6 , f n (x, v) ≤ t < f * φ Q n ((x, v)}.
From (2.15), we have

|v| 2 2 + φ Q (x) ≥ (f * n • a φ Q ) -1 (t), ∀(x, v) ∈ S n 1 (t).
Thus

T n ≥ +∞ t=0 dt S n 1 (t) (f * n • a φ Q ) -1 (t)dxdv - S n 2 (t) |v| 2 2 + φ Q (x) dxdv . (4.12)
As a consequence of the equimeasurability of f * φ Q n and f n , we know that meas(S n 1 (t)) = meas(S n 2 (t)), and then (4.12) gives:

T n ≥ +∞ t=0 dt S n 2 (t) (f * n • a φ Q ) -1 (t) - |v| 2 2 + φ Q (x) dxdv. (4.13) 
From (2.14), we have

(f * n • a φ Q ) -1 (t) ≥ |v| 2 2 + φ Q (x), ∀(x, v) ∈ S n 2 (t)
Thus, from (4.10) and (4.13), we get

A n = (f * n • a φ Q ) -1 (t) - |v| 2 2 + φ Q (x) ✶ S n 2 (t) (x, v) → 0 (4.14)
as n → +∞, for almost every (t, x, v) ∈ R + × R 3 × R 3 (up to a subsequence). We now claim that this implies

B n = (Q * • a φ Q ) -1 (t) - |v| 2 2 + φ Q (x) ✶ S n 2 (t) (x, v) → 0, (4.15) 
as n → +∞, for almost every

(t, x, v) ∈ R + × R 3 × R 3 , where S n 2 (t) = {(x, v) ∈ R 6 , f n (x, v) ≤ t < Q(x, v)}.
To prove (4.15), we write

S n 2 = S n 2 \S n 2 ∪ S n 2 ∩ S n 2 , S n 2 = S n 2 \S n 2 ∪ S n 2 ∩ S n 2 , and get A n -B n = |v| 2 2 + φ Q (x) -(Q * • a φ Q ) -1 (t) ✶ S n 2 (t)\S n 2 (t) + (f * n • a φ Q ) -1 (t) - |v| 2 2 -φ Q (x) ✶ S n 2 (t)\S n 2 (t) + (f * n • a φ Q ) -1 (t) -(Q * • a φ Q ) -1 (t) ✶ S n 2 (t)∩S n 2 (t) . (4.16) 
We shall now examine the behavior of each of these terms when n → ∞. We first observe that for all g, h ∈ L 1 (R 6 ) with g ≥ 0, h ≥ 0, we have and thus from (4.2):

+∞ 0 meas {g ≤ t < h} dt = R 6 (h -g) + dxdv ≤ g -h L 1 , (4.17 
+∞ 0 meas(S n 2 (t)\S n 2 (t))dt ≤ f * φ Q n -Q L 1 = f * n -Q * L 1 → 0.
Using in addition the estimate

(f * n • a φ Q ) (-1) (t) ≤ |φ Q (0)|,
we deduce that the first two terms of the decomposition (4.16) go to 0 almost everywhere when n goes to infinity. We now treat the third term and show that, for all (t, x, v),

lim inf n→∞ (f * n • a φ Q ) -1 (t) -(Q * • a φ Q ) -1 (t) ✶ S n 2 (t)∩S n 2 (t) ≥ 0. (4.18) 
To prove (4.18), we first use the strong L 1 convergence (4.2) to get

∀e ∈ (φ Q (0), 0)\A, f * n (a φ Q (e)) → Q * (a φ Q (e)), (4.19) 
where A is a zero-measure set in R, and claim that the monotonicity of f * n in e and the continuity of Q * in e ensure:

∀e ∈ (φ Q (0), 0), f * n (a φ Q (e)) → Q * (a φ Q (e)). (4.20) 
Indeed, let e ∈ (φ Q (0), 0), and (x p , y p ) ∈ (φ Q (0), 0)\A such that x p ≤ e ≤ y p and

x p → e, y p → e. As f * n • a φ Q is decreasing, we have f * n • a φ Q (y p ) ≤ f * n • a φ Q (e) ≤ f * n • a φ Q (x p ). From (4.19) we then get Q * (a φ Q (y p )) ≤ lim inf n→∞ f * n • a φ Q (e) ≤ lim sup n→∞ f * n • a φ Q (e) ≤ Q * (a φ Q (x p )).
Now we pass to the limit p → ∞ and use the continuity of Q * • a φ Q to get the claim (4.20). Now, we turn back to the proof of (4.18) and fix (t, x, v). Take then any e such that φ Q (0) < e < 0, and 

Q * (a φ Q (e)) > t, (4.21 
(f * n • a φ Q ) -1 (t).
Since this equality holds for all e satisfying (4.21), we conclude from the definition of the pseudo inverse

(Q * • a φ Q ) -1 (t) that lim inf n→∞ (f * n • a φ Q ) -1 (t) ≥ (Q * • a φ Q ) -1 (t),
which yields (4.18). We now turn to the decomposition (4.16) and get from (4.18)

lim inf(A n -B n ) ≥ 0, for almost all (t, x, v).
Finally, observing that B n ≥ 0 and using (4.14), we conclude that (4.15) holds true. Observe now that

t < Q(x, v) implies Q(x, v) = F |v| 2 2 + φ Q (x) > t.
By the assumptions of Theorem 1.2, e → F (e) is continuous and strictly decreasing with respect to e = |v| 2 2 + φ Q (x) for (x, v) ∈ {Q > 0}, and thus:

t < Q(x, v) implies (Q * • a φ Q ) (-1) (t) - |v| 2 2 -φ Q (x) > 0.
We then deduce from (4.15) and from S n

2 (t) = {(x, v) : f n (x, v) ≤ t < Q(x, v)} that, up to a subsequence extraction, ✶ {fn≤t<Q} → 0, as n → ∞, for almost every (t, x, v) ∈ R * + × R 6 . Now from ✶ {fn≤t<Q} ≤ ✶ {t<Q} and ∞ 0 R 6 ✶ {t<Q} dxdvdt = Q L 1 < +∞.
we may apply the dominated convergence theorem to conclude:

∞ 0 R 6 ✶ {fn≤t<Q} dxdvdt → 0 as n → ∞.
Injecting this into (4.17) yields

R 6 (Q -f n ) + dxdv → 0 as n → ∞. (4.22) 
Now we claim that, using

f * n → Q * in L 1 , this implies R 6 (f n -Q) + dxdv → 0 as n → ∞. (4.23) Indeed, we write R 6 (f n -Q) + dxdv ≤ R 6 (f n -f * φ Q n ) + dxdv + R 6 (f * φ Q n -Q) + dxdv ≤ +∞ 0 meas f * φ Q n ≤ t < f n dt + f * φ Q n -Q L 1 = +∞ 0 meas f n ≤ t < f * φ Q n dt + f * n -Q * L 1 = R 6 (f * φ Q n -f n ) + dxdv + f * n -Q * L 1 ≤ R 6 (Q -f n ) + dxdv + R 6 (f * φ Q n -Q) + dxdv + f * n -Q * L 1 ≤ R 6 (Q -f n ) + dxdv + 2 f * n -Q * L 1
where we repeatedly used (4.17) and the fact that 

f * φ Q n ∈ Eq(f n ) implies ∀t > 0, meas f * φ Q n ≤ t < f n = meas f n ≤ t < f * φ Q n . As f * n → Q * in L 1 ,
f n -Q L 1 → 0 as n → +∞.
Furthermore, (4.2) and the strong convergence ∇φ fn → ∇φ Q in L 2 imply:

R 6 |v| 2 f n → R 6 |v| 2 Q as n → +∞,
Together with the a.e. convergence of f n , this yields the strong L 1 convergence of |v| 2 f n to |v| 2 Q. Note that the uniqueness of the limit now implies the convergence of all the sequence f n which completes the proof of (4.3).

This concludes the proof of Proposition 4.1.

Non linear stability of Q

We now turn to the proof of the nonlinear stability result stated in Theorem 1.2, which is a direct consequence of Proposition 4.1 and the known regularity of weak solutions to the Vlasov-Poisson system.

Proof of Theorem 1.2.

Step 1. Continuity claim for weak solutions Let f 0 ∈ E and let f (t) ∈ E be a corresponding weak solution to (1.1). By the properties of weak solutions of the Vlasov-Poisson system [START_REF] Diperna | Global weak solutions of kinetic equations[END_REF][START_REF] Diperna | Solutions globales d'équations du type Vlasov-Poisson[END_REF], we have ∀t ≥ 0, f (t) ∈ Eq(f 0 ), H(f (t)) ≤ H(f 0 ).

(5.1)

We claim:

φ f ∈ C([0, +∞), L ∞ (R 3 ) ∩ Ḣ1 (R 3 )).
(5.2) Note that this implies from Proposition 3.1 that t → z φ f (t) is continuous.

(5.3)

To prove (5.2), recall that f ∈ C([0, +∞), L 1 ) (see [START_REF] Diperna | Global weak solutions of kinetic equations[END_REF][START_REF] Diperna | Solutions globales d'équations du type Vlasov-Poisson[END_REF]) and hence (5.2) follows from: ∀f, g ∈ E,

∇φ f -∇φ g L 2 + φ f -φ g L ∞ ≤ C f,g f -g 1/6 L 1 , (5.4) 
where C f,g only depends on f E and g E . Let us prove (5.4). First, from Hölder: L 5/3 . Second, by interpolation,

∀x ∈ R 3 , |φ f -φ g |(x) =
ρ f -ρ g L 5/3 f -g 2/5
L ∞ |v| 2 (f -g)
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L 1 ≤ C f,g . Since ρ f -ρ g L 1 ≤ f -g L 1 , this yields (5.4) and the continuity (5.2) of φ f follows.

Step 2: Conclusion.

An equivalent reformulation of Proposition 4.1 is the following: for all ε > 0 small enough, there exists η > 0 such that if f ∈ E with

f * -Q * L 1 ≤ η, f L ∞ ≤ Q L ∞ + M, H(f ) ≤ H(Q) + η (5.5)
and inf

z∈R 3 ( φ f -φ Q (• -z) L ∞ + ∇φ f -∇φ Q (• -z) L 2 ) < δ 0 , (5.6) 
then

(1 + |v| 2 )(f -Q(• -z φ f )) L 1 ≤ ε.
(5.7) Let ε > 0 and let η > 0 be the associated constant. We consider an initial data f 0 ∈ E with

f 0 -Q L 1 < η, f 0 L ∞ ≤ Q L ∞ + M and H(f 0 ) ≤ H(Q) + η
and a corresponding weak solution f (t) of (1.1). Observe that, by the contractivity of the symmetric rearrangement in L 1 (see [START_REF] Lieb | Loss, Analysis[END_REF]), we have

f * 0 -Q * L 1 = f 0 -Q L 1 ≤ η.
(5.8)

Moreover, (5.4) implies that, for η small enough,

∇φ f 0 -∇φ Q (• -z φ f 0 ) L 2 + φ f (0) -φ Q (• -z φ f 0 ) L ∞ ≤ δ 0 2 .
From (5.1), we first deduce that the corresponding solution f (t) of (1.1) satisfies (5.5) for all t ≥ 0. Hence, if we prove that

∀t ≥ 0, ∇φ f (t) -∇φ Q (• -z φ f (t) ) L 2 + φ f (t) -φ Q (• -z φ f (t)
) L ∞ < δ 0 , (5.9) then (5.7) holds true for all t ≥ 0, which is nothing but (1.17). Now (5.9) follows for η > 0 small enough from a straightforward bootstrap argument using the continuity (5.2), (5.3) and the bound (5.4). The proof of Theorem 1.2 is complete.

Appendix A. Proof of Lemma 3.2

Proof. The proof is similar to the one in [START_REF] Lemou | A new variational approach to the stability of gravitational systems[END_REF] and we briefly sketch the argument for the sake of completeness. Recall that the set X is convex, thus φ + λh = (1 -λ)φ(x) + λ φ(x) belongs to X for all λ ∈ [0, 1] and a φ+λh is well-defined.

Step 1. Proof of (i).

Let e 1 < 0 be fixed. For all e ≤ e 1 , we consider the domain We clearly have D φ+λh (e) ⊂ D φ (e 1 ) ∪ D e φ (e 1 ). Since φ(x) and φ(x) go to zero at the infinity, D φ (e 0 ) and D e φ (e 0 ) are bounded. Hence for all e ≤ e 1 , D φ+λh (e) is contained in a fixed compact domain of R 3 . As in addition the functions φ and φ are continuous, the Lebesgue dominated convergence theorem may thus be applied to obtain the continuity and the differentiability of a φ+λh (e) with respect to λ and e. The expression (3.4) follows.

Step 2. Continuity of the function λ → a -1 φ+λh (s).

Let s ∈ R * + . In this step, we prove that the function λ → a -1 φ+λh (s) is continuous. To this aim, we consider a sequence λ n ∈ [0, 1] converging to λ 0 as n → +∞ and prove that a -1 φ+λnh (s) converges to a -1 φ+λ 0 h (s). We set e n = a -1 φ+λnh (s) ∈ (min(φ + λ n h), 0) ⊂ (min φ + min φ, 0). Hence, up to a subsequence, e n converges to some e ≤ 0 as n → +∞.

Let us prove that e < 0 by contradiction. Assume that e = 0. For n large enough such that λ 0 2 ≤ λ n ≤ 1+λ 0 2 , we have

s = a φ+λnh (e n ) = 8π √ 2 3 R 3 e n -(1 -λ n )φ(x) -λ n φ(x) 3/2 + dx ≥ 8π √ 2 3 R 3 e n - 1 -λ 0 2 φ(x) - λ 0 2 φ(x) 3/2 + dx = a ψ (e n ),
where ψ(x) = 1-λ 0 2 φ(x) + λ 0 2 φ(x). From Lemma 2.2, we have lim t→0-a ψ (t) = +∞, which implies that lim n→+∞ a ψ (e n ) = +∞, a contradiction.

Therefore, we have e n → e < 0. The continuity of (λ, e) → a φ+λh (e) proved in Step 1 gives that s = a φ+λnh (e n ) → a φ+λ 0 h (e) as n → +∞.

Thus e = a -1 φ+λ 0 h (s). This ends the proof of (ii).

Step 3. Differentiability of λ → a -1 φ+λh (s).

Denoting φ 0 = φ + λ 0 h and φ λ = φ + λh, we write a -1 φ λ (s) -a -1 φ 0 (s) λ = a -1 φ λ (s) -a -1 φ 0 (s) a φ 0 (a -1 φ λ (s)) -a φ 0 (a -1 φ 0 (s))

a φ 0 (a -1 φ λ (s)) -a φ 0 (a -1 φ 0 (s)) λ = A 1 (λ) A 2 (λ), (A.1) where we have set A 1 (λ) = a -1 φ λ (s) -a -1 φ 0 (s) a φ 0 (a -1 φ λ (s)) -a φ 0 (a -1 φ 0 (s))

, A 2 (λ) = a φ 0 (a -1 φ λ (s)) -a φ λ (a -1 φ λ (s)) λ , and where we simply used that a φ 0 (a -1 φ 0 (s)) = s = a φ λ (a -1 φ λ (s)). Let us examinate separately the convergence of the two factors A 1 and A 2 in (A.1). From Step 2, we have

lim λ→0 a -1 φ λ (s) = a -1 φ 0 (s), hence lim λ→0 A 1 (λ) = 1 a ′ φ 0 (a -1 φ 0 (s)) = 1 4π √ 2 R 3
(a -1 φ 0 (s) -φ 0 (x)) 
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 131 Properties of Poisson fields. Let us start with defining a suitable class of "Poisson type" potentials: X = φ ∈ C(R 3 ) such that φ ≤ 0, lim |x|→+∞ φ(x) = 0, ∇φ ∈ L 2 (R 3 ) and m(φ) > 0 where m(φ) := inf x∈R |x|)|φ(x)| (2.1)
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 3223 Continuity and differentiability properties of φ → a φ ). Let φ, φ ∈ X and let h = φ -φ. Then the following holds. (i) The function (λ, e) → a φ+λh (e) is a C 1 function on [0, 1] × R * -and we have ∂ ∂λ a φ+λh (e) = -4π √
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 834 Remark The projector Πh given by (3.8) should be understood as the projector onto the functions which depend only on the microscopic energy e(x, v) = |v| 2
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 24 Let us analyze the sequence e n = a -1
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 00333 [START_REF] Wolansky | On nonlinear stability of polytropic galaxies[END_REF] follows. This concludes the proof of Proposition 3.6. Proof of Proposition 3.1. We are now in position to conclude the proof of Proposition 3.1 which is a classical consequence of modulation theory coupled with the coercivity estimate (3.29).
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 41 Compactness of local minimizing sequences). Let δ 0 > 0 be as in Proposition 3.1. Let φ → z φ the continuous map from ( Ḣ1 , • Ḣ1 ) → R 3 build in Proposition 3.1. Let f n be a sequence of functions of E, bounded in L ∞ , such that inf z∈R 3
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 23 φ+λh (e) = x ∈ R 3 : (φ + λh)(x) < e .From (2.4), we havea φ+λh (e) = 8π √ φ+λh (e)(e -φ(x) -λh(x))

  A.1), (A.2) and (A.3) give(3.5). This concludes the proof of Lemma 3.2.

  from the definition(2.13). This proves(2.14). Assume now that f * φ (x, v) ≤ s. Then, for all e ∈ {ẽ ∈ [min φ, 0) :f * • a φ (ẽ) >s} which is a non empty set, we have |v| 2 2 + φ(x) > e, and (2.15) is proved. 2.3. Spherical models are fixed points of the generalized rearrangement.

  standard Sturm Liouville results the ground state of A 1 which is thus positive with kernel on Ḣ1 rad spanned by φ ′ Q . Now (3.33) ensures that A k is definite positive on Ḣ1 rad for k ≥ 2 and (3.31), (3.32) follow.

Note that this is essentially a characterization of spherical models