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The Transparent Dead Leaves Model

B. Galerne∗ and Y. Gousseau†

September 6, 2011

Abstract

This paper introduces the transparent dead leaves (TDL) random field, a new
germ-grain model in which the grains are combined according to a transparency
principle. Informally, this model may be seen as the superposition of infinitely
many semi-transparent objects. It is therefore of interest in view of the modeling
of natural images. Properties of this new model are established and a simulation
algorithm is proposed. The main contribution of the paper is to establish a
central limit theorem, showing that when varying the transparency of the grain
from opacity to total transparency, the TDL model ranges from the dead leaves
model to a Gaussian random field.

Keywords: Germ-grain model; dead leaves model; transparency; occlusion; image
modeling; texture modeling

1 Introduction

This paper deals with the stochastic modeling of physical transparency. The main
contribution is the introduction and study of a new germ-grain model in which the
grains are combined according to a transparency principle. To the best of our knowl-
edge, this type of interaction between grains has not been studied before. Classical
interactions between grains include addition for shot-noise processes [22, 13], union for
Boolean models [26, 24], occlusion for dead leaves models [18, 14, 5] or multiplication
for compound Poisson cascades [2, 8].

The proposed model, that we call transparent dead leaves (TDL), is obtained from a
collection of grains (random closed sets) indexed by time, as for the dead leaves model
of G. Matheron. We assume that each grain is given a random gray level (intensity).
Informally, the TDL model may be seen as the superposition of transparent objects
associated with the grains. When adding a new grain, new values are obtained as a
linear combination of former values and the intensity of the added grain, as illustrated
in Figure 1. More precisely, the superposition of a transparent grain X with gray level
a on an image (a function f : Rd → R) results in a new image f̃ defined for each
y ∈ Rd by:

f̃(y) =

{
αa+ (1− α)f(y) if y ∈ X,
f(y) otherwise,

(1)
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(a) A disc (b) Initial scene (c) Resulting scene

Figure 1: Addition of a transparent object. The transparency coefficient of the disc is
α = 0.5.

where α ∈ (0, 1] is a transparency coefficient. The TDL model is defined as the
sequential superposition of grains of a marked Poisson point process

∑
i δ(ti,xi,Xi,ai),

with
∑
i δ(ti,xi) a homogeneous Poisson point process in (−∞, 0)×Rd and Xi, ai, i.i.d.

random sets and random variables respectively. In particular, the value of the TDL at
each point results from the superposition of infinitely many semi-transparent objects.

The main motivation to define such a model originates from the modeling of image
formation. Indeed, natural images are obtained from the light emitted by physical
objects interacting in various ways. In the case of opaque objects, the main interaction
is occlusion. That is, objects hide themselves depending on their respective positions
with respect to the eye or the camera. A simple stochastic model for occlusion is
given by the dead leaves model, which is therefore useful for the modeling of natural
images [11, 7]. When objects are transparent, their interaction may be modeled by
Formula (1). This is well known in the field of computer graphics, see [9] where the
same principle is used for the creation of synthetic scenes. In this case, transparency
is a source of heavy computations, especially in cases where objects are numerous
(typically of the order of several thousands), e.g. in the case of grass, fur, smoke,
fabrics, etc. The transparency phenomenon may also be encountered in other imaging
modality where images are obtained through successive reflexion-transmission steps,
as in microscopy or ultrasonic imaging. A related non-linear image formation principle
is at work in the field of radiography. In such cases, it is useful to rely on accurate
stochastic texture models in order to be able to detect abnormal images. The TDL
may be an interesting alternative to Gaussian fields that are traditionally used, see
e.g. [12, 23]. A last motivation for the TDL is that, as explained in the next paragraph,
it is intermediate between the dead leaves model and Gaussian fields, two models that
have proven useful for the modeling of natural textures [7, 10].

In this paper, we first define the TDL in Section 2 and give some elementary
properties in Section 3, where we also address the problem of simulating the model
and show some realizations. The TDL covariance is then computed in Section 4.
Eventually, the main result of the paper is stated and proved in Section 5, namely
that the normalized TDLs converge, as the transparency coefficient α tends to zero,
to a Gaussian random field having the same covariance function as the shot noise
associated with the grain X and with intensity one. Thus the TDLs with varying
transparency coefficient α provide us with a family of models ranging from the dead
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leaves model to Gaussian fields.

2 Definition of the TDL model

As explained in the introduction, the TDL model is obtained as the superposition of
transparent shapes. Formally it is defined from a marked Poisson point process, in a
way similar to the dead leaves model [5]. Let F denote the set of closed subsets of Rd.
On the state space

S = (−∞, 0)× Rd ×F × R,

equipped with its natural product σ-algebra, we define the point process

Φ =
∑
i

δ(ti,xi,Xi,ai), (2)

where

• {(ti, xi)} is a stationary Poisson point process of intensity 1 in the half space
(−∞, 0)× Rd,

• (Xi)i is a sequence of i.i.d. random closed sets (RACS) with distribution PX
which is independent of the other random objects,

• (ai)i is a sequence of i.i.d. real random variables with distribution Pa which is
also independent of the other random objects.

Equivalently, Φ is a Poisson point process with intensity measure µ = λ⊗νd⊗PX⊗Pa,
where λ denotes the restriction of the one-dimensional Lebesgue measure to (−∞, 0)
and νd denotes the d-dimensional Lebesgue measure on Rd.

Each point (ti, xi, Xi, ai) of the Poisson process Φ is called a leaf. Having fixed
a transparency coefficient α ∈ (0, 1], the TDL process f is obtained by sequentially
combining the elements of Φ according to Formula (1), which results in the following
definition.

Definition 1 (Transparent Dead Leaves model). The Transparent Dead Leaves model
with transparency coefficient α associated with the Poisson process Φ defined by Equa-
tion (2) is the random field f : Rd → R defined by

f(y) =
∑
i∈N

1 (y ∈ xi +Xi)αai (1− α)(
∑
j∈N 1(tj∈(ti,0) and y∈xj+Xj)) . (3)

Let us justify that Formula (3) agrees with the informal description of the TDL
model. According to Equation (1), the impact of the leaf (ti, xi, Xi, ai) is to add αai
and to attenuate the previous contributions by a factor (1−α). Hence, the contribution
of the leaf (ti, xi, Xi, ai) at a point point y ∈ xi + Xi is αai multiplied by (1− α) to
the number of leaves fallen on the point y after the leaf (ti, xi, Xi, ai), that is after
time t = ti. This number is precisely the exponent of (1− α) in Formula (3):∑

j∈N
1 (tj ∈ (ti, 0) and y ∈ xj +Xj) .
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Remark (Random functional). Denoting by N(S) the set of point processes taking
value in the state space S, one remarks that the TDL random field f(y) has the form

f(y) =
∑

(ti,xi,Xi,ai)∈Φ

g(y, (ti, xi, Xi, ai),Φ),

where g : Rd × S ×N(S) → R is a measurable function given by Formula (3). Sim-
ilar random functionals interpreted as the sum of contributions from each point of a
(possibly marked) point process {xi} ⊂ Rd appear in several contexts in stochastic
geometry. In particular, general central limit theorems hold when the intensity of the
point process {xi} tends to infinity, see e.g [3, 21]. Note however that our framework
is different since the Poisson process has an additional time component ti, and conse-
quently, there is always an infinite number of leaves (ti, xi, Xi, ai) influencing the value
f(y) (as will be clarified by Proposition 3).

Remark (Variable transparency). For the sake of simplicity, the transparency param-
eter α is assumed to be the same for all objects. However, one may attach a random
transparency αi to every object in Definition 1 and generalize the results of Sections 3
and 4, as will be briefly commented thereafter.

Since the distribution of the Poisson process Φ is invariant under shifts of the form
(t, x,X, a) 7→ (t, x+ y,X, a), the TDL f is a strictly stationary random field.

Before establishing further properties of the TDL random field f , let us introduce
some notation and specify several assumptions.

Notation: One defines β = 1−α and one denotes by X and a, respectively, a RACS
with distribution PX and a r.v. with distribution Pa which are both independent of all
the other random objects. In addition, γX denotes the mean geometric covariogram
of the RACS X, that is the function defined by γX(τ) = E (νd(X ∩ (τ +X))), τ ∈ Rd
(we refer to [19, 17] for properties of the mean geometric covariogram).

Assumptions: Throughout the paper, it is assumed that

0 < E (νd(X)) < +∞.

This hypothesis ensures that each point y ∈ Rd is covered by a countable infinite
number of leaves of Φ, whereas the number of leaves falling on y during a finite time
interval [s1, s2] is a.s. finite. We also assume that E(a2) < +∞.

3 One-dimensional marginal distribution and simu-
lation of the TDL model

3.1 The Poisson process of the leaves intersecting a set

As one can observe from Equation (3), the only leaves which have a contribution to the
sum defining f(y) are the leaves (ti, xi, Xi, ai) such that y ∈ xi+Xi. When considering
the restriction of f to a Borel set G the only leaves of interest are the ones intersecting
G, i.e. the leaves (ti, xi, Xi, ai) such that xi + Xi ∩ G 6= ∅. The next proposition
characterizes the distribution of such leaves, a result to be used further in the paper.
We first introduce two notation: if A and B are two Borel sets then Ǎ = {−x : x ∈ A}
and A⊕B = {x+ y : x ∈ A and y ∈ B}. Remark that x+X∩G 6= ∅ ⇐⇒ x ∈ G⊕X̌.
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Proposition 2 (The Poisson process of the leaves intersecting a Borel set). Let G ⊂ Rd
be a Borel set such that 0 < E

(
νd
(
X ⊕ Ǧ

))
< +∞ and let Φ be the Poisson process

on S = (−∞, 0)× Rd ×F × R with intensity measure µ = λ⊗ νd ⊗ PX ⊗ Pa. Denote
by ΦG the point process of the leaves of Φ which intersect G, that is

ΦG = {(t, x,X, a) ∈ Φ : x+X ∩G 6= ∅} ,

and denote by AG ⊂ Rd × F the set AG = {(x,X) : x+X ∩G 6= ∅}. Then ΦG is a
Poisson process on S with intensity measure

µG = λ⊗ (νd ⊗ PX)xAG ⊗ Pa.

It is an independently marked Poisson process with ground process ΠG =
{
t : (t, x,X, a) ∈ ΦG

}
,

a homogeneous Poisson process on (−∞, 0) of intensity E
(
νd
(
X ⊕ Ǧ

))
, and with mark

distribution
1

E
(
νd
(
X ⊕ Ǧ

)) (νd ⊗ PX)xAG ⊗ Pa.

Proof. ΦG is the restriction of the Poisson process Φ to the measurable set{
(t, x,X, a) ∈ (−∞, 0)× Rd ×F × R : (x,X) ∈ AG

}
,

thus ΦG is a Poisson process and its intensity measure µG is the restriction of µ to the
above set. As for the interpretation of ΦG as an independently marked one-dimensional
Poisson process, it is based on the factorization of the intensity measure µG (see [1,
Section 1.8] or [25, Section 3.5]). Indeed we have

0 < νd ⊗ PX
(
AG
)

=

∫
F

∫
Rd
1
(
y ∈ G⊕ Y̌

)
νd(dy)PX(dY ) = E

(
νd
(
X ⊕ Ǧ

))
< +∞,

and thus we can write

µG = E
(
νd
(
X ⊕ Ǧ

))
λ⊗

[
1

E
(
νd
(
X ⊕ Ǧ

)) (νd ⊗ PX)xAG ⊗ Pa

]
,

where the measure between square brackets is a probability distribution.

3.2 One-dimensional marginal distribution

Proposition 3 (One-dimensional marginal distribution). Let y be a point in Rd. Then
there exists a sequence (a(y, k))k∈N of i.i.d. r.v. with distribution Pa such that

f(y) = α

+∞∑
k=0

a(y, k)βk.

In particular we have E(f(y)) = E(a) and Var (f(y)) =
α

2− α
Var(a).

Informally, a(y, k) is the color of the (k + 1)-th leaf falling on y. (a(y, k))k∈N is
thus an ordered subfamily of the r.v. (ai)i∈N which depends on y.
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Proof. According to Proposition 2 the point process Φ{y} of the leaves which cover y
is an independently marked Poisson process, the ground process of which is a Poisson
process on (−∞, 0) with intensity 0 < E(νd(X)) < +∞. Hence the falling times of
the leaves of Φ{y} are a.s. distinct and we can number (in a measurable way [25]) the
leaves

(t(y, k), x(y, k), X(y, k), a(y, k)), k ∈ N,

according to an anti-chronological order:

0 > t(y, 0) > t(y, 1) > t(y, 2) > . . .

Proposition 2 also gives the distribution of the marks (x(y, k), X(y, k), a(y, k)), and
in particular it shows that the r.v. a(y, k), k ∈ N are i.i.d. with distribution Pa. As
already mentioned, the only leaves involved in the sum which defines f(y) are the
leaves of Φ{y}. Besides, using the above numbering we have for all k ∈ N∑

(tj ,xj ,Xj ,aj)∈Φ

1 (tj ∈ (t(y, k), 0) and y ∈ xj +Xj) = k.

Hence Equation (3) becomes

f(y) = α

+∞∑
k=0

a(y, k)βk,

and the result follows.

Remark (Influence of the transparency coefficient α). Let us write fα for the TDL
model with transparency coefficient α ∈ (0, 1]. Proposition 3 shows that the expecta-

tion of fα does not depend on α. In contrast, the variance Var (fα(y)) =
α

2− α
Var(a)

decreases as α decreases. Besides, Var (fα(y)) tends to 0 as α tends to 0 (recall that
the model is not defined for α = 0). However, a central limit theorem for random

geometric series [6] shows that for all y ∈ Rd the family of r.v.

(
fα(y)− E (fα)√

Var (fα)

)
α

converges in distribution to a standard normal distribution as α tends to 0. This
pointwise convergence result will be extended in Section 5, where it will be shown that

the family of normalized random fields

(
y 7→ fα(y)− E (fα)√

Var (fα)

)
α

converges in the sense

of finite-dimensional distributions.

3.3 Simulation of the TDL model

In this section we draw on Proposition 3 to obtain a simulation algorithm for the
restriction of the TDL model f to a finite set U ⊂ Rd (e.g. a finite grid of pixels). The
algorithm is based on a coupling from the past procedure, as the algorithm developed
by Kendall and Thönnes [15] for simulating the dead leaves model (see also [14, 17]).
This algorithm consists in sequentially superimposing transparent random objects but,
contrary to the forward procedure described by Equation (1), each new object is placed
below the former objects. In the case of the dead leaves model, this yields a perfect
simulation algorithm. For the TDL model f , simulation is not perfect since the values
f(y) are the limits of convergent series. Nevertheless, supposing that the intensities
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ai are bounded, we propose for any precision ε > 0 an algorithm which produces an
approximation f̄ of f . This approximation satisfies

P
(

sup
y∈U

∣∣f(y)− f̄(y)
∣∣ ≤ ε) = 1

therefore providing a kind of perfect simulation with precision ε > 0.
In the remaining of this section we suppose that the colors ai are a.s. bounded by

A > 0. The control of the precision is based on the following elementary lemma.

Lemma 4 (Precision associated with the leaves layer). Let y ∈ Rd and let

f̄n(y) = α

n−1∑
k=0

a(y, k)βk

be the restriction of the sum defining f(y) to the n latest leaves which have fallen on
y. Then ∣∣f(y)− f̄n(y)

∣∣ ≤ Aβn.
Lemma 4 shows that to approximate f(y) with a tolerance ε > 0 it is enough to

cover the point y with (at least) N(ε) leaves, where N(ε) is the smallest integer n such

that Aβn ≤ ε, that is N(ε) =

⌈
log (ε/A)

log(β)

⌉
. The following simulation algorithm relies

on this observation.

Algorithm 1 (Simulation of the TDL model with tolerance ε > 0). Let U ⊂ Rd be
a finite set. Given a precision ε > 0, an approximation f̄ of the TDL model f is
computed by controlling the number of leaves L at each point:

• Initialization: For all y ∈ U , f̄(y)← 0; L(y)← 0;

• Computation of the required number of leaves: N(ε) =

⌈
log (ε/A)

log(β)

⌉
;

• Iteration: While

(
inf
y∈U

L(y) < N(ε)

)
add a new leaf:

1. Draw a leaf (x,X, a) hitting U :

(a) Draw X ∼ PX ;

(b) Draw x uniformly in U ⊕ X̌;

(c) Draw a ∼ Pa;

2. Add the leaf (x,X, a) to f̄ : for all y ∈ U , f̄(y)← f̄(y)+1 (y ∈ x+X)αaβL(y);

3. Update the leaves layer L: for all y ∈ U , L(y)← L(y) +1 (y ∈ x+X) ;

Clearly Algorithm 1 a.s. terminates if every point of U is covered by N(ε) leaves
in an a.s. finite time. This is always the case since U is a finite set and E (νd(X)) > 0.

Several realizations of some TDL models are represented in Figure 2. Remark that
as soon as α < 1, the TDL random field is not piecewise constant: any region is
intersected by the boundaries of some leaves, producing discontinuities.
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(a) Original shape (b) α = 1 (occlusion) (c) α = 0.7

(d) α = 0.4 (e) α = 0.05 (f) α = 0.05, enhanced contrast

Figure 2: TDL realizations with various transparency coefficients α. The RACS Xi are all
obtained from the original shape 2(a) by applying a rotation of angle θ ∼ Unif(0, 2π) and a
homothety of factor r ∼ Unif(0, 1), and Pa = Unif(0, 255). For α = 1, one obtains a colored
dead leaves model. As soon as the leaves are transparent (α < 1), one can distinguish several
layers of leaves and not only the leaves on top. For α = 0.05, the variance of the TDL model
is nearly 0 (see Proposition 3). Enhancing the contrast of the image reveals the structure of
the image (see 2(f)).

4 Covariance of the TDL model

This section is devoted to the computation of the covariance of the TDL. A classical
way to achieve this would be to use Palm calculus, leading to relatively heavy compu-
tations in this case. Instead, we chose an alternative way relying on some memoryless
property of the TDL, as explained below.

The following proposition is an extension of the fact that if 0 > t0 > t1 > t2 > . . .
is a homogeneous Poisson process on (−∞, 0) then the shifted process 0 > t1 − t0 >
t2− t0 > t3− t0 > . . . is also a Poisson process with the same distribution [16, Chapter
4].

Proposition 5 (Last hitting leaf and the Poisson process preceding the last hit). Let
F be a locally compact topological space with a countable base [25]. Let Ψ be a Poisson
process in (−∞, 0) × F with intensity measure of the form λ ⊗ η where λ is the one-
dimensional Lebesgue measure on (−∞, 0) and η is a measure on F . Let A ⊂ F be an
η-measurable set satisfying 0 < η(A) < +∞. Define

t0 = sup {ti|(ti, yi) ∈ Ψ ∩ ((−∞, 0)×A)} ,

y0 the a.s. unique y ∈ F such that (t0, y) ∈ Ψ ∩ ((−∞, 0)×A), and

Ψt0 =
∑

(ti,yi)∈Ψ

1 (ti < t0) δ(ti−t0,yi).

Then
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• t0, y0, and Ψt0 are mutually independent,

• −t0 has an exponential distribution with parameter η(A),

• y0 has distribution QA defined for all B ∈ B(F ) by QA(B) =
η(B ∩A)

η(A)
,

• Ψt0 is a Poisson process with intensity measure λ ⊗ η, i.e. Ψt0 has the same
distribution as Ψ.

Proposition 5 will be applied below to the Poisson process Φ of the colored leaves
to compute some statistics of the TDL model f . As a first example, let us reobtain the
expectation of f by using Proposition 5. Let y ∈ Rd and let us denote by (t0, x0, X0, a0)
the leaf which hits y at the maximal time t0. Then one can decompose f(y) into

f(y) = αa0 + βft0(y), (4)

where ft0 is the TDL model associated with the time-shifted point process Φt0 and, as
before, β = 1− α. According to Proposition 5, a0 has distribution Pa and both point
processes Φ and Φt0 have the same distribution. Consequently, f(y) and ft0(y) also
have the same distribution, and in particular the same expectation. Hence, the above
decomposition of f(y) leads to the equation

E (f(y)) = αE(a) + βE (f(y)) ,

which gives E (f(y)) = E(a), in accordance with Proposition 3.
The very same method is used below to compute the covariance of f . This method

will also be applied in Section 5.3 to derive a technical result useful for the central
limit theorem of Section 5.

We recall that γX(τ) = E (νd(X ∩ (τ +X))) is the mean covariogram of X. In
addition, one denotes the covariance of f by

Cov(f)(τ) = Cov (f(y), f(y + τ)) = E ((f(y)− E(a)) (f(y + τ)− E(a))) .

Proposition 6 (Covariance of the TDL model). The TDL model f is a square-
integrable stationary random field and its covariance is given by

Cov(f)(τ) =
αγX(τ)

2E(νd(X))− αγX(τ)
Var(a), τ ∈ Rd.

Proof. Let y and z be such that z− y = τ and write m = E(a) = E(f) as a shorthand
notation. We have to compute Cov(f)(τ) = E ((f(y)−m) (f(z)−m)) .

Denote by (t0, x0, X0, a0) the last leaf which hits y or z at the maximal time t0, and
let Φt0 be the corresponding time-shifted Poisson process. According to Proposition 5,

(x0, X0, a0) is independent of Φt0 . In addition Φt0
d
= Φ, and consequently, noting ft0

the TDL associated with Φt0 , (ft0(y), ft0(z))
d
= (f(y), f(z)). Proposition 5 also shows

that a0 has distribution Pa. As for the distribution of (x0, X0), a straightforward
computation shows that

νd ⊗ PX ({(x,X), {y, z} ∩ x+X 6= ∅}) = E (νd (X ⊕ {−y,−z})) = 2γX(0)− γX(τ)

and

νd ⊗ PX ({(x,X), {y, z} ⊂ x+X}) = E (νd (−y +X ∩ −z +X)) = γX(τ).
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Hence we have

P ({y, z} ⊂ x0 +X0) =
νd ⊗ PX ({(x,X), {y, z} ⊂ x+X})

νd ⊗ PX ({(x,X), {y, z} ∩ x+X 6= ∅})
=

γX(τ)

2γX(0)− γX(τ)
,

(5)
and by symmetry

P (y ∈ x0 +X0 and z /∈ x0 +X0) = P (z ∈ x0 +X0 and y /∈ x0 +X0) =
γX(0)− γX(τ)

2γX(0)− γX(τ)
.

In conditioning with respect to the coverage of the last leaf (t0, x0, X0, a0) we have

E ((f(y)−m) (f(z)−m))

= E ((f(y)−m) (f(z)−m) |{y, z} ⊂ x0 +X0 )
γX(τ)

2γX(0)− γX(τ)

+ E ((f(y)−m) (f(z)−m) |y ∈ x0 +X0 and z /∈ x0 +X0 )
γX(0)− γX(τ)

2γX(0)− γX(τ)

+ E ((f(y)−m) (f(z)−m) |z ∈ x0 +X0 and y /∈ x0 +X0 )
γX(0)− γX(τ)

2γX(0)− γX(τ)
.

By symmetry it is clear that the two last terms of the above sum are equal. On the
event {{y, z} ⊂ x0 +X0} we have

f(y)−m = α(a0−m) + β (ft0(y)−m) and f(z)−m = α(a0−m) + β (ft0(z)−m) ,

so that

(f(y)−m) (f(z)−m) = α2(a0 −m)2 + β2 (ft0(y)−m) (ft0(z)−m)

+ αβ(a0 −m) ((ft0(y)−m) + (ft0(z)−m)) .

By Proposition 5, a0, (x0, X0), and (ft0(y), ft0(z)) are mutually independent, hence

E ((f(y)−m) (f(z)−m) |{y, z} ⊂ x0 +X0 )

= α2E
(
(a0 −m)2

)
+ β2E ((ft0(y)−m) (ft0(z)−m))

= α2 Var(a) + β2 Cov (f(y), f(z)) .

On the event {y ∈ x0 +X0 and z /∈ x0 +X0} we have

f(y)−m = α(a0 −m) + β (ft0(y)−m) and f(z)−m = ft0(z)−m.

Hence, by the same arguments,

E ((f(y)−m) (f(z)−m) |y ∈ x0 +X0 and z /∈ x0 +X0 ) = β Cov (f(y), f(z)) .

Replacing the terms in the decomposition of E ((f(y)−m) (f(z)−m)) leads to an
equation involving the covariance Cov (f(y), f(z)), the values γX(0) and γX(τ) of the
mean covariogram of X, and the variance Var(a). Simplifying this equation one obtains
the enunciated formula.

Remark (Variable transparency and second-order property). The technique used in
this section enables us to generalize second-order formulas to the case where the trans-
parency parameter α is assumed to be different for each object, that is, when it is
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assumed that each object Xi is assigned a transparency αi distributed as a random
variable α and independent of other objects. First, it is straightforward to show that
in this case we still have E(f(y)) = E(a). Then, a simple application of Formula (4)
yields Var f(y) = E(α2) Var(a)(2E(α)− E(α2))−1. Observe that a direct computation
starting from the definition of f would be much more arduous. Eventually, apply-
ing the same technique, one can show that the covariance of the model with variable
transparency satisfies, for τ ∈ Rd,

Cov(f)(τ) =
E(α2)γX(τ)

2E(α)E(νd(X))− E(α2)γX(τ)
Var(a).

5 Gaussian convergence as the objects tend to be
fully transparent

Recall that the TDL model with transparency coefficient α is denoted fα.

Theorem 7 (Normal convergence of the TDL model). Suppose that Var(a) > 0.
Then, as the transparency coefficient α tends to zero, the family of random fields(
fα − E (fα)√

Var (fα)

)
α

converges in the sense of finite-dimensional distributions to a sta-

tionary Gaussian random field with covariance function

C(τ) =
γX(τ)

E(νd(X))
=
γX(τ)

γX(0)
.

Before proving Theorem 7 let us illustrate the normal convergence of the normalized

family of r.v.

(
fα − E (fα)√

Var (fα)

)
α

with Figure 3. The five first images of Figure 3 are

normalized TDL realizations obtained from the same random colored leaves but with
various transparency coefficients α. The last image is a realization of the limit Gaussian
random field given by Theorem 7. Observe that this Gaussian field is also the limit
of the normalized shot noise associated with X when the intensity of germs tends to
infinity [13].

The remaining of this section is devoted to the proof of Theorem 7. The proof
consists in showing that the finite moments of the normalized TDL random fields con-
verge to the corresponding moments of the limit Gaussian r.f. As for the computation
of the covariance (see Section 4), this convergence is established by conditioning with
respect to the coverage of the last leaf hitting the considered set of points (see below
for details).

5.1 Some classical results of probability theory

This section gathers two classical theoretical results needed to prove Theorem 7.

5.1.1 Moments and convergence in distribution

Proposition 8 (Moments and convergence in distribution). Let (fn) be a sequence of
r.f. having finite moments of all order and let fG be a Gaussian r.f. If for all p ∈ N,

11



(a) α = 1 (b) α = 0.5 (c) α = 0.2

(d) α = 0.1 (e) α = 0.01 (f) Limit Gaussian r.f.

Figure 3: From colored dead leaves to Gaussian random fields: Visual illustration of the

normal convergence of the normalized TDL random fields

(
fα − E (fα)√

Var (fα)

)
α

(see Theorem 7).

As α decreases to 0 the normalized TDL realizations look more and more similar to the
Gaussian texture 3(f).
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for all (not necessarily distinct) y1, . . . , yp ∈ Rd,

lim
n→+∞

E

 p∏
j=1

fn(yj)

 = E

 p∏
j=1

fG(yj)

 ,

then (fn) converges to fG in the sense of finite-dimensional distributions.

5.1.2 A Recurrence relation for the moments of a multivariate normal
distribution

Explicit expressions for the moments of a multivariate normal distribution are given
by Isserlis’ theorem that is recalled below (see e.g. [20] and the references therein).

Theorem 9 (Isserlis’ theorem). Let Y1, . . . , Y2N+1, N ≥ 1, be normalized (i.e. E(Yi) =
0 and Var(Yi) = E(Y 2

i ) = 1), jointly Gaussian r.v. Then

E(Y1Y2 . . . Y2N ) =
∑∏

E(YiYj) =
∑∏

Cov(Yi, Yj),

and
E(Y1Y2 . . . Y2N+1) = 0,

where the notation
∑∏

means summation over all distinct ways of partitioning the set
{Y1, . . . , Y2N} into N pairs {Yi, Yj} and taking the product of the N terms E(YiYj) =
Cov(Yi, Yj).

From Isserlis’ theorem one deduces a recurrence relation for the moments of a
multivariate normal distribution.

Proposition 10 (A recurrence relation for the moments of a multivariate normal
distribution). Let Y = (Y1, . . . , Yp), p ≥ 2, be a normalized Gaussian vector. Then,

E

 p∏
j=1

Yj

 =
2

p

∑
{j,k}⊂{1,...,p}

Cov(Yj , Yk)E

 ∏
l∈{1,...,p}\{j,k}

Yl

 .

Proof. If p ≥ 2 is odd, then by Isserlis’ theorem the above formula is trivial. Hence,
in the following we suppose that p is even. First let j ∈ {1, . . . , p}. Factorizing with
all the pairs containing j in Isserlis’ identity, one obtains

E

 p∏
j=1

Yj

 =

p∑
k=1
k 6=j

Cov(Yj , Yk)E

 ∏
l∈{1,...,p}\{j,k}

Yl

 .

The above identity is valid for all j ∈ {1, . . . , p}. Summing these p identities gives

E

 p∏
j=1

Yj

 =
1

p

p∑
j=1

p∑
k=1
k 6=j

Cov(Yj , Yk)E

 ∏
l∈{1,...,p}\{j,k}

Yl

 .

Now remark that in this double sum over (j, k), the terms Cov(Yj , Yk)E (
∏
l Yl) only

depend on the pair {j, k} but not on the order. Hence, the above expression simplifies
to

E

 p∏
j=1

Yj

 =
2

p

∑
{j,k}⊂{1,...,p}

Cov(Yj , Yk)E

 ∏
l∈{1,...,p}\{j,k}

Yl

 .
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5.2 Notation and plan of the proof of Theorem 7

Let s be a real number such that 0 < s < 1
6 (this choice for s will become clear later).

For all α ∈ (0, 1], one defines the truncation operator

Tα(b) =


b if b ∈ [−α−s, α−s],
α−s if b > α−s,

−α−s if b < −α−s.

For all α ∈ (0, 1], fα denotes the TDL model with transparency coefficient α and

gα(y) =
fα(y)− E(a)√

Var(fα)

denotes its normalization. For all α ∈ (0, 1], fTα denotes the TDL model with trans-
parency coefficient α associated with the Poisson process

ΦT = {(ti, xi, Xi, Tα(ai)), (ti, xi, Xi, ai) ∈ Φ},

that is the TDL model obtained by truncating the colors ai of the leaves of Φ. We
have

E(fTα ) = E(Tα(a)) and Var(fTα ) =
α

2− α
Var(Tα(a)).

As for the TDL fα, one defines

gTα (y) =
fTα (y)− E(Tα(a))√

Var(fTα )
.

Thanks to the truncation, fTα is bounded by α−s. In particular, for all α ∈ (0, 1], fTα
and gTα have finite moments of all order.

We will denote by fG a centered stationary Gaussian random field with covariance

function C : τ 7→ γX(τ)
γX(0) .

The proof of Theorem 7 is divided into two parts:

1. One shows that the normalized TDL with truncated colors gTα converges in distri-
bution to fG by the method of moments. More precisely the sufficient condition
of Proposition 8 will be shown to be true by induction on the number of points
p.

2. One shows that the family gα − gTα converges to 0 in L2.

By Slutsky’s theorem (see e.g. [4]), these two properties ensure that gα converges
in distribution to fG.

5.3 Normal convergence of the normalized TDL having trun-
cated colors

With the above notation, by Proposition 8, it is enough to show the following lemma.

Lemma 11 (Convergence of Moments). For all p ∈ N, for all (not necessarily distinct)
y1, . . . , yp ∈ Rd,

lim
α→0

E

 p∏
j=1

gTα (yj)

 = E

 p∏
j=1

fG(yj)

 .
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We will show this lemma by induction on p. First note that, by definition of gTα (yj),
the statement is true for p = 0 and p = 1.

For the proof by induction we now consider an integer p ≥ 2 and p points y1, . . . , yp
of Rd, and we suppose that the convergence of moments holds for all moments of order
k < p.

5.3.1 Decomposition of the multivariate characteristic function by condi-
tioning with respect to the coverage of the last hitting leaf

We consider the random vector(
gTα (y1), . . . , gTα (yp)

)
=

(
fTα (y1)− E(Tα(a))

σTα
, . . . ,

fTα (yp)− E(Tα(a))

σTα

)
,

where σTα =
√

Var(fTα ). We denote by φα(t1, . . . , tp) the multivariate characteristic
function of this random vector, that is

φα(t1, . . . , tp) = E
(
ei(t1g

T
α (y1)+···+tpgTα (yp))

)
.

One denotes by ψα the characteristic function of the random variable Tα(a)−E(Tα(a)),
where a follows the color distribution Pa, that is

ψα(t) = E
(
eit(Tα(a)−E(Tα(a)))

)
.

In addition, we introduce the shorthand notation Y for the set Y = {y1, . . . , yp}.
In what follows we apply Proposition 5 in considering the leaves of ΦT which hit

the set Y. Hence let (t0, x0, X0, Tα(a0)) denote the last leaf covering at least one
point of Y, and denote by gTα,t0 the corresponding time-shifted random field. Then
for all yj ∈ Y, one has the decomposition

gTα (yj) =

{
αTα(a0)−E(Tα(a))

σTα
+ βgTα,t0(yj) if yj ∈ x0 +X0,

gα,t0(yj) otherwise,

which can also be written as follows

gTα (yj) = α1(yj ∈ x0 +X0)
Tα(a0)− E(Tα(a))

σTα
+ β1(yj∈x0+X0)gTα,t0(yj).

Besides, by Proposition 5, gTα,t0 , (x0, X0) and a0 are mutually independent.
To obtain a decomposition of the characteristic function φα we will condition with

respect to the coverage of the last leaf x0 +X0. Hence, for all subsets X ⊂ Y, X 6= ∅,
let us denote by AX ⊂ Ω the event

AX = {(x0 +X0) ∩ Y = X}

and
pX = P (AX ) .

The events AX , X 6= ∅, form a partition of the probability space Ω, and in particular∑
X⊂Y,X 6=∅

pX = 1.
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Remark that on the event AX , the above decomposition of gTα (yj) becomes

gTα (yj) = α1(yj ∈ X )
Tα(a0)− E(Tα(a))

σTα
+ β1(yj∈X )gTα,t0(yj).

Hence, using the mutual independence of the different random variables,

φα(t1, . . . , tp) = E
(
ei(t1g

T
α (y1)+···+tpgTα (yp))

)
=
∑
X⊂Y
X 6=∅

E
(
ei(t1g

T
α (y1)+···+tpgTα (yp))

∣∣∣AX) pX
=
∑
X⊂Y
X 6=∅

ψα

 α

σTα

p∑
j=1

1(yj ∈ X )tj

φα

(
β1(y1∈X )t1, . . . , β

1(yp∈X )tp

)
pX .

(6)
The next step of the proof consists in differentiating the above decomposition of

the multivariate characteristic function in order to obtain a recurrence relation for the
moments of

(
gTα (y1), . . . , gTα (yp)

)
.

5.3.2 A Recurrence relation for the moments of gTα

We compute below the partial derivative ∂pφα
∂t1...∂tp

(t1, . . . , tp) of the characteristic func-

tion φα to obtain an expression for the moment E
(∏p

j=1 g
T
α (yj)

)
. Starting from

Equation (6), to compute ∂pφα
∂t1...∂tp

(t1, . . . , tp) one needs to differentiate with respect to

each variable tj the functions of the form

FX (t1, . . . , tp) = ψα

 α

σTα

p∑
j=1

1(yj ∈ X )tj

φα

(
β1(y1∈X )t1, . . . , β

1(yp∈X )tp

)
.

First let us introduce some notation. In what follows, for every subset I = {i1, . . . , ik} ⊂
{1, . . . , p}, we write #I = k for the cardinality of I, and

∂kf

∂tI
(t1, . . . , tp) =

∂kf

∂ti1∂ti1 . . . ∂tik
(t1, . . . , tp).

Besides, Ic denotes the complementary set of indices Ic = {1, . . . , p} \ I. With these
notation,

∂pFX
∂t1 . . . ∂tp

(t1, . . . , tp)

=

p∑
k=0

∑
I⊂{1,...,p}

#I=k

∂k

∂tI

ψα
 α

σTα

p∑
j=1

1(yj ∈ X )tj

 ∂p−k
∂tIc

[
φα

(
β1(y1∈X )t1, . . . , β

1(yp∈X )tp

)]

=

p∑
k=0

(
α

σTα

)k ∑
I⊂{1,...,p}

#I=k

(∏
i∈I

1(yi ∈ X )

)
ψ(k)
α

 α

σTα

p∑
j=1

1(yj ∈ X )tj


(∏
i∈Ic

β1(yi∈X )

)
∂p−k

∂tIc
φα

(
β1(y1∈X )t1, . . . , β

1(yp∈X )tp

)
.
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Summing over all subsets X , one has the identity

∂pφα
∂t1 . . . ∂tp

(t1, . . . , tp)

=

p∑
k=0

(
α

σTα

)k ∑
I⊂{1,...,p}

#I=k

∑
X⊂Y
X 6=∅

(∏
i∈I

1(yi ∈ X )

)
ψ(k)
α

 α

σTα

p∑
j=1

1(yj ∈ X )tj


(∏
i∈Ic

β1(yi∈X )

)
∂p−k

∂tIc
φα

(
β1(y1∈X )t1, . . . , β

1(yp∈X )tp

)
pX .

Evaluating at (t1, . . . , tp) = (0, . . . , 0), this gives

∂pφα
∂t1 . . . ∂tp

(0, . . . , 0)

=

p∑
k=0

(
α

σTα

)k ∑
I⊂{1,...,p}

#I=k

∑
X⊂Y
X 6=∅

(∏
i∈I

1(yi ∈ X )

)
ψ(k)
α (0)

(∏
i∈Ic

β1(yi∈X )

)
∂p−k

∂tIc
φα (0, . . . , 0) pX

=

p∑
k=0

(
α

σTα

)k
ψ(k)
α (0)

∑
I⊂{1,...,p}

#I=k

∂p−k

∂tIc
φα (0, . . . , 0)

∑
X⊂Y
X 6=∅

(∏
i∈I

1(yi ∈ X )

)(∏
i∈Ic

β1(yi∈X )

)
pX

 .

In the above sum, remark that for k = 0, I = ∅ and thus all the terms are proportional

to ∂pφα
∂t1...∂tp

(0, . . . , 0). Besides, since Tα(a)−E(Tα(a)) is centered, ψ
(1)
α (0) = 0, and thus

for k = 1 all the terms are zero. Hence we have the following equation:

∂pφα
∂t1 . . . ∂tp

(0, . . . , 0)

1−
∑
X⊂Y
X 6=∅

 p∏
j=1

β1(yj∈X )

 pX

 (7)

=

p∑
k=2

(
α

σTα

)k
ψ(k)
α (0)

∑
I⊂{1,...,p}

#I=k

∂p−k

∂tIc
φα (0, . . . , 0)

∑
X⊂Y
X 6=∅

(∏
i∈I

1(yi ∈ X )

)(∏
i∈Ic

β1(yi∈X )

)
pX

 .

5.3.3 Recurrence relation for the limit of the moments

The next step of the proof consists in dividing by α and letting α tend to 0 in Equa-
tion (7) above. First, recalling that β = 1− α, and using that

∑
pX = 1, one has

1−
∑
X⊂Y
X 6=∅

 p∏
j=1

β1(yj∈X )

 pX =
∑
X⊂Y
X 6=∅

pX −
∑
X⊂Y
X 6=∅

β#X pX =
∑
X⊂Y
X 6=∅

(
1− (1− α)#X ) pX .

Hence

lim
α→0

1

α

∑
X⊂Y
X 6=∅

(
1− (1− α)#X ) pX =

∑
X⊂Y
X 6=∅

(#X )pX ,
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and by definition of pX ,

∑
X⊂Y
X 6=∅

(#X )pX = E (# ((x0 +X0) ∩ Y)) = E

 p∑
j=1

1 (yj ∈ x0 +X0)

 = p
E (νd(X))

E
(
νd
(
Y ⊕ X̌

)) 6= 0.

Let us now turn to the limit of the right-hand side of Equation (7) when dividing by
α and letting α tend to 0. First let us show that all the terms for which k ≥ 3 will

tend to 0. By induction for all k ≥ 2, the terms ∂p−k

∂tIc
φα (0, . . . , 0) have a finite limit

when α tends to 0. Besides, for all k ≥ 3,∣∣∣ψ(k)
α (0)

∣∣∣ =
∣∣∣ikE((Tα(a)− E(Tα(a)))

k
)∣∣∣ ≤ E

(
|Tα(a)− E(Tα(a))|k

)
≤ 2kα−sk,

and

σTα =

√
α

2− α
Var(Tα(a)) ∼

α→0

√
Var(a)

2
α

1
2 ,

where u(α)∼α→0 v(α) means that u(α)/v(α) tends to 1 as α tends to 0. Using the
classic notation u(α) = Oα→0 v(α) (meaning that there exists some constant Γ such
that |u(α)| ≤ Γv(α) in the neighborhood of 0), one observes that for all k ≥ 3,

1

α

(
α

σTα

)k
ψ(k)
α (0)

∑
I⊂{1,...,p}

#I=k

∂p−k

∂tIc
φα (0, . . . , 0)

∑
X⊂Y
X 6=∅

(∏
i∈I

1(yi ∈ X )

)(∏
i∈Ic

β1(yi∈X )

)
pX


= O
α→0

(
α

1
2k−sk−1

)
.

But since s < 1/6, the above exponent 1
2k − sk − 1 is positive for all k ≥ 3. Hence all

the terms for which k ≥ 3 tend to 0.
Now for k = 2, we have ψ

(2)
α (0) = i2 Var(Tα(a)). Besides, by induction,

lim
α→0

∂p−2

∂t{j1,j2}c
φα (0, . . . , 0) = (i)p−2E

 p∏
l∈{1,...,p}\{j1,j2}

fG(yl)

 .

Hence, considering subsets I of {1, . . . , p} with two elements,

lim
α→0

1

α

(
α

σTα

)2

ψ(2)
α (0)

∑
I⊂{1,...,p}

#I=2

∂p−2

∂tIc
φα (0, . . . , 0)

∑
X⊂Y
X 6=∅

(∏
i∈I

1(yi ∈ X )

)(∏
i∈Ic

β1(yi∈X )

)
pX



= (i)p2
∑

{j1,j2}⊂{1,...,p}

E

 p∏
l∈{1,...,p}\{j1,j2}

fG(yl)


∑
X⊂Y
X 6=∅

1(yj1 ∈ X )1(yj2 ∈ X )pX

 .

In addition remark that∑
X⊂Y
X 6=∅

1(yj1 ∈ X )1(yj2 ∈ X )pX = P ({yj1 , yj2} ⊂ x0 +X0) =
γX(yj1 − yj2)

E
(
νd
(
Y ⊕ X̌

)) .
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Coming back to Equation (7), one sees that ∂pφα
∂t1...∂tp

(0, . . . , 0) admits a finite limit

when α tends to 0. Noting (i)pL this finite limit, that is

L = lim
α→0

E

 p∏
j=1

gTα (yj)

 ,

we have the expression

L =
E
(
νd
(
Y ⊕ X̌

))
pE (νd(X))

2
∑

{j1,j2}⊂{1,...,p}

E

 p∏
l∈{1,...,p}\{j1,j2}

fG(yl)

 γX(yj1 − yj2)

E
(
νd
(
Y ⊕ X̌

))
=

2

p

∑
{j1,j2}⊂{1,...,p}

γX(yj1 − yj2)

E (νd(X))
E

 p∏
l∈{1,...,p}\{j1,j2}

fG(yl)

 .

This is exactly the recursive formula for the moments of a Gaussian vector given by
Proposition 10. Hence,

L = lim
α→0

E

 p∏
j=1

gTα (yj)

 = E

 p∏
j=1

fG(yj)

 ,

which completes the proof of Lemma 11.

5.4 Convergence in L2 of the difference of the normalized ran-
dom fields

At this stage to conclude the proof of Theorem 7 we have to demonstrate the following
lemma.

Lemma 12 (Convergence to 0 in L2 of gα − gTα ). Let gα and gTα be, respectively, the
normalized TDL model and the normalized TDL model with truncated colors. Then
for all y ∈ Rd,

gα(y)− gTα (y)
L2

−→
α→0

0.

Proof. Since a ∈ L2 and for all b ∈ R, |Tα(b)| ≤ |b| and limα→0 Tα(b) = b, by dominated
convergence

lim
α→0

Var(a− Tα(a)) = 0,

and in particular
lim
α→0

Var(Tα(a)) = Var(a).

Let y ∈ Rd. Recall that

Var(fα) =
α

2− α
Var(a) and Var(fTα ) =

α

2− α
Var(Tα(a)).
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One has

gα(y)− gTα (y) =
fα(y)− E(a)√

Var(fα)
− fTα (y)− E(Tα(a))√

Var(fTα )

=
fα(y)− E(a)√

Var(fα)
− fTα (y)− E(Tα(a))√

Var(fα)
+
fTα (y)− E(Tα(a))√

Var(fα)
− fTα (y)− E(Tα(a))√

Var(fTα )

=
fα(y)− fTα (y)− E(a− Tα(a))√

Var(fα)︸ ︷︷ ︸
I1(α)

+

(√
Var(fTα )√
Var(fα)

− 1

)
gTα (y)︸ ︷︷ ︸

I2(α)

.

Let us denote by I1(α) and I2(α) the two terms above. Remark that the numerator
of I1(α) is a TDL model with color distribution a− Tα(a)− E(a− Tα(a)). Hence we
have

E(I1(α)2) =
α

2−α Var(a− Tα(a))
α

2−α Var(a)
=

Var(a− Tα(a))

Var(a)
−→
α→0

0.

In addition,

E(I2(α)2) =

(√
Var(fTα )√
Var(fα)

− 1

)2

=

(√
Var(Tα(a))√

Var(a)
− 1

)2

−→
α→0

0.

Hence, gα(y) − gTα (y) is the sum of two r.v. which tends to 0 in L2. This completes
the proof.
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[23] Richard, F. and Biermé, H. (2010). Statistical tests of anisotropy for frac-
tional Brownian textures. Application to full-field digital mammography. J. Math.
Imaging Vis. 36, 227–240.

[24] Schmitt, M. (1991). Estimation of the density in a stationary Boolean model.
J. App. Probab. 28, 702–708.

21



[25] Schneider, R. and Weil, W. (2008). Stochastic and Integral Geometry. Prob-
ability and Its Applications. Springer.

[26] Stoyan, D., Kendall, W. S. and Mecke, J. (1995). Stochastic geometry and
its applications second ed. Wiley series in probability and mathematical statistics.
John Wiley & Sons.

22


	Introduction
	Definition of the TDL model
	One-dimensional marginal distribution and simulation of the TDL model
	The Poisson process of the leaves intersecting a set
	One-dimensional marginal distribution
	Simulation of the TDL model

	Covariance of the TDL model
	Gaussian convergence as the objects tend to be fully transparent
	Some classical results of probability theory
	Moments and convergence in distribution
	A Recurrence relation for the moments of a multivariate normal distribution

	Notation and plan of the proof of Theorem 7
	Normal convergence of the normalized TDL having truncated colors
	Decomposition of the multivariate characteristic function by conditioning with respect to the coverage of the last hitting leaf
	A Recurrence relation for the moments of gT
	Recurrence relation for the limit of the moments

	Convergence in L2 of the difference of the normalized random fields


