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Improved Sobolev Inequalities and Muckenhoupt weights

on stratified Lie groups

Diego Chamorro

July 23, 2010

Abstract

We study in this article the Improved Sobolev inequalities with Muckenhoupt weights within the framework of

stratified Lie groups. This family of inequalities estimate the Lq norm of a function by the geometric mean of two

norms corresponding to Sobolev spaces Ẇ s,p and Besov spaces Ḃ−β,∞
∞

. When the value p which characterizes Sobolev

space is strictly larger than 1, the required result is well known in Rn and is classically obtained by a Littlewood-Paley

dyadic blocks manipulation. For these inequalities we will develop here another totally different technique. When

p = 1, these two techniques are not available anymore and following M. Ledoux in [13] in Rn, we will treat here the

critical case p = 1 for general stratified Lie groups in a weighted functional space setting. Finally, we will go a step

further with a new generalization of Improved Sobolev inequalities using weak-type Sobolev spaces.

Keywords: Improved Sobolev inequalities, stratified Lie groups, Muckenhoupt weights.

1 Introduction

In the Euclidean case, we can roughly distinguish three types of Improved Sobolev inequalities following the
method used in their proof and the parameter’s range defining the functional spaces. Let us recall these
inequalities (for a precise definition of the functional spaces used below, please refer to section 4).

Historically the first method, due to P. Gérard, F. Oru and Y. Meyer [10], is based on a Littlewood-Paley
decomposition and interpolation results applied to dyadic blocks. For a function f such that f ∈ Ẇ s1,p(Rn)

and f ∈ Ḃ−β,∞
∞ (Rn), the inequality obtained reads as follows:

‖f‖Ẇ s,q ≤ C‖f‖θ
Ẇ s1,p

‖f‖1−θ
Ḃ−β,∞

∞
(1)

where 1 < p < q < +∞, θ = p/q, s = θs1 − (1 − θ)β and −β < s < s1. Let us stress that the value

p = 1 is forbidden here. We write Ẇ s,p for homogeneous (s, p)-Sobolev spaces and Ḃ−β,∞
∞ for homogeneous

(−β,∞,∞)-Besov spaces.

The second method, studied by M. Ledoux in [13], use semi-group properties related to Laplacian and

heat kernel and allows us to treat the case p = 1. If ∇f ∈ Lp(Rn) and f ∈ Ḃ−β,∞
∞ (Rn), we have

‖f‖Lq ≤ C‖∇f‖θLp‖f‖1−θ
Ḃ−β,∞

∞
(2)

with 1 ≤ p < q < +∞, θ = p/q and β = θ/(1− θ).

Finally, the third method proposed by A. Cohen, W. Dahmen, I. Daubechies & R. De Vore in [4] use a
BV-norm weak estimation using wavelet coefficients and isoperimetric inequalities and gives, for a function
f such that f ∈ BV (Rn) and f ∈ Ḃ−β,∞

∞ (Rn), the estimation below:

‖f‖Ẇ s,q ≤ C‖f‖1/qBV ‖f‖
1−1/q

Ḃ−β,∞
∞

(3)
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where 1 < q ≤ 2, 0 ≤ s < 1/q and β = (1− sq)/(q − 1). When s = 0, this last result implies (2) with p = 1,
but is limited by the fact that 1 < q ≤ 2.

In this paper we will study these inequalities using as a framework stratified Lie groups which are a nat-
ural generalization of Rn when modifying dilations (see (8) below for a definition). However, this seemingly
simple modification induces some serious technical problems at many levels since the whole group structure
is changed: for example, the underlying geometry is totally different (see [18] and [9]) which makes the
techniques used in [4] hardly transposable to this setting; observe also that the use of Fourier transform,
and the classical associated tools, is not as straightforward as in R

n.

For the Heisenberg group, inequalities of type (1) have been carried out in [1] and with the work realized
in [7] we can deduce these inequalities for stratified Lie groups in a unweighted setting. Note that these
authors develop systematically in each case a Littlewood-Paley decomposition in order to obtain these esti-
mates, we will show here how to treat these inequalities in a far more direct and simpler way using maximal
functions.

This is one of the main novelties of this paper, however, our principal aim is to generalize inequality (2)
to stratified Lie groups using weighted spaces and to give a new weak-type estimation which lies, roughly
speaking, between (2) and (3). In order to achieve this, we will develop some techniques using properties
associated to the sub-Laplacian spectral decomposition.

We will consider throughout this paper weighted functional spaces with weights ω belonging to the
Muckenhoupt classes Ap for 1 ≤ p < +∞1. The main reason for considering these weights lies in their
connection with maximal functions which will lead us to a painless proof for inequalities of type (1).

Our principal theorem treats the critical case p = 1 of improved Sobolev inequalities:

Theorem 1 Let G be a stratified Lie group and ω a weight in the Muckenhoupt class A1. If ∇f ∈ L1(G, ω)

and f ∈ Ḃ−β,∞
∞ (G), then we have the following inequalities:

• [Strong inequalities]
‖f‖Lq(ω) ≤ C‖∇f‖θL1(ω)‖f‖1−θḂ−β,∞

∞
(4)

where 1 < q < +∞, θ = 1/q and β = θ/(1− θ).

• [Weak inequalities]
‖f‖Ẇ s,q

∞ (ω) ≤ C‖∇f‖θL1(ω)‖f‖1−θḂ−β,∞
∞

(5)

where 1 < q < +∞, 0 < s < 1/q < 1, θ = 1/q and β = 1−sq
q−1 . Here ‖ · ‖Ẇ s,q

∞ (ω) characterizes the

weighted weak homogenous Sobolev space which definition is given by formula (18) in section 4.

It is possible to see inequality (5) as a weak-type improvement of (3). Indeed, the general Sobolev-like
inequality obtained in [4] uses in fact a Besov space in the left-hand side:

‖f‖Ḃs,q
q

≤ C‖f‖1/qBV ‖f‖
1−1/q

Ḃ−β,∞
∞

which turns to be (3) only if 1 < q ≤ 2 since in this case we have Ḃs,q
q ⊂ Ẇ s,q. The restriction q ∈]1, 2]

is a serious limitation as, for q > 2, this Besov-Sobolev spaces embbeding is reversed. It is then important
to observe that our weak inequality does not have this restriction since we allow q to be in the interval ]1,+∞[.

Note also that in the context of stratified Lie groups, the weak inequality (5) is the sharpest result
available.

Our second result provides the main tool for proving theorem 1:

1When p = +∞, we do not consider them, since in this case weighted spaces X∞(ω) coincide with traditional ones X∞

where X is a Lebesgue, Sobolev or Besov space.
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Theorem 2 (Modified pseudo-inequality of Poincaré) Let G be a stratified Lie group, ω ∈ A1 and
∇f ∈ L1(G, ω). We have the following estimate for 0 ≤ s < 1 and for t > 0:

‖J s/2f −HtJ s/2f‖L1(ω) ≤ C t
1−s
2 ‖∇f‖L1(ω). (6)

Where J is a sub-Laplacian on G invariant with respect to the family of dilation, Ht stands for the associated
heat semi-group and the constant C = C(s) depends on the group G.

This estimate will be a consequence of the sub-Laplacian J several spectral properties and we will specially
use operators of type m(J ) where m is a well suited Borel function (see section 5 for the details).

Finally, we will prove a in very straightforward way the next theorem for a weighted functional setting:

Theorem 3 Let G be a stratified Lie group and ω ∈ Ap with 1 < p < +∞. If f ∈ Ẇ s1,p(G, ω) and

f ∈ Ḃ−β,∞
∞ (G) then

‖f‖Ẇ s,q(ω) ≤ C‖f‖θ
Ẇ s1,p(ω)

‖f‖1−θ
Ḃ−β,∞

∞
(7)

where 1 < p < q < +∞, θ = p/q, s = θs1 − (1− θ)β and −β < s < s1.

In the proof of this theorem we will show as annouced how to pass over the Littlewood-Paley theory.

The plan of the article is the following: in section 2 we make a short presentation of stratified Lie
groups; in sections 3 and 4 we define maximal functions, Muckenhoupt weights and weighted functional
spaces respectively; we detail the necessary results concerning spectral resolution of the sub-Laplacian in
section 5; and finally, in section 6, we give the proof of theorems 1, 2 and 3.

2 Notation and preliminaries

In this section we recall some basic facts about stratified Lie groups, for further information see [6], [20],[17]
and the references given therein.

A homogeneous group G is the data of Rn equipped with a structure of Lie group and with a family
of dilations which are group automorphisms. We will always suppose that the origin is the identity. For
dilations, we define them by fixing integers (ai)1≤i≤n such that 1 = a1 ≤ ... ≤ an and by writing:

δα : Rn −→ R
n (8)

x 7−→ δα[x] = (αa1x1, ..., α
anxn)

We will often note αx instead of δα[x] and α will always indicate a strictly positive real number.

The reader can be easily convinced that the Euclidean space R
n with its group structure and provided

with its usual dilations (i.e. ai = 1, for i = 1, ..., n) is a homogeneous group. Here is another example: if
x = (x1, x2, x3) is an element of R3, we can fix a dilation by writing δα[x] = (αx1, αx2, α

2x3) for α > 0.
Then, the well suited group law with respect to this dilation is given by

x · y = (x1, x2, x3) · (y1, y2, y3) = (x1 + y1, x2 + y2, x3 + y3 +
1

2
(x1y2 − y1x2)).

This triplet (R3, ·, δ) corresponds to the Heisenberg group H
1 which is the first non-trivial example of a

homogeneous group.

The homogeneous dimension with respect to dilation (8) is given by the sum of the exponents of dilation:

N =
∑

1≤i≤n

ai.
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We observe that it is always larger than the topological dimension n since integers ai verifies ai ≥ 1 for all
i = 1, ..., n. For instance, in the Heisenberg group H

1 we have N = 4 and n = 3 while in the Euclidean case
these two concepts coincide.

We will say that a function on G\{0} is homogeneous of degree λ ∈ R if f(δα[x]) = αλf(x) for all α > 0.
In the same way, we will say that a differential operator D is homogeneous of degree λ if

D(f(δα[x])) = αλ(Df)(δα[x])

for all f in operator’s domain. In particular, if f is homogeneous of degree λ and if D is a differential
operator of degree µ, then Df is homogeneous of degree λ− µ.

From the point of view of measure theory, homogeneous groups behave in a traditional way since Lebesgue
measure dx is bi-invariant and coincides with the Haar measure. For any subset E of G we will note its
measure as |E|. The convolution of two functions f and g on G is defined by

f ∗ g(x) =
∫

G

f(y)g(y−1 · x)dy =

∫

G

f(x · y−1)g(y)dy, x ∈ G.

We also have the useful Young’s inequalities:

Lemma 2.1 If 1 ≤ p, q, r ≤ +∞ such that 1 + 1
r = 1

p +
1
q . If f ∈ Lp(G) and g ∈ Lq(G), then f ∗ g ∈ Lr(G)

and
‖f ∗ g‖Lr ≤ ‖f‖Lp‖g‖Lq . (9)

A proof is given in [6].

For a homogeneous group G = (Rn, ·, δ) we consider now its Lie algebra g whose elements can be
conceived in two different ways: as left-invariant vector fields or as right-invariant vector fields. The left-
invariant vectors fields (Xj)1≤j≤n are determined by the formula

(Xjf)(x) =
∂f(x · y)
∂yj

∣

∣

∣

∣

y=0

=
∂f

∂xj
+
∑

j<k

qkj (x)
∂f

∂xk
(10)

where qkj (x) is a homogeneous polynomial of degree ak − aj and f is a smooth function on G. By this
formula one deduces easily that these vectors fields are homogeneous of degree aj :

Xj (f(αx)) = αaj (Xjf)(αx).

We will note (Yj)1≤j≤n the right invariant vector fields defined in a totally similar way:

(Yjf)(x) =
∂f(y · x)
∂yj

∣

∣

∣

∣

y=0

A homogeneous group G is stratified if its Lie algebra g breaks up into a sum of linear subspaces
g =

⊕

1≤j≤k Ej such that E1 generates the algebra g and [E1, Ej ] = Ej+1 for 1 ≤ j < k and [E1, Ek] = {0}
and Ek 6= {0}, but Ej = {0} if j > k. Here [E1, Ej ] indicates the subspace of g generated by the elements
[U, V ] = UV − V U with U ∈ E1 and V ∈ Ej. The integer k is called the degree of stratification of g. For
example, on Heisenberg group H

1, we have k = 2 while in the Euclidean case k = 1.

We will suppose henceforth that G is stratified. Within this framework, if we fix the vectors fields
X1, ...,Xm such that a1 = a2 = . . . = am = 1 (m < n), then the family (Xj)1≤j≤m is a base of E1 and
generates the Lie algebra of g, which is precisely the Hörmander’s condition (see [6] and [20]).

To the family (Xj)1≤j≤m is associated the Carnot-Carathéodory distance d which is left-invariant and
compatible with the topology on G (see [20] for more details). For any x ∈ G we will note |x| = d(x, e) and
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for r > 0 we form the balls by writing B(x, r) = {y ∈ G : d(x, y) < r}.

The main tools of this paper depends on the properties of the gradient, the sub-Laplacian and the asso-
ciated heat kernel. Before introducing them, we make here three remarks on general vectors fields Xj and
Yj. Let us fix some notation. For any multi-index I = (i1, ..., in) ∈ N

n, one defines XI by XI = Xi1
1 . . . Xin

n

and Y I by Y I = Y i1
1 . . . Y in

n . We note |I| = i1 + . . . + in the order of the derivation XI or Y I and
d(I) = a1i1 + . . . + anin the homogeneous degree of this one.

Firstly, for ϕ,ψ ∈ C∞
0 (G) we have the equality

∫

G

ϕ(x)(XIψ)(x)dx = (−1)|I|
∫

G

(XIϕ)(x)ψ(x)dx.

Secondly, interaction of operators XI and Y I with convolutions is clarified by the following identities:

XI(f ∗ g) = f ∗ (XIg), Y I(f ∗ g) = (Y If) ∗ g, (XIf) ∗ g = f ∗ (Y Ig). (11)

Finally, one will say that a function f ∈ C∞(G) belongs to the Schwartz class S(G) if the following semi-
norms are bounded for all k ∈ N and any multi-index I: Nk,I(f) = sup

x∈G
(1 + |x|)k|XIf(x)|.

Remark 1 To characterize the Schwartz class S(G) we can replace vector fields XI in the semi-norms Nk,I

above by right-invariant vector fields Y I .

For a proof of these facts and for further details see [6] and [7].

We define now the gradient on G from vectors fields of homogeneity degree equal to one by fixing
∇ = (X1, ...,Xm). This operator is of course left invariant and homogeneous of degree 1. The length of the

gradient is given by the formula |∇f | =
(

(X1f)
2 + ...+ (Xmf)

2
)1/2

.

Let us notice that there is not a single way to build a sub-Laplacian, see for example [7] and [3]. In this
article, we will work with the following sub-Laplacian:

J = ∇∗∇ = −
m
∑

j=1

X2
j (12)

which is a positive self-adjoint, hypo-elliptic operator (since (Xj)1≤j≤m satisfies the Hörmander’s condition),
having as domain of definition L2(G). Its associated heat operator on G×]0,+∞[ is given by ∂t + J .

We recall now some well-known properties of this operator.

Theorem 4 There exists a unique family of continuous linear operators (Ht)t>0 defined on L1 + L∞(G)
with the semi-group property Ht+s = HtHs for all t, s > 0 and H0 = Id, such that:

1) the sub-Laplacian J is the infinitesimal generator of the semi-group Ht = e−tJ ;

2) Ht is a contraction operator on Lp(G) for 1 ≤ p ≤ +∞ and for t > 0;

3) the semi-group Ht admits a convolution kernel Htf = f ∗ ht where ht(x) = h(x, t) ∈ C∞(G×]0,+∞[)
is the heat kernel which satisfies the following points:

(a) (∂t + J )ht = 0 on G×]0,+∞[,

(b) h(x, t) = h(x−1, t), h(x, t) ≥ 0 and
∫

G
h(x, t)dx = 1,
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(c) ht has the semi-group property: ht ∗ hs = ht+s for t, s > 0,

(d) h(δα[x], α
2t) = α−Nh(x, t),

(e) For every t > 0, x 7→ h(x, t) belong to the Schwartz class in G.

4) ‖Htf − f‖Lp → 0 if t→ 0 for f ∈ Lp(G) and 1 ≤ p < +∞;

5) If f ∈ Lp(G), 1 ≤ p ≤ +∞, then the function u(x, t) = Htf(x) ∈ C∞(G×R
+) is a solution of the heat

equation:










( ∂∂t + J )u(x, t) = 0 for x ∈ G and t > 0 ;

u(x, 0) = f(x) for x ∈ G.

For a detailed proof of these and other important facts concerning the heat semi-group see [6] and [15].

To close this section we recall the definition of the sub-Laplacian fractional powers J s with s > 0.
We write:

J sf(x) = lim
ε→0

1

Γ(k − s)

∫ +∞

ε
tk−s−1J kHtf(x)dt

for all f ∈ C∞(G) with k the smallest integer greater than s.

3 Maximal functions and Muckenhoupt weights

There are several ways of defining maximal functions in stratified Lie groups and our principal reference is
[6]. In this article we will mainly work with the following function

Definition 3.1 Let f ∈ S ′(G) and ϕ ∈ S(G). The maximal function Mϕ is given by the expression

Mϕf(x) = sup
0<t<+∞

{|f ∗ ϕt(x)|}

with ϕt(x) = t−N/2ϕ(t−1/2x).

This definition still has a sense if f and ϕ are two distributions such that (x, t) 7−→ f ∗ ϕt(x) is a continu-
ous function on G×]0,+∞[: for example, if f ∈ Lp(G) and ϕ ∈ Lq(G) where 1 ≤ p ≤ +∞ and 1/p+1/q = 1.

An important special case is given by the Hardy-Littlewood function which consists in taking as function
ϕ the characteristic function of the unit ball:

MBf(x) = sup
B∋x

1

|B|

∫

B
|f(y)|dy.

The next lemma explain the relationship between these maximal functions.

Lemma 3.1 Let ϕ a function on G such that |ϕ(x)| ≤ C(1 + |x|)−N−ε for some ε > 0, then

Mϕf(x) ≤ CMBf(x). (13)

We will use this property in the sequel and we request the reader to consult the proof in [6].

The reader can consult [6], [11] and [8] for a more detailed study of these important functions. For our
part, we will be interested in the relationship existing between these functions and weights. A weight ω is,
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in a very general way, a locally integrable function on G with values in ]0,+∞[. For a given weight ω and
a measurable set E ⊂ G we use the following notation:

ω(E) =

∫

E
ω(x)dx.

We will define thus, for 1 ≤ p < +∞, weighted Lebesgue spaces by the norm

‖f‖Lp(ω) =

(
∫

G

|f(x)|pω(x)dx
)1/p

(14)

Historically, the characterization of Muckenhoupt weights comes from the following problem: for a fixed
p ∈]1,+∞[ we want to know for which functions ω one has the strong estimate

∫

G

MBf(x)
pω(x)dx ≤ C

∫

G

|f(x)|pω(x)dx (f ∈ Lp(G, ω)). (15)

It follows the condition below and the next definition (see [11]):

sup
B

(

1

|B|

∫

B
ω(x)dx

)(

1

|B|

∫

B
ω(x)−

1
p−1 dx

)p−1

< +∞. (16)

Definition 3.2 Let G a stratified Lie group and let 1 < p < +∞. We will say that a weight ω belongs to
the Muckenhoupt class Ap if it satisfies condition (16). Moreover, we will define weights in the class A1 by:

MB ω(x) ≤ C ω(x) (∀x ∈ G). (17)

Here are some traditional examples: the trivial weight ω(x) ≡ 1 for all x ∈ G is a Ap weight for
1 ≤ p < +∞ and the function |x|α is in Ap if and only if −N < α < N(p− 1), where N is the homogeneous
dimension. For p = 1, the function |x|α belongs to A1 if and only if −N < α ≤ 0.

Let us finally say that we have following inclusion:

Proposition 3.1 If 1 < p < q < +∞, then A1 ⊂ Ap ⊂ Aq.

We request the reader to consult the proof of this result in [6] or [11].

4 Weigthed spaces

We give in this section the precise definition of weighted functional spaces involved in theorems 1, 2 and 3.
In a general way, given a norm ‖ · ‖X(ω) , we will define the corresponding weighted functional space X(G, ω)
by {f ∈ S ′(G) : ‖f‖X(ω) < +∞} where ω is a Muckenhoupt weight belonging to a certain class Ap.

• Lebesgue spaces Lp(G, ω). We have already considered how to define weigthed Lebesgue spaces with
the formula (14). Let us notice that we also have a characterization with the distribution function:

‖f‖pLp(ω) =

∫ +∞

0
pσp−1ω({x ∈ G : |f(x)| > σ})dσ.

• weak-Lp spaces or Lorentz spaces Lp,∞(G, ω). We define them by

‖f‖Lp,∞(ω) = sup
σ>0

{σ ω({x ∈ G : |f(x)| > σ})1/p}.

7



• Sobolev spaces Ẇ s,p(G, ω). For ω ∈ Ap we write:

‖f‖Ẇ s,p(ω) = ‖J s/2f‖Lp(ω) (1 < p < +∞)

and when p = s = 1 we will note

‖f‖Ẇ 1,1(ω) = ‖∇f‖L1(ω).

• weak Sobolev spaces Ẇ s,p
∞ (G, ω):

‖f‖Ẇ s,p(ω) = ‖J s/2f‖Lp,∞(ω) (1 < p < +∞) (18)

• Besov spaces Ḃs,q
p (G, ω). We define them in the following way:

‖f‖Ḃs,q
p (ω) =

[

∫ +∞

0
t(m−s/2)q

∥

∥

∥

∥

∂mHtf

∂tm
(·)
∥

∥

∥

∥

q

Lp(ω)

dt

t

]1/q

for 1 ≤ p, q ≤ +∞, s > 0 and m an integer such that m > s/2.

Finally, for Besov spaces of indices (−β,∞,∞) which appear in all the Improved Sobolev inequalities
we have:

‖f‖
Ḃ−β,∞

∞
= sup

t>0
tβ/2‖Htf‖L∞ (19)

5 Spectral resolution of the sub-Laplacian

The use in this article of spectral resolution for the sub-Laplacian consists roughly in expressing this operator
by the formula J =

∫ +∞
0 λ dEλ and, by means of this characterization, build a family of new operators

m(J ) associated to a Borel function m. This kind of operators have some nice properties as shown in the
next propositions.

Proposition 5.1 If m is a bounded Borel function on ]0,+∞[ then the operator m(J ) fixed by

m(J ) =

∫ +∞

0
m(λ) dEλ, (20)

is bounded on L2(G) and admits a convolution kernel M i.e.: m(J )(f) = f ∗M (∀f ∈ L2(G)).

See [6] and the references given therein for a proof. For our purposes, it will be particularly interesting to
combine this result with the structure of dilation:

Lemma 5.1 Let m be a bounded function on ]0,+∞[ and let M be the kernel of the operator m(J ). Then,
for all t > 0 we can build a bounded operator on L2(G) by writing mt(J ) = m(tJ ) with an associated kernel
given by

Mt(x) = t−N/2M(t−1/2x).

Following [12] and [7] we can improve the conclusion of the above proposition. Let k ∈ N and m be a
function of class Ck(R+), we write

‖m‖(k) = sup
1≤r≤k

λ>0

(1 + λ)k|m(r)(λ)|.

This formula gives us a necessary condition to obtain certain properties of the operators defined by (20):
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Proposition 5.2 Let α ∈ N, I = (i1, ..., in) be a multi-index and p ∈ [1,+∞]. There is a constant C > 0
and an integer k such that, for any function m ∈ Ck(R+) with ‖m‖(k) < +∞, the kernel Mt associated to
the operator m(tJ ), t > 0, satisfies

‖(1 + | · |)αXIMt(·)‖Lp ≤ C(1 +
√
t)αt

−( N

2p′
+ d(I)

2
)‖m‖(k).

where 1
p +

1
p′ = 1.

Corollary 5.1 Let t > 0.

1) Let m be the restriction on R
+ of a function defined on S(R). Then, the kernel M of the operator

m(J ) is in S(G).

2) If m is as above; and if it is vanishing at all orders near of the origin, then the kernel M belongs to
the space S0(G) formed by the functions of the Schwartz class which every moment is null.

For more details and proofs see [6], [7] and [12].

6 Improved Sobolev Inequalities on stratified groups: the proofs

As said in the introduction, inequalities given in theorem 1 depends on the theorem 2. We will thus
begin proving this result in the following lines and we will continue our study by treating separately weak
inequalities (5) and strong inequalities (4).

6.1 The modified pseudo-inequality of Poincaré

Under the hypothesis of theorem 2, we have to prove the inequality

‖J s/2f −HtJ s/2f‖L1(ω) ≤ C t
1−s
2 ‖∇f‖L1(ω).

To begin the proof, we observe that the following identity occurs:

(J s/2f −HtJ s/2f)(x) =

(
∫ +∞

0
m(tλ)dEλ

)

t1−s/2J f(x),

where we noted m(λ) = λs/2−1(1 − e−λ) for λ > 0, note that m is a bounded function which tends to 0 at
infinity since s/2− 1 < 0. We break up this function by writing:

m(λ) = m0(λ) +m1(λ) = m(λ)θ0(λ) +m(λ)θ1(λ)

where we chose the auxiliary functions θ0(λ), θ1(λ) ∈ C∞(R+) defined by:

• θ0(λ) = 1 on ]0, 1/2] and 0 on ]1,+∞[,

• θ1(λ) = 0 on ]0, 1/2] and 1 on ]1,+∞[,

so that θ0(λ) + θ1(λ) ≡ 1. Then, we obtain the formula:

(J s/2f −HtJ s/2f)(x) =

(
∫ +∞

0
m0(tλ)dEλ

)

t1−s/2J f(x) +
(
∫ +∞

0
m1(tλ)dEλ

)

t1−s/2J f(x).

If we note M
(i)
t the kernel of the operator fixed by

∫ +∞
0 mi(tλ)dEλ for i = 0, 1, we have:

(J s/2f −HtJ s/2f)(x) = t1−s/2J f ∗M (0)
t (x) + t1−s/2J f ∗M (1)

t (x).

We now multiply the above equality by a weight ω ∈ A1 to obtain the inequality
∫

G

∣

∣

∣
J s/2f −HtJ s/2

∣

∣

∣
ω(x)dx ≤

∫

G

∣

∣

∣
t1−s/2J f ∗M (0)

t (x)
∣

∣

∣
ω(x)dx+

∫

G

∣

∣

∣
t1−s/2J f ∗M (1)

t (x)
∣

∣

∣
ω(x)dx. (21)

We will now estimate the right side of the above inequality by the two following propositions:
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Proposition 6.1 For the first integral in the right-hand side of (21) we have the inequality:
∫

G

∣

∣

∣
t1−s/2J f ∗M (0)

t (x)
∣

∣

∣
ω(x)dx ≤ Ct

1−s
2 ‖∇f‖L1(ω)

Proof. The function m0 is the restriction on R
+ of a function belonging to the Schwartz class. This function

satisfies the assumptions of corollary 5.1 which we apply after having noticed the identity

I =

∫

G

∣

∣

∣
t1−s/2J f ∗M (0)

t (x)
∣

∣

∣
ω(x)dx =

∫

G

∣

∣

∣
t1−s/2∇f ∗ ∇̃M (0)

t (x)
∣

∣

∣
ω(x)dx

where we noted ∇̃ the gradient formed by vectors fields (Yj)1≤j≤m. We have then

I ≤
∫

G

∫

G

t1−s/2|∇f(y)||∇̃M (0)
t (y−1 · x)|ω(x)dxdy.

By corollary 5.1, one has M
(0)
t ∈ S(G) and, since M

(0)
t (x) = t−N/2M (0)(t−1/2x), we can write

Kt(x) = t1/2|∇̃M (0)
t (x−1)| ∈ L1(G).

One obtains

I ≤
∫

G

∫

G

t
1−s
2 |∇f(y)|Kt(x · y−1)ω(x)dxdy =

∫

G

t
1−s
2 |∇f(y)| ω ∗Kt(y)dy.

By definition of maximal functions and by the estimate (13), we have the inequality:

sup
t>0

ω ∗Kt(y) ≤ C (MB ω) (y),

hence,

I ≤ Ct
1−s
2

∫

G

|∇f(y)|MB ω(y)dy.

It remains to notice that, by assumption, ω ∈ A1 if and only if (MB ω)(·) ≤ C ω(·). We obtain then the
desired estimation:

∫

G

∣

∣

∣
t1−s/2J f ∗M (0)

t (x)
∣

∣

∣
ω(x)dx ≤ Ct

1−s
2

∫

G

|∇f(y)|ω(y)dy.

�

Proposition 6.2 For the last integral of (21) we have the inequality
∫

G

∣

∣

∣
t1−s/2J f ∗M (1)

t (x)
∣

∣

∣
ω(x)dx ≤ Ct

1−s
2 ‖∇f‖L1(ω)

Proof. Here, it is necessary to make an additional step. We cut out the function m1 in the following way:

m1(λ) =

(

1− e−λ

λ

)

θ1(λ) = ma(λ)−mb(λ)

where ma(λ) =
1
λθ1(λ) and mb(λ) =

e−λ

λ θ1(λ). We will note M
(a)
t and M

(b)
t the associated kernels of these

two operators. We obtain thus the estimate
∫

G

∣

∣

∣
t1−s/2J f ∗M (1)

t (x)
∣

∣

∣
ω(x)dx ≤

∫

G

∣

∣

∣
t1−s/2J f ∗M (a)

t (x)
∣

∣

∣
ω(x)dx+

∫

G

∣

∣

∣
t1−s/2J f ∗M (b)

t (x)
∣

∣

∣
ω(x)dx (22)

Observe that mb ∈ S(R+) and then M
(b)
t ∈ S(G). We have the next lemma for the last integral in (22).

Lemma 6.1
∫

G

∣

∣

∣
t1−s/2J f ∗M (b)

t (x)
∣

∣

∣
ω(x)dx ≤ Ct

1−s
2 ‖∇f‖L1(ω).
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Proof. The proof is straightforward and follows the same steps as those of the preceding proposition 6.1.

�

We treat the other part of (22) with the following lemma:

Lemma 6.2
∫

G

∣

∣

∣
t1−s/2J f ∗M (a)

t (x)
∣

∣

∣
ω(x)dx ≤ Ct

1−s
2 ‖∇f‖L1(ω) (23)

Proof. We consider the auxiliary function

ψ(λ) = θ0(λ/2) − θ0(λ) = θ1(λ)− θ1(λ/2)

in order to obtain the identity
+∞
∑

j=0

ψ(2−jλ) = θ1(λ).

We have then

ma(tλ) =
1

tλ

+∞
∑

j=0

ψ(2−jtλ) =

+∞
∑

j=0

2−jψ̃(2−jtλ)

where ψ̃(λ) = ψ(λ)
λ is a function in C∞

0 (R+). By corollary 5.1, the kernel K̃ associated with the function ψ̃
belongs to S0(G). Then, from the point of view of operators, one has:

M
(a)
t (x) =

+∞
∑

j=0

2−jK̃j,t(x) (24)

where K̃j,t(x) = 2N/2t−N/2K̃(2j/2t−1/2x). With formula (24) we return to the left side of (23):

∫

G

∣

∣

∣
t1−s/2J f ∗M (a)

t (x)
∣

∣

∣
ω(x)dx ≤

+∞
∑

j=0

2−j
∫

G

∣

∣

∣
t1−s/2J f ∗ K̃j,t(x)

∣

∣

∣
ω(x)dx.

Using the sub-Laplacian definition and vector fields properties, we have

∫

G

∣

∣

∣
t1−s/2J f ∗M (a)

t (x)
∣

∣

∣
ω(x)dx ≤

+∞
∑

j=0

2−jt1−s/2
∫

G

∫

G

|∇f(y)||∇̃K̃j,t(y
−1 · x)|ω(x)dxdy. (25)

We note this time Kj,t(x) = 2−j/2t1/2|∇̃K̃j,k(x
−1)| to obtain the following formula for the right side of (25):

+∞
∑

j=0

2−j/2t
1−s
2

∫

G

∫

G

|∇f(y)|Kj,t(x · y−1)ω(x)dxdy =

+∞
∑

j=0

2−j/2t
1−s
2

∫

G

|∇f(y)| ω ∗Kj,t(y)dy.

It remains to apply the same arguments used in proposition 6.1, namely the assumption ω ∈ A1 and, for
Kj,t, the estimations sup

j,t>0
ω ∗Kj,t(y) ≤ C (MB ω)(y) ≤ C ω(y). Then, we finally get the inequality

∫

G

∣

∣

∣
t1−s/2J f ∗M (a)

t (x)
∣

∣

∣
ω(x)dx ≤ C t

1−s
2

+∞
∑

j=0

2−j/2
∫

G

|∇f |(y)ω(y)dy = C t
1−s
2 ‖∇f‖L1(ω).

Which ends the proof of the lemma 6.2.

�

With these two last lemmas we conclude the proof of the proposition 6.2. Now, getting back to the formula
(21), with propositions 6.1 and 6.2 we finally finish the proof of theorem 2.

�
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6.2 Weak inequalities

To begin the proof notice that operator J s/2 carries out an isomorphism between the spaces Ḃ−β,∞
∞ (G) and

Ḃ−β−s,∞
∞ (G) (see [15]). Thus inequality (5) rewrites as:

‖J s/2f‖Lq,∞(ω) ≤ C‖∇f‖θL1(ω)‖J s/2f‖1−θ
Ḃ−β−s,∞

∞
(26)

By homogeneity, we can suppose that the norm ‖J s/2f‖
Ḃ−β−s,∞

∞
is bounded by 1; then we have to show

‖J s/2f‖Lq,∞(ω) ≤ C‖∇f‖θL1(ω). (27)

We have thus to evaluate the expression ω
(

{x ∈ G : |J s/2f(x)| > 2α}
)

for all α > 0. If we use the thermic
definition of the Besov space (19), we have

‖J s/2f‖
Ḃ−β−s,∞

∞
≤ 1 ⇐⇒ sup

t>0

{

t
β+s

2 ‖HtJ s/2f‖L∞

}

≤ 1.

But, if one fixes tα = α
−
(

2
β+s

)

, we obtain ‖HtαJ s/2f‖L∞ ≤ α. Note also that with the definition of

parameter β one has tα = α
− 2(q−1)

(1−s) . Therefore, since we have the following set inclusion

{

x ∈ G : |J s/2f(x)| > 2α
}

⊂
{

x ∈ G : |J s/2f(x)−HtαJ s/2f(x)| > α
}

,

the Tchebytchev inequality implies

αqω
(

{x ∈ G : |J s/2f(x)| > 2α}
)

≤ αq−1

∫

G

|J s/2f(x)−HtαJ s/2f(x)|ω(x)dx.

At this point, we use the modified Poincaré pseudo-inequality, given by theorem 2, to estimate the right
side of the preceding inequality:

αqω
(

{x ∈ G : |J s/2f(x)| > 2α}
)

≤ Cαq−1 t
1−s
2

α

∫

G

|∇f(x)|ω(x)dx. (28)

But, by the choice of tα, one has αq−1α
− 2(q−1)

(1−s)
(1−s)

2 = 1. Then (28) implies the inequality

αqω
(

{x ∈ G : |J s/2f(x)| > 2α}
)

≤ C‖∇f‖L1(ω) ;

and, finally, using definition (18) of weak Sobolev spaces it comes

‖J s/2f‖qLq,∞(ω) ≤ C‖∇f‖L1(ω)

which is the desired result.

�

6.3 Strong inequalities

When s = 0 in the weak inequalities it is possible to obtain stronger estimations. To achieve this, we will
need an intermediate step:

Proposition 6.3 Let 1 < q < +∞, θ = 1
q and β = θ/(1− θ). Then we have

‖f‖Lq(ω) ≤ C‖∇f‖θL1(ω)‖f‖1−θḂ−β,∞
∞

when the three norms in this inequality are bounded.
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Proof. We will follow closely [13]. Just as in the preceding theorem, we will start by supposing that
‖f‖

Ḃ−β,∞
∞

≤ 1. Thus, we must show the estimate

‖f‖Lq(ω) ≤ C‖∇f‖θL1(ω). (29)

Let us fix t in the following way: tα = α−2(q−1)/q where α > 0. We have then, by the thermic definition of
Besov spaces, the estimate ‖Htf‖L∞ ≤ α. We use now the characterization of Lebesgue space given by the
distribution function:

1

5q
‖f‖qLq(ω) =

∫ +∞

0
ω ({x ∈ G : |f(x)| > 5α}) d(αq). (30)

It now remains to estimate ω({x ∈ G : |f(x)| > 5α}) and for this we introduce the following thresholding
function:

Θα(t) =



































Θα(−t) = −Θα(t)

0 if 0 ≤ T ≤ α

t− α if α ≤ T ≤Mα

(M − 1)α if T > Mα

Here, M is a parameter which depends on q and which we will suppose for the moment larger than 10.

This cut-off function enables us to define a new function fα = Θα(f). We write in the next lemma some
significant properties of this function fα:

Lemma 6.3

1) the set defined by {x ∈ G : |f(x)| > 5α} is included in the set {x ∈ G : |fα(x)| > 4α}.

2) On the set {x ∈ G : |f(x)| ≤Mα} one has the estimate |f − fα| ≤ α.

3) If f ∈ C1(G), one has the equality ∇fα = (∇f)1{α≤|f |≤Mα} almost everywhere.

For a proof see [13].

Let us return now to (30). By the first point of the lemma above we have

∫ +∞

0
ω ({x ∈ G : |f(x)| > 5α}) d(αq) ≤

∫ +∞

0
ω ({x ∈ G : |fα(x)| > 4α}) d(αq) = I. (31)

We note Aα = {x ∈ G : |fα(x)| > 4α}, Bα = {x ∈ G : |fα(x) − Htα(fα)(x)| > α} and Cα = {x ∈ G :
|Htα(fα − f)(x)| > 2α}. Now, by linearity of Ht we can write: fα = fα −Htα(fα) +Htα(fα − f) +Htα(f).
Then, holding in account the fact ‖Htf‖L∞ ≤ α, we obtain Aα ⊂ Bα ∪ Cα. Returning to (31), this set
inclusion gives us the following inequality

I ≤
∫ +∞

0
ω (Bα) d(α

q) +

∫ +∞

0
ω (Cα) d(α

q) (32)

We will study and estimate these two integrals, which we will call I1 and I2 respectively, by the two following
lemmas:

Lemma 6.4 For the first integral of (32) we have the estimate:

I1 =

∫ +∞

0
ω (Bα) d(α

q) ≤ C q log(M)‖∇f‖L1(ω) (33)
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Proof. Tchebytchev’s inequality implies

ω (Bα) ≤ α−1

∫

G

|fα(x)−Htα(fα)(x)|ω(x)dx.

Using the modified Poincaré pseudo-inequality (6) with s = 0 in the above integral we obtain:

ω (Bα) ≤ C α−1 t1/2α

∫

G

|∇fα(x)|ω(x)dx

Remark that the choice of tα fixed before gives t
1/2
α = α1−q, then we have

ω (Bα) ≤ C α−q

∫

{α≤|f |≤Mα}
|∇f(x)|ω(x)dx.

We integrate now the preceding expression with respect to d(αq):

I1 ≤ C

∫ +∞

0
α−q

(

∫

{α≤|f |≤Mα}
|∇f(x)|ω(x)dx

)

d(αq) = C q

∫

G

|∇f(x)|
(

∫ |f |

|f |
M

dα

α

)

ω(x)dx

It follows then I1 ≤ C q log(M)‖∇f‖L1(ω) and one obtains the estimation needed for the first integral.

�

Lemma 6.5 For the second integral of (32) one has the following result:

I2 =

∫ +∞

0
ω(Cα)d(α

q) ≤ q

q − 1

1

M q−1
‖f‖qLq

Proof. For the proof of this lemma, we write:

|f − fα| = |f − fα|1{|f |≤Mα} + |f − fα|1{|f |>Mα}.

As the distance between f and fα is lower than α on the set {x ∈ G : |f(x)| ≤Mα}, one has the inequality

|f − fα| ≤ α+ |f |1{|f |>Mα}

By applying the heat semi-group to both sides of this inequality we obtainHtα(|f−fα|) ≤ α+Htα(|f |1{|f |>Mα})
and we have then the following set inclusion Cα ⊂

{

x ∈ G : Htα(|f |1{|f |>Mα}) > α
}

. Thus, considering the
measure of these sets and integrating with respect to d(αq), it comes

I2 =

∫ +∞

0
ω (Cα) d(α

q) ≤
∫ +∞

0
ω

(

{Htα(|f |1{|f |>Mα}) > α}
)

d(αq)

We obtain now, by applying Tchebytchev inequality, the estimate

I2 ≤
∫ +∞

0
α−1

(
∫

G

Htα

(

|f |1{|f |>Mα}

)

ω(x)dx

)

d(αq),

then by Fubini’s theorem we have

I2 ≤ q

∫

G

|f(x)|
(
∫ +∞

0
1{|f |>Mα}α

q−2dα

)

ω(x)dx =
q

q − 1

∫

G

|f(x)| |f(x)|
q−1

M q−1
ω(x)dx =

q

q − 1

1

M q−1
‖f‖qLq(ω).

And this concludes the proof of this lemma.

�
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We finish the proof of proposition 6.3 by connecting together these two lemmas i.e.:

1

5q
‖f‖qLq(ω) ≤ Cq log(M)‖∇f‖L1(ω) +

q

q − 1

1

M q−1
‖f‖qLq(ω)

Since we supposed all the norms bounded and M ≫ 1, we finally have
(

1

5q
− q

q − 1

1

M q−1

)

‖f‖qLq(ω) ≤ Cq log(M)‖∇f‖L1(ω)

�

The proof of the theorem 1 is not yet completely finished. The last step is provided by the

Proposition 6.4 In proposition 6.3 it is possible to consider only the two assumptions ∇f ∈ L1(G, ω) and

f ∈ Ḃ−β,∞
∞ (G).

Proof. For the proof of this proposition we will build a homogeneous Littlewood-Paley like approximation
of f writing:

fj =

(
∫ +∞

0

(

ϕ(2−2jλ)− ϕ(22jλ)
)

dEλ

)

(f) (j ∈ N)

where ϕ is a C∞(R+) function such that ϕ = 1 on ]0, 1/4[ and ϕ = 0 on [1,+∞[.

Lemma 6.6 If q > 1, if ∇f ∈ L1(G, ω) and if f ∈ Ḃ−β,∞
∞ (G) then ∇fj ∈ L1(G, ω), fj ∈ Ḃ−β,∞

∞ (G) and
fj ∈ Lq(G, ω).

Proof. The fact that ∇fj ∈ L1(G, ω) and fj ∈ Ḃ−β,∞
∞ (G) is an easy consequence of the definition of fj.

For fj ∈ Lq(G, ω) the starting point is given by the relation:

fj =

(
∫ +∞

0
m(2−2jλ) dEλ

)

2−2jJ (f),

where we noted

m(2−2jλ) =
ϕ(2−2jλ)− ϕ(22jλ)

2−2jλ
.

Observe that the function m vanishes near of the origin and satisfies the assumptions of corollary 5.1. We
obtain then the following identity where Mj ∈ S(G) is the kernel of the operator m(2−2jJ ):

fj = 2−2jJ f ∗Mj = 2−2j∇f ∗ ∇̃Mj ,

where we denoted ∇̃ the gradient of the right invariant vectors fields and used the property (11). Let us
now calculate the norm Lq(G, ω) in the preceding identity:

‖fj‖Lq(ω) = ‖2−2j∇f ∗ ∇̃Mj‖Lq(ω) ≤ 2−2j‖∇f‖L1(ω)‖∇̃Mj‖Lq(ω).

Finally, we obtain:

‖fj‖Lq(ω) ≤ C 2
j(N(1− 1

q
)−1)‖∇f‖L1(ω) < +∞

�

Thanks to this estimate, we can apply the proposition 6.3 to fj whose L
q(G, ω) norm is bounded, and

we obtain:
‖fj‖Lq(ω) ≤ C‖∇fj‖θL1(ω)‖fj‖1−θḂ−β,∞

∞
.

Now, since f ∈ Ḃ−β,∞
∞ (G), we have fj ⇀ f in the sense of distributions. It follows

‖f‖Lq(ω) ≤ lim inf
j→+∞

‖fj‖Lq(ω) ≤ C‖∇f‖θL1(ω)‖f‖1−θḂ−β,∞
∞

.

We restricted ourselves to the two initial assumptions, namely ∇f ∈ L1(G, ω) and f ∈ Ḃ−β,∞
∞ (G). The

strong inequalities (4) are now completely proved for stratified groups.

�
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6.4 Maximal function and Improved Sobolev inequalities

We will study now theorem 3. Just as for weak inequalities (26), we can rewrite (7) in the following way

‖J
s−s1

2 f‖Lq(ω) ≤ C‖f‖θLp(ω)‖f‖1−θḂ
−β−s1,∞
∞

where 1 < p < q < +∞, θ = p/q, s = θs1 − (1 − θ)β and −β < s < s1. Using the sub-Laplacian fractional
powers characterization we have the identity

J −α
2 f(x) =

1

Γ(α2 )

∫ +∞

0
t
α
2
−1Htf(x)dt =

1

Γ(α2 )

(
∫ T

0
t
α
2
−1Htf(x)dt+

∫ +∞

T
t
α
2
−1Htf(x)dt

)

(34)

where α = s1 − s > 0 and T will be fixed in the sequel.

For studying each one of these integrals we will use the estimates

• |Htf(x)| ≤ CMBf(x) (by lemma 3.1)

• |Htf(x)| ≤ Ct
−β−s1

2 ‖f‖
Ḃ

−β−s1,∞
∞

(by the thermic definition of Besov spaces (19))

Then, applying these inequalities in (34) we obtain

|J −α
2 f(x)| ≤ c1

Γ(α2 )
T

α
2 MBf(x) +

c2
Γ(α2 )

T
α−β−s

2 ‖f‖
Ḃ

−β−s1,∞
∞

.

We fix now

T =

(‖f‖
Ḃ

−β−s1,∞
∞

MBf(x)

)
2

β+s1

and we get

|J −α
2 f(x)| ≤ c1

Γ(α2 )
MBf(x)

1− α
β+s1 +

c2
Γ(α2 )

MBf(x)
1− α

β+s1 ‖f‖
α

β+s1

Ḃ
−β−s1,∞
∞

.

Since α
β+s1

= 1− θ, we have

|J −α
2 f(x)| ≤ c

Γ(α2 )
MBf(x)

θ‖f‖1−θ
Ḃ

−β−s1,∞
∞

.

Multiplying this inequality by a Ap weight ω, using the fact that Ap ⊂ Aq if p < q, and the property of
maximal function (15) we obtain

‖J −α
2 f(x)‖Lq(ω) ≤ c‖f‖θLp(ω)‖f‖1−θḂ

−β−s1,∞
∞

and we are done.

�

It is worth noting the simplicity of this proof: the arguments used are classical tools from harmonic analysis.
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[2] J. Bergh & J. Löfstr̈om. Interpolation Spaces. Grundlehren der mathematischen Wissenschaften, 223.
Springer Verlag (1976).
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