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The Transparent Dead Leaves Process

B. Galerne∗, Y. Gousseau†

July 22, 2010

Abstract

This paper introduces the transparent dead leaves (TDL) process, a new
germ-grain model in which the grains are combined according to a transparency
principle. Informally, this model may be seen as the superimposition of infinitely
many semi-transparent objects. Properties of this new model are established
and a simulation algorithm is proposed. A central limit theorem is then proved,
showing that when varying the transparency of the grain from opacity to total
transparency, the TDL process ranges from the dead leaves model to a Gaussian
random field.

Keywords: Germ-grain model; dead leaves model; transparency; occlusion; image
modeling

1 Introduction

This paper deals with the stochastic modeling of physical transparency. The main
contribution is the introduction and study of a new germ-grain model in which the
grains are combined according to a transparency principle. To the best of our knowl-
edge, this type of interaction between grains has not been studied before. Classical
interactions between grains include addition for shot-noise processes [19, 11], union for
Boolean models [23, 21], occultation for dead leaves models [17, 13, 3] or multiplication
for compound Poisson cascades [2, 6].

The proposed process, that we call transparent dead leaves (TDL), is obtained
from a collection of grains (random closed sets) indexed by time, as for the dead leaves
process of G. Matheron. We assume that each grain is given a random gray level
(intensity). Informally, the process may be seen as the superimposition of transparent
objects associated with the grains. Each time a new grain is added, new values are
obtained as a linear combination of former values and the intensity of the added grain,
as illustrated in Figure 1. That is, when adding a grain X with gray level a, the
current process f : R2 → R is modified into g, defined for each y ∈ R

2 as

g(y) =

{

αa+ (1− α)f(y) if y ∈ X,

f(y) otherwise,
(1)

where α ∈ (0, 1] is a transparency coefficient. The process is then defined as the
sequential superimposition of grains of a suitable Poisson process

∑

i δ(ti,xi,Xi,ai).
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(a) A disc (b) Initial scene (c) Resulting scene

Figure 1: Addition of a transparent object. The transparency coefficient of the disc is
α = 0.5.

The main motivation to define such a model originates from vision. Indeed, natural
images are obtained from the light emitted by physical objects interacting in various
ways. In the case of opaque objects, the main interaction is occlusion. That is,
objects hide themselves depending on their respective positions with respect to the
eye or the camera. A simple stochastic model for occlusion is given by the dead leaves
model, which is therefore useful for the modeling of natural images [9, 5]. When
objects are transparent, their interaction may be modeled by Formula (1). This is
well known in the field of computer graphics, see [7] where the same principle is
used for the creation of synthetic scenes. In this case, transparency is a source of
heavy computations, especially in cases where objects are numerous (typically of the
order of several thousands), e.g. in the case of grass, fur, smoke, fabrics, etc. The
transparency phenomenon may also be encountered in other imaging modality where
images are obtained through successive reflexion-transmission steps, as in microscopy
or ultrasonic imaging. A related non-linear image formation principle is at work in the
field of radiography. In such cases, it is useful to rely on accurate stochastic texture
models in order to be able to detect abnormal images. The TDL may be an interesting
alternative to Gaussian fields that are traditionally used, see e.g. [10, 20].

In this paper, we first define the transparent dead leaves model in Section 2 and
give some elementary properties in Section 3, where we also address the problem
of simulating the process and show some realizations. The TDL covariance is then
computed in Section 4. Eventually, it is shown in Section 5 that the normalized
TDL converges, as α tends to zero, to a Gaussian process having the same covariance
function as the shot noise associated with the grain X and with intensity one. Thus
the TDLs with varying transparency coefficient α provide us with a family of models
ranging from the dead leaves model to Gaussian fields.

2 Definition of the TDL process

As explained in the introduction, the TDL process is obtained as the superimposition
of transparent shapes. Formally it is defined from a marked Poisson point process, in
a way similar to the dead leaves model [3]. Let F denote the set of closed sets of Rd.
On the state space

S := (−∞, 0)× R
d ×F × R,
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we define the point process

Φ :=
∑

i

δ(ti,xi,Xi,ai), (2)

where

• {(ti, xi)} is a stationary Poisson point process of intensity 1 in the half space
(−∞, 0)× R

d,

• (Xi)i is a sequence of i.i.d. random closed sets (RACS) with distribution PX

which is independent of the other random objects,

• (ai)i is a sequence of i.i.d. real random variables (r.v.) with distribution Pa

which is also independent of the other random objects.

Equivalently, Φ is a Poisson point process with intensity measure µ := λ⊗νd⊗PX⊗Pa,
where λ denotes the restriction of the one-dimensional Lebesgue measure over (−∞, 0)
and νd denotes the d-dimensional Lebesgue measure over Rd.

Each point (ti, xi, Xi, ai) ∈ Φ is called a leaf. Having fixed a transparency coefficient
α ∈ (0, 1], the TDL process f is defined by sequentially combining the elements of Φ
according to Formula (1).

Definition 1 (Transparent Dead Leaves process). The Transparent Dead Leaves pro-
cess with transparency coefficient α associated to the Poisson process Φ defined by
Equation (2) is the random field f : Rd → R defined by

f(y) =
∑

i∈N

✶ (y ∈ xi +Xi)αai (1− α)(
∑

j∈N
✶(tj∈(ti,0) and y∈xj+Xj)) . (3)

Let us justify that Formula (3) agrees with the informal description of the TDL
process. Let y be a fixed point in R

d, and let (ti, xi, Xi, ai) be any leaf of the Poisson
process Φ. If y /∈ xi + Xi the contribution to f(y) of the random shape xi + Xi is
clearly 0. Otherwise, if y ∈ xi +Xi the contribution to f(y) of the leaf (ti, xi, Xi, ai)
is αai multiplied by (1− α) to the number of leaves fallen on the point y after the leaf
(ti, xi, Xi, ai), that is after time t = ti. This number is exactly the exponent of (1− α)
in Equation (3):

∑

j∈N

✶ (tj ∈ (ti, 0) and y ∈ xj +Xj) .

Since the distribution of the Poisson process Φ is invariant under shifts of the form
(t, x,X, a) 7→ (t, x+ y,X, a), the TDL process f is strictly stationary.

Remark 1 (Variable transparency). For the sake of simplicity, the transparency pa-
rameter α is assumed to be the same for all objects. However, one may attach a
random transparency αi to every objects in Definition 1 and generalize the results of
Sections 3 and 4, as will be briefly commented thereafter.

Before establishing further properties of the TDL process f , let us introduce some
notations and specify several assumptions.
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Notations: Define β := 1 − α and let X and a denote respectively a RACS with
distribution PX and a r.v. with distribution Pa which are both independent of all
the other random objects. The expectation with respect to the distribution of Φ is
denoted by E (e.g. E (f(y)) whereas the expectation with respect to the distributions
PX ⊗ Pa of the marks (X, a) is denoted by E (e.g. E (νd(X)), E(a)). Finally, γX
denotes the mean geometric covariogram of the RACS X, that is the function defined
by γX(τ) = E (νd(X ∩ τ +X)), τ ∈ R

d (we refer to [18, 16, 8] for properties of the
mean geometric covariogram).

Assumptions: Throughout the paper, it is assumed that

0 < E (νd(X)) < +∞.

This hypothesis ensures that each point y ∈ R
d is covered by a countable infinite

number of leaves of Φ, whereas the number of leaves falling on y during a finite time
interval [s1, s2] is a.s. finite. We also assume that E(|a|2) <∞.

3 First-order distribution and simulation of the TDL

process

In this section the distribution of the r.v. f(y) is given and a simulation procedure is
presented and illustrated.

3.1 The Poisson process of the leaves intersecting a set

As one can observe from Equation (3), the only leaves which have a contribution to the
sum defining f(y) are the leaves (ti, xi, Xi, ai) such that y ∈ xi+Xi. When considering
the restriction of f to a Borel set G the only leaves of interest are the ones intersecting
G, i.e. the leaves (ti, xi, Xi, ai) such that xi + Xi ∩ G 6= ∅. The next proposition
gives the distribution of such leaves, a result to be used further in the paper. We
first recall two notations: if A and B are two Borel sets then Ǎ = {−x : x ∈ A} and
A⊕B = {x+ y : x ∈ A and y ∈ B}. Remark that x+X ∩G 6= ∅ ⇐⇒ x ∈ G⊕ X̌.

Proposition 1 (The Poisson process of the leaves intersecting a Borel set). Let G ⊂ R
d

be a Borel set such that 0 < E
(

νd
(

X ⊕ Ǧ
))

< +∞ and let Φ be the Poisson process
on S = (−∞, 0)× R

d ×F × R with intensity measure µ = λ⊗ νd ⊗ PX ⊗ Pa. Denote
by ΦG the point process of the leaves of Φ which intersect G, that is

ΦG = {(t, x,X, a) ∈ Φ : x+X ∩G 6= ∅} ,

and let us note AG ⊂ R
d × F the set AG = {(x,X) : x+X ∩G 6= ∅}. Then ΦG is a

Poisson process on S with intensity measure

µG = λ⊗ (νd ⊗ PX)
xAG ⊗ Pa.

It is an independently marked Poisson process with ground process ΠG =
{

t : (t, x,X, a) ∈ ΦG
}

,

an homogeneous Poisson process on (−∞, 0) of intensity E
(

νd
(

X ⊕ Ǧ
))

, and with
mark distribution

1

E
(

νd
(

X ⊕ Ǧ
)) (νd ⊗ PX)

xAG ⊗ Pa.
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Proof. ΦG is the restriction of the Poisson process Φ to the measurable set
{

(t, x,X, a) ∈ (−∞, 0)× R
d ×F × R : (x,X) ∈ AG

}

,

thus ΦG is a Poisson process and its intensity measure µG is the restriction of µ to the
above set. As for the interpretation of ΦG as an independently marked one-dimensional
Poisson process, it is based on the factorization of the intensity measure µG (see [1,
Section 1.8] or [22, Section 3.5]). Indeed we have

0 < νd ⊗ PX

(

AG
)

=

∫

F

∫

Rd

✶
{

y ∈ G⊕ Y̌
}

νd(dy)PX(dY ) = E
(

νd
(

X ⊕ Ǧ
))

< +∞,

and thus we can write

µG = E
(

νd
(

X ⊕ Ǧ
))

λ⊗

[

1

E
(

νd
(

X ⊕ Ǧ
)) (νd ⊗ PX)

xAG ⊗ Pa

]

,

where the measure between square brackets is a probability distribution.

3.2 First-order distribution

Proposition 2 (First-order distribution). Let y be a point in R
d. Then there exists

a subsequence (a(y, k))k∈N of i.i.d. r.v. with distribution Pa such that

f(y) = α

+∞
∑

k=0

a(y, k)βk.

In particular we have E(f(y)) = E(a) and Var (f(y)) =
α

2− α
Var(a).

Proof. According to Proposition 1 the point process Φ{y} of the leaves which cover y
is an independently marked Poisson process, the ground process of which is a Poisson
process on (−∞, 0) with intensity E(νd(X)) < +∞. Hence the falling times of the
leaves of Φ{y} are a.s. distinct and we can number the leaves

(t(y, k), x(y, k), X(y, k), a(y, k)), k ∈ N,

according to an anti-chronological order:

0 > t(y, 0) > t(y, 1) > t(y, 2) > . . . .

Proposition 1 also gives the distribution of the marks (x(y, k), X(y, k), a(y, k)), and
in particular it shows that the r.v. a(y, k), k ∈ N are i.i.d. with distribution Pa. As
already mentioned, the only leaves involved in the sum which defines f(y) are the
leaves of Φ{y}. Besides, using the above numbering we have for all k ∈ N

∑

(tj ,xj ,Xj ,aj)∈Φ

✶ (tj ∈ (t(y, k), 0) and y ∈ xj +Xj) = k.

Hence Equation (3) becomes

f(y) = α

+∞
∑

k=0

a(y, k)βk,

and the result follows.
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Remark 2 (Influence of the transparency coefficient α). Let us write fα for the TDL
process with transparency coefficient α ∈ (0, 1]. Proposition 2 shows that the expec-

tation of fα does not depend on α. As for the variance, Var (fα(y)) =
α

2− α
Var(a)

decreases as α decreases. Besides Var (fα(y)) tends to 0 as α tends to 0 (recall that
the model is not defined for α = 0). However, a central limit theorem for random

geometric series [4] shows that for all y ∈ R
d the family of r.v.

(

fα(y)− E (fα)
√

Var (fα)

)

α
converges in distribution to a standard normal distribution as α tends to 0. This point-
wise convergence result will be extended in Section 5, where it will be shown that the

family of normalized random fields

(

y 7→
fα(y)− E (fα)
√

Var (fα)

)

α

converges in the sense of

finite-dimensional distributions.

3.3 Simulation of the TDL process

In this section we draw on Proposition 2 to obtain a simulation algorithm for the
restriction of the TDL process f to a bounded domain U ⊂ R

d. The algorithm is based
on a coupling from the past procedure, as the algorithm developed by Kendall and
Thönnes [14] for simulating the dead leaves model (see also [13, 16]). This algorithm
consists in sequentially superimposing transparent random objects but, contrary to
the forward procedure described by Equation (1), each new object is placed below the
former objects. In the case of the dead leaves model, this yields a perfect simulation
algorithm. For the TDL process f , simulation is not perfect since the values f(y)
are the limits of convergent series. Nevertheless, supposing that the intensities ai are
bounded, we propose for any ε > 0 an algorithm which produces an approximation f̃
of f . This approximation satisfies

P

(

sup
y∈U

∣

∣

∣f(y)− f̃(y)
∣

∣

∣ ≤ ε

)

= 1

therefore providing a kind of perfect simulation with precision ε > 0.
In the remaining of this section we suppose that the colors ai are a.s. bounded by

A > 0. The control of the precision is based on the following elementary lemma.

Lemma 1 (Precision associated to the leaves layer). Let y ∈ R
d and let

f̃n(y) = α

n−1
∑

k=0

a(y, k)βk

be the restriction of the sum defining f(y) to the n latest leaves which have fallen on
y. Then

∣

∣

∣
f(y)− f̃n(y)

∣

∣

∣
≤ Aβn.

Lemma 1 shows that to approximate f(y) with a tolerance ε > 0 it is enough to
cover the point y with (at least) N(ε) leaves, where N(ε) is the smallest integer n such

that Aβn ≤ ε, that is N(ε) =

⌈

log (ε/A)

log(β)

⌉

. This yields the following algorithm.

Algorithm 1 (Simulation of the TDL process with tolerance ε > 0). Let U ⊂ R
d be

a bounded set such that 0 < E
(

νd
(

X ⊕ Ǔ
))

< +∞ and let ε > 0. Given a precision

6



ǫ > 0, an approximation f̃ of the TDL process f is computed by controlling the number
of leaves L at each point:

• Initialization: For all y ∈ U , f̃(y)← 0; L(y)← 0;

• Computation of the required number of leaves: N(ε) =

⌈

log (ε/A)

log(β)

⌉

;

• Iteration: While

(

inf
y∈U

L(y) < N(ε)

)

add a new leaf:

1. Draw a leaf (x,X, a) hitting U :

(a) Draw X ∼ PX ;

(b) Draw x uniformly in U ⊕ X̌;

(c) Draw a ∼ Pa;

2. Add the leaf (x,X, a) to f̃ : for all y ∈ U , f̃(y)← f̃(y)+✶ (y ∈ x+X)αaβL(y);

3. Update the leaves layer L: for all y ∈ U , L(y)← L(y)+✶ (y ∈ x+X) ;

Clearly Algorithm 1 a.s. converges if every point of U is covered by N(ε) leaves in
an a.s. finite time. This is always the case if U is a discrete set, since E (νd(X)) > 0.
It is also true for any bounded set U if there exists a non empty open ball B such that
E (νd (X ⊖B)) > 0 [3], where X ⊖ B = {x ∈ X, x+B ⊂ X} is the erosion of X by
B [18, 16].

Several realizations of some TDL processes are represented in Fig. 2. Remark that
as soon as α < 1, the TDL process is not piecewise constant: any region is intersected
by the boundaries of some leaves, producing discontinuities.

4 Covariance of the TDL process

This section is devoted to the computation of the covariance of the TDL. A classical
way to achieve this would be to rely on Palm calculus, yielding relatively heavy compu-
tations in this case. Instead, we chose an alternative way relying on some no-memory
property of the TDL, as explained below.

The following proposition is an extension of the fact that if 0 > t0 > t1 > t2 > . . .
is an homogeneous Poisson process on (−∞, 0) then the shifted process 0 > t1 − t0 >
t2− t0 > t3− t0 > . . . is also a Poisson process with the same distribution [15, Chapter
4].

Proposition 3 (Last hitting leaf and the Poisson process preceding the last hit). Let
Ψ be a Poisson process in (−∞, 0)×E with intensity measure of the form λ⊗µ where
λ is the one-dimensional Lebesgue measure on (−∞, 0) and µ is a measure on E. Let
A ⊂ E be a measurable set such that 0 < µ(A) < +∞. Define

t0 = sup {ti|(ti, yi) ∈ Ψ ∩ ((−∞, 0)×A)} ,

y0 the a.s. unique y ∈ E such that (t0, y) ∈ Ψ ∩ ((−∞, 0)×A), and

Ψt0 =
∑

(ti,yi)∈Ψ

✶ (ti < t0) δ(ti−t0,yi).

Then
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(a) Original shape (b) α = 1 (occlusion) (c) α = 0.7

(d) α = 0.4 (e) α = 0.05 (f) α = 0.05, enhanced contrast

Figure 2: TDL realizations with various transparency coefficients α. The RACS Xi are all
obtained from the original shape of Fig. 2(a) in applying a rotation of angle θ ∼ Unif(0, 2π)
and a homothety of factor r ∼ Unif(0, 1), and Pa = Unif(0, 255). For α = 1, one obtains a
colored dead leaves model. As soon as the leaves are transparent (α < 1), one can distinguish
several layers of leaves and not only the leaves on top. For α = 0.05, the variance of the TDL
process is nearly 0 (see Proposition 2). Enhancing the contrast of the image (Fig.2(f)) reveals
the structure of the image.

• t0, y0, and Ψt0 are mutually independent.

• −t0 has an exponential distribution with parameter µ(A).

• y0 has distribution QA defined for all B ∈ B(E) by QA(B) =
µ(B ∩A)

µ(A)
.

• Ψt0 is a Poisson process with intensity measure λ ⊗ µ, i.e. Ψt0 has the same
distribution as Ψ.

In the following of this section, Proposition 3 will be applied to the Poisson process
Φ of the colored leaves to compute some statistics of the TDL process f . As a first
example, let us reobtain the expectation of f by using Proposition 3. Let y ∈ R

d and
let us note (t0, x0, X0, a0) the leaf which hits y at the maximal time t0. Then one can
decompose f(y) into

f(y) = αa0 + βft0(y), (4)

where ft0 is the TDL process associated to the time-shifted point process Φt0 . Accord-
ing to Proposition 3, a0 has distribution Pa and both point processes Φ and Φt0 have
the same distribution. Consequently, f(y) and ft0(y) also have the same distribution,
and in particular the same expectation. Hence the above decomposition of f(y) yields
to the equation

E (f(y)) = αE(a) + βE (f(y)) ,

which gives E (f(y)) = E(a), in accordance with Proposition 2.
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The very same method is used below to compute the covariance of f . This method
will also be applied in Section A.2.3 to derive a technical result useful for the central
limit theorem of Section 5.

Recall that γX(τ) = E (νd(X ∩ τ +X)) is the mean covariogram of X.

Proposition 4 (Covariance of the TDL process). The TDL process f is a square-
integrable stationary random field and its covariance is given by

Cov(f)(τ) =
αγX(τ)

2E(νd(X))− αγX(τ)
Var(a), τ ∈ R

d.

Proof. Let y and z be such that z − y = τ . Let us note (t0, x0, X0, a0) the last leaf
which hits y or z at the maximal time t0, and let Φt0 be the corresponding time-
shifted Poisson process. According to Proposition 3, (x0, X0, a0) is independent of

Φt0 . In addition Φt0

d
= Φ, and consequently, noting ft0 the TDL associated with Φt0 ,

(ft0(y), ft0(z))
d
= (f(y), f(z)). Proposition 3 also shows that a0 has distribution Pa.

As for the distribution of (x0, X0), a straightforward computation shows that

νd ⊗ PX ({(x,X), {y, z} ∩ x+X 6= ∅}) = E (νd (X ⊕ {−y,−z})) = 2γX(0)− γX(τ)

and

νd ⊗ PX ({(x,X), {y, z} ⊂ x+X}) = E (νd (−y +X ∩ −z +X)) = γX(τ).

Hence we have

P ({y, z} ⊂ x0 +X0) =
νd ⊗ PX ({(x,X), {y, z} ⊂ x+X})

νd ⊗ PX ({(x,X), {y, z} ∩ x+X 6= ∅})
=

γX(τ)

2γX(0)− γX(τ)
,

(5)
and by symmetry and complementarity

P (y ∈ x0 +X0 and z /∈ x0 +X0) = P (z ∈ x0 +X0 and y /∈ x0 +X0) =
γX(0)− γX(τ)

2γX(0)− γX(τ)
.

As a shorter notation we writem = E(a) = E(f). We have to compute Cov (f(y), f(z)) =
E ((f(y)−m) (f(z)−m)). Conditioning with respect to the coverage of the last leaf
(t0, x0, X0, a0) we have

E ((f(y)−m) (f(z)−m))

= E ((f(y)−m) (f(z)−m) |{y, z} ⊂ x0 +X0 )
γX(τ)

2γX(0)− γX(τ)

+ E ((f(y)−m) (f(z)−m) |y ∈ x0 +X0 and z /∈ x0 +X0 )
γX(0)− γX(τ)

2γX(0)− γX(τ)

+ E ((f(y)−m) (f(z)−m) |z ∈ x0 +X0 and y /∈ x0 +X0 )
γX(0)− γX(τ)

2γX(0)− γX(τ)
.

By symmetry it is clear that the two last terms of the above sum are equal. On the
event {{y, z} ⊂ x0 +X0} we have

f(y)−m = α(a0−m)+ β (ft0(y)−m) and f(z)−m = α(a0−m)+ β (ft0(z)−m) ,

so that

(f(y)−m) (f(z)−m) = α2(a0 −m)2 + β2 (ft0(y)−m) (ft0(z)−m)

+ αβ(a0 −m) ((ft0(y)−m) + (ft0(z)−m)) .
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By Proposition 3, a0, (x0, X0), and (ft0(y), ft0(z)) are mutually independent, hence

E ((f(y)−m) (f(z)−m) |{y, z} ⊂ x0 +X0 )

= α2
E
(

(a0 −m)2
)

+ β2
E ((ft0(y)−m) (ft0(z)−m))

= α2 Var(a) + β2 Cov (f(y), f(z)) .

On the event {y ∈ x0 +X0 and z /∈ x0 +X0} we have

f(y)−m = α(a0 −m) + β (ft0(y)−m) and f(z)−m = ft0(z)−m.

Using the above arguments,

E ((f(y)−m) (f(z)−m) |y ∈ x0 +X0 and z /∈ x0 +X0 ) = β Cov (f(y), f(z)) .

Coming back to the above decomposition of E ((f(y)−m) (f(z)−m)), one obtains
an equation involving the covariance Cov (f(y), f(z)), the values γX(0) and γX(τ) of
the mean covariogram of X, and the variance Var(a). Simplifying this equation one
obtains the enunciated formula.

Remark 3 (Variable transparency and second order property). The technique used
in this section enables to generalize second order formulas to the case where the trans-
parency parameter α is assumed to be different for each object, that is, when it is
assumed that each object Xi is assigned a transparency αi distributed as a random
variable α and independent of other objects. First, it is straightforward to show that
in this case we still have E(f(y)) = E(a). Then, a simple application of Formula (4)
yields Var f(y) = E(α2)Var(a)(2E(α)−E(α2))−1. Observe that a direct computation
starting from the definition of f would be much more painful. Eventually, applying
the same technique enables to show that the covariance of the model with variable
transparency satisfies, for τ ∈ R

d,

Cov(f)(τ) =
E(α2)γX(τ)

2E(α)E(νd(X))− E(α2)γX(τ)
Var(a).

5 Gaussian convergence as the objects tend to be

fully transparent

Recall that the TDL process with transparency coefficient α is denoted fα.

Theorem 1 (Normal convergence of the TDL process). Suppose that Var(a) > 0.
Then, as the transparency coefficient α tends to zero, the family of random fields
(

fα − E (fα)
√

Var (fα)

)

α

converges in the sense of finite-dimensional distributions to a sta-

tionary Gaussian random field with covariance function

C(τ) =
γX(τ)

E(νd(X))
=

γX(τ)

γX(0)
.

The proof of Theorem 1 is postponed to the appendix. It relies on a central limit
theorem for non independent sequences due to Janson (See Section A.2.1 in the ap-
pendix or [12, Theorem 2]). This theorem involves families of r.v. having a controlled

10



(a) α = 1 (b) α = 0.5 (c) α = 0.2

(d) α = 0.1 (e) α = 0.01 (f) Limit Gaussian r.f.

Figure 3: From colored dead leaves to Gaussian random fields: Visual illustration of the

normal convergence of the normalized TDL processes

(

fα − E (fα)
√

Var (fα)

)

α

(see Theorem 1). As

α decreases to 0 the normalized TDL realizations look more and more similar to the Gaussian
texture 3(f).

dependency structure. Here this control is basically obtained from the obvious obser-
vation that a leaf covers at most once each considered points (see Appendix A for the
details).

The normal convergence of the normalized family of r.v.

(

fα − E (fα)
√

Var (fα)

)

α

is illus-

trated by Fig. 3. The five first images are normalized TDL realizations obtained from
the same random colored leaves but with various transparency coefficients α. The last
image is a realization of the limit Gaussian random field given by Theorem 1. Observe
that this Gaussian field is also the limit of the normalized shot noise associated with
X when the intensity of germs tends to infinity [11].

A Proof of Theorem 1

A.1 Notation and plan of the proof

Let p ∈ N, p ≥ 2, y1, . . . , yp be p distinct points of Rd and w1, . . . , wp be p non null
real coefficients. It must be shown that the linear combination

p
∑

j=1

wj

fα(yj)− E (fα)
√

Var (fα)

11



converges in distribution when α→ 0 to a Gaussian r.v. with mean 0 and variance V
where

V :=

p
∑

j=1

p
∑

i=1

wjwi

γX(yi − yj)

γX(0)
. (6)

Note that V is strictly positive since the covariogram γX is strictly positive-definite [8].
Let (αn) be any sequence such that αn ∈ (0, 1] and αn → 0. For all n ∈ N, define

Yn =

p
∑

j=1

wjfαn
(yj).

With these new notation, the goal of the proof is to show that

Yn − E (Yn)
√

Var (fαn
)

D
−→

n→+∞
N (0, V ). (7)

From the expression of the covariance of the TDL process (Proposition 4),

Var (Yn) = Var(a)

p
∑

j=1

p
∑

i=1

wjwi

αnγX(yi − yj)

2γX(0)− αnγX(yi − yj)
∼

n→+∞

V

2
Var(a)αn (8)

and

Var (fαn
) =

αn

2− αn

Var(a) ∼
n→+∞

1

2
Var(a)αn.

Hence

lim
n→+∞

Var (Yn)

Var (fαn
)
= V

and the normal convergence (7) is equivalent to

Yn − E (Yn)
√

Var (Yn)

D
−→

n→+∞
N (0, 1). (9)

Following the notation of Proposition 2, for each point yj we order the sequence of
leaves falling on yj in anti-chronological order: t(yj , 0) > t(yj , 1) > t(yj , 2) > . . . , and
the intensities ai associated to each falling time t(yj , k) are denoted by a(yj , k). Noting

βn = (1−αn) for all n ∈ N, we have for all j ∈ {1, . . . , p}, fαn
(yj) =

+∞
∑

k=0

αna(yj , k)β
k
n.

Hence

Yn =

p
∑

j=1

wj

(

+∞
∑

k=0

αna(yj , k)β
k
n

)

=

+∞
∑

k=0

αn





p
∑

j=1

wja(yj , k)



βk
n.

To prove (9), we introduce an intermediary sequence (Sn) which is obtained from (Yn)
by truncating the intensities a(yj , k) and by restricting the summation over k to a finite
number of terms. More precisely let us consider a sequence (An) such that An > 0
and limn An = +∞. For all n ∈ N, let Tn be the truncation operator defined for all
b ∈ R by

Tn(b) =











b if b ∈ [−An, An],

An if b > An,

−An if b < −An.

12



Let us also consider a sequence of integers (Nn) such that Nn → +∞. Given the two
sequences (An) and (Nn), for all n ∈ N, k ∈ {0, . . . , Nn}, define

Zn,k = αn





p
∑

j=1

wjTn (a(yj , k))



βk
n, n ∈ N, k ∈ {0, . . . , Nn}, (10)

and

Sn =

Nn
∑

k=0

Zn,k.

The proof of (9), and thus of Theorem 1, consists in two main steps. First, for some
well-chosen sequences (An) and (Nn), depending only on αn, it will be shown that

Sn − E (Sn)
√

Var (Sn)

D
−→ N (0, 1)

(see Lemma 7). Second, it will be shown that, with the same sequences (An) and
(Nn), we have

Yn − E (Yn)
√

Var (Yn)
−

Sn − E (Sn)
√

Var (Sn)

L2

−→ 0

(see Lemma 8). Thanks to Slutsky’s theorem, these two results implies the normal
convergence (9).

A.2 Normal convergence of the partial sums

We decompose the proof of the normal convergence of the sequence (Sn) in several
lemmas. The intent of those technical lemmas is to show that a normal convergence
theorem due to Janson [12, Theorem 2] applies for some well-chosen sequences (An)
and (Nn). First let us recall Janson’s theorem.

A.2.1 Janson’s normal convergence theorem

We first recall the definition of dependency graph of a finite family of r.v.. A graph
Γ = ({1, . . . , N}, E) with vertices {1, . . . , N} and edges E is a dependency graph for
the finite family of r.v. Z1, . . . , ZN if for any pair of disjoint sets of vertices V1 and
V2 ⊂ {1, . . . , N} such that no edge in E has one endpoint in V1 and the other in
V2, the corresponding sets of random variables {Zk, k ∈ V1} and {Zk, k ∈ V2} are
independent. Let us also recall that the maximal degree of a graph is the maximal
number of edges incident to a single vertex.

Theorem 2 (Janson’s normal convergence theorem [12]). Suppose that for each n ∈
N, {Zn,k, k ∈ {0, . . . , Nn}}, is a family of bounded r.v. and let Bn > 0 such that
|Zn,k| ≤ Bn. Suppose further that Zn,k admits a dependency graph the maximal degree
of which is less than Mn ≥ 1. Let

Sn =

Nn
∑

k=0

Zn,k.

If there exists an integer m such that

N
1
m
n M

1− 1
m

n Bn
√

Var(Sn)
−→

n→+∞
0,

13



then the normalized sequence

(

Sn − E(Sn)
√

Var(Sn)

)

converges in distribution to N (0, 1).

A.2.2 Maximal degree

Lemma 2. For all n, the family of r.v.

Zn,k = αn





p
∑

j=1

wjTn (a(yj , k))



βk
n, k ∈ {0, . . . , Nn},

admits a dependency graph which has a maximal degree inferior or equal to p(p− 1).

Proof. Let us define a graph Γn = ({1, . . . , Nn}, En), where En is the set of edges {k, l},
k 6= l, such that there exist two points yj and yi for which the intensities a(yj , k) and
a(yi, l) correspond to the same leaf. In other words, the edge {k, l} is in En as soon as
the sums defining Zn,k and Zn,l involve one common r.v. ai. Let us justify that Γn

is a dependency graph for Zn,k, k ∈ {0, . . . , Nn}. If V1 and V2 ⊂ {1, . . . , N} are such
that no edge in En has one endpoint in V1 and the other in V2, then the two sets of r.v.
A1 = {a(yj , k), j ∈ {1, . . . , p}, k ∈ V1} and A2 = {a(yj , k), j ∈ {1, . . . , p}, k ∈ V2}
correspond to two disjoint sets of leaves. But since the intensities ai of the leaves form
an i.i.d. sequence, the sets of r.v. A1 and A2 are independent. To conclude the proof
let us now bound the maximal degree of Γn. Let k ∈ {1, . . . , Nn}. Let j ∈ {1, . . . , p}
and let us consider the r.v. a(yj , k). Since the leaf associated to a(yj , k) covers at
most once each of the p − 1 points {yi, i 6= j}, the r.v. a(yj , k) appears at most in
p − 1 sums Zn,l, l 6= k. Hence the r.v. a(yj , k) induces at most p − 1 edges incident
to the vertex k. Since Zn,k is the sum of p r.v. a(yj , k), the number of edges incident
to k is less than p(p − 1). This is valid for all vertex k, and thus we deduce that the
maximal degree of Γn is inferior or equal to p(p− 1).

A.2.3 Determining an equivalent of the sequence (Var (Sn))

The goal of the following technical lemmas is to establish an equivalent of the sequence
(Var (Sn)).

Lemma 3 (An expression of Var (Sn)).

Var(Sn) = Var (Tn(a))

p
∑

j=1

p
∑

i=1

wjwi

(

α2
n

Nn
∑

k=0

Nn
∑

l=0

βk
nβ

l
nP (t(yj , k) = t(yi, l))

)

.

Proof. Recall that

Sn =

Nn
∑

k=0

Zn,k =

Nn
∑

k=0

αn





p
∑

j=1

wjTn (a(yj , k))



βk
n.

By linearity we have

Sn − E (Sn) = αn

Nn
∑

k=0





p
∑

j=1

wj (Tn (a(yj , k))− E (Tn(a)))



βk
n.

14



Hence

Var(Sn) = α2
n

Nn
∑

k=0

Nn
∑

l=0

p
∑

j=1

p
∑

i=1

wjwiβ
k
nβ

l
n Cov (Tn (a(yj , k)) , Tn (a(yi, l))) .

Each r.v. ai has distribution Pa and is independent of the others r.v. ai. Hence, the
two r.v. Tn (a(yj , k)) and Tn (a(yi, l)) are either identical or independent. Thus

Cov (Tn (a(yj , k)) , Tn (a(yi, l))) = Var(Tn(a))P (t(yj , k) = t(yi, l)) .

The next lemma computes the probability P (t(y, k) = t(z, l)), k, l ∈ N, that is the
probability that the (k + 1)-th leaf covering y is the (l + 1)-th leaf covering z.

Lemma 4 (Simultaneous covering). Let y, z ∈ R
d and note τ = z − y. Let us note

κ =
γX(τ)

2γX(0)− γX(τ)
and ω =

γX(0)− γX(τ)

2γX(0)− γX(τ)
.

Then, for all k, l ∈ N,

P (t(y, k) = t(z, l)) = κ

min(k,l)
∑

q=0

(k + l − q)!

q!(k − q)!(l − q)!
κqωk+l−2q. (11)

Proof. Formula (11) is proved by induction over N = k + l. For N = 0, as already
shown by Equation (5) in the proof of Proposition 4 we have P (t(y, 0) = t(z, 0)) = κ.
Let (k, l) ∈ N

2, k+ l ≥ 1. Like for the proof of Proposition 4, conditioning with respect
to the coverage of the last leaf (t0, x0, X0, a0) which hits y or z we have

P (t(y, k) = t(z, l)) = P (t(y, k − 1) = t(z, l − 1))κ

+ P (t(y, k − 1) = t(z, l))ω

+ P (t(y, k) = t(z, l − 1))ω

(with the convention that if k − 1 = −1 or l − 1 = −1 the probability involving
t(y, k − 1) or t(z, l − 1) is null, which is consistent with Formula (11)). Using the
induction hypothesis followed by a change of index q = q + 1 we have

P (t(y, k − 1) = t(z, l − 1))κ = κ

min(k−1,l−1)
∑

q=0

(k + l − q − 2)!

q!(k − q − 1)!(l − q − 1)!
κq+1ωk+l−2q−2

= κ

min(k,l)
∑

q=1

(k + l − q − 1)!

(q − 1)!(k − q)!(l − q)!
κqωk+l−2q

= κ

min(k,l)
∑

q=0

q(k + l − q − 1)!

q!(k − q)!(l − q)!
κqωk+l−2q,

where in the last step a null term was added in the sum. Similarly, by the induction
hypothesis and in possibly adding a null term in the sum

P (t(y, k − 1) = t(z, l))ω = κ

min(k−1,l)
∑

q=0

(k + l − q − 1)!

q!(k − q − 1)!(l − q)!
κqωk+l−2q

= κ

min(k,l)
∑

q=0

(k − q)(k + l − q − 1)!

q!(k − q)!(l − q)!
κqωk+l−2q,
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and by symmetry

P (t(y, k) = t(z, l − 1))ω = κ

min(k,l)
∑

q=0

(l − q)(k + l − q − 1)!

q!(k − q)!(l − q)!
κqωk+l−2q.

The three obtained sums are similar except for their numerators. Summing them, on
the numerator we have [q + (k − q) + (l − q)] (k + l − q − 1)! = (k + l − q)!. Hence we
obtain Formula (11), which completes the proof by induction.

Lemma 5. Let y, z ∈ R
d and τ = z − y. Let (Kn)n and (Ln)n be two sequences of

N ∪ {+∞} such that

αnKn −→
n→+∞

+∞ and αnLn −→
n→+∞

+∞.

Define Γn = Γn(y, z, (Kn), (Ln)) to be the sequence

Γn = α2
n

Kn
∑

k=0

Ln
∑

l=0

βk
nβ

l
nP (t(y, k) = t(z, l)) .

Then

Γn ∼
n→+∞

γX(τ)

2γX(0)
αn.

Proof. Starting from Lemma 4 and changing the order of summation we have

Γn = α2
n

Kn
∑

k=0

Ln
∑

l=0

βk
nβ

l
nκ

min(k,l)
∑

q=0

(k + l − q)!

q!(k − q)!(l − q)!
κqωk+l−2q

= α2
nκ

min(Kn,Ln)
∑

q=0

Kn
∑

k=q

Ln
∑

l=q

βk
nβ

l
n

(k + l − q)!

q!(k − q)!(l − q)!
κqωk+l−2q.

Changing the indices in the triple sum in r = k − q, s = l − q gives

Γn = α2
nκ

min(Kn,Ln)
∑

q=0

Kn−q
∑

r=0

Ln−q
∑

s=0

(r + s+ q)!

q!r!s!

(

β2
nκ
)q

(βnω)
r
(βnω)

s
.

One recognizes the multinomial formula of order 3:

(λ1 + λ2 + λ3)
σ
=

∑

k1,k2,k3
k1+k2+k3=σ

σ!

k1!k2!k3!
λk1
1 λk2

2 λk3
3 .

However the subdomain of N3

An =
{

(q, r, s) ∈ N
3 |q ∈ {0, . . . ,min(Kn, Ln)}, r ∈ {0, . . . ,Kn − q}, s ∈ {0, . . . , Ln − q}

}

,

over which the sum is done is not well-adapted for the multinomial formula. Let us
introduce

A−
n =

min(Kn,Ln)
⋃

σ=0

{

(q, r, s) ∈ N
3 |q + r + s = σ

}

,
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and

A+
n =

Kn+Ln
⋃

σ=0

{

(q, r, s) ∈ N
3 |q + r + s = σ

}

.

It is straightforward to observe that A−
n ⊂ An ⊂ A

+
n . Defining Γ−

n and Γ+
n by

Γ±
n = α2

nκ
∑

(q,r,s)∈A±
n

(r + s+ q)!

q!r!s!

(

β2
nκ
)q

(βnω)
r
(βnω)

s
,

the inclusions A−
n ⊂ An ⊂ A

+
n imply that Γ−

n ≤ Γn ≤ Γ+
n . The end of the proof

consists in showing that both sequences (Γ−
n )n and (Γ+

n )n are equivalent to
γX(τ)

2γX(0)
αn.

We have

Γ−
n = α2

nκ
∑

(q,r,s)∈A±
n

(r + s+ q)!

q!r!s!

(

β2
nκ
)q

(βnω)
r
(βnω)

s

= α2
nκ

min(Kn,Ln)
∑

σ=0

(

β2
nκ+ 2βnω

)σ

= α2
nκ

1−
(

β2
nκ+ 2βnω

)min(Kn,Ln)+1

1− (β2
nκ+ 2βnω)

.

Using the expressions of κ, ω and βn = 1− αn,

1−
(

β2
nκ+ 2βnω

)

=
αn (2γX(0)− αnγ(τ))

2γX(0)− γX(τ)
.

Hence

Γ−
n =

αnγX(τ)

2γX(0)− αnγX(τ)

(

1−

(

1−
αn (2γX(0)− αnγ(τ))

2γX(0)− γX(τ)

)min(Kn,Ln)+1
)

.

Recalling that by hypothesis we have lim
n→+∞

αn min(Kn, Ln) = +∞, we obtain the

announced equivalent for the sequence (Γ−
n )n:

Γ−
n =

αnγX(τ)

2γX(0)− αnγX(τ)

(

1− e
(min(Kn,Ln)+1) ln

(

1−αn
2γX (0)−αnγ(τ)

2γX (0)−γX (τ)

)
)

∼
n→+∞

αnγX(τ)

2γX(0)

(

1− e
−min(Kn,Ln)αn

2γX (0)

2γX (0)−γX (τ)

)

∼
n→+∞

γX(τ)

2γX(0)
αn.

Similarly, since lim
n→+∞

(Kn + Ln)αn = +∞ we have

Γ+
n =

αnγX(τ)

2γX(0)− αnγX(τ)

(

1−

(

1−
αn (2γX(0)− αnγ(τ))

2γX(0)− γX(τ)

)Kn+Ln+1
)

∼
n→+∞

γX(τ)

2γX(0)
αn.

This concludes the proof.
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Lemma 6 (An equivalent of Var(Sn)). Suppose that the sequences (An)n and (Nn)n
satisfy

lim
n→+∞

An = +∞ and lim
n→+∞

αnNn = +∞.

Then

Var(Sn) ∼
n→+∞

V

2
Var(a)αn.

Proof. Using the expression of Lemma 3 and the notation of Lemma 5, we have

Var(Sn) = Var (Tn(a))

p
∑

j=1

p
∑

i=1

wjwiΓn(yj , yi, (Nn)n, (Nn)n).

Thus

lim
n→+∞

Var(Sn)

αn

= lim
n→+∞

Var (Tn(a))

p
∑

j=1

p
∑

i=1

wjwi

Γn(yj , yi, (Nn)n, (Nn)n)

αn

= Var(a)

p
∑

j=1

p
∑

i=1

wjwi

γX(yj − yi)

2γX(0)
=

V

2
Var(a).

A.2.4 Applying Janson’s theorem

In the following ⌊x⌋ denotes the integral part of a real x.

Lemma 7 (Normal convergence of the partial sums). Let s1 and s2 be real numbers
satisfying s1 ∈ (0, 1/2) and s2 > 1. For all n ∈ N define

An = α−s1
n and Nn =

⌊

α−s2
n

⌋

.

Then the corresponding sequence

(

Sn − E (Sn)
√

Var (Sn)

)

converges in distribution to N (0, 1).

Proof. This lemma is proved by applying Janson’s theorem [12], reproduced above as
Theorem 2. For all n ∈ N and k ∈ {0, . . . , Nn}, we have |Tn (a(yj , k))| ≤ An, hence

|Zn,k| ≤ αn





p
∑

j=1

|wj |



Anβ
k
n ≤





p
∑

j=1

|wj |



Anαn.

According to Lemma 2, for all n ∈ N the family (Zn,k)k=0,...,Nn
admits a dependency

graph which has a maximal degree inferior or equal to p(p−1). Hence Janson’s theorem

should be applied with Nn = ⌊α−s2
n ⌋, Mn = p(p − 1), and Bn =

(

∑p

j=1 |wj |
)

Anαn.

Since s1 > 0 and s2 > 1, we have limn An = +∞ and limn αnNn = +∞, and thus
Lemma 6 ensures that

Var(Sn) ∼
n→+∞

V

2
Var(a)αn.

Combining all these results, for all integers m we have

N
1
m
n M

1− 1
m

n Bn
√

Var (Sn)
∼

n→+∞
Cα

−
s2
m

n α1−s1
n α

−
1
2

n ∼
n→+∞

Cα
1
2−s1−

s2
m

n ,
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where C is a constant independent of n. Since 1
2 − s1 > 0, there exists an integer

m ≥ 3 large enough so that 1
2 − s1 −

s2
m

> 0. For this value of m we get

N
1
m
n M

1− 1
m

n Bn
√

Var (Sn)
−→

n→+∞
0.

Hence Janson’s theorem applies and ensures the announced normal convergence.

Remark 4. Note that the choice of values of (An) and (Nn) depends only on the
sequence (αn). Besides, in the above proof one can choose s1 and s2 such that 1

2 −s1−
s2
m

> 0 with m = 3 (take (s1, s2) =
(

1
9 ,

10
9

)

for example). Hence there is no real need
to use Janson’s result on normal convergence by higher cumulants [12, Theorem 1].
The key result here is the upper bound of semi-invariants for sums of random variables
admitting a dependency graph with a known maximal degree [12, Lemma 4].

A.3 Convergence in L
2 of the difference of the normalized se-

quences

Lemma 8. Suppose that the sequences (An)n and (Nn)n satisfy

lim
n→+∞

An = +∞ and lim
n→+∞

αnNn = +∞.

Then
Yn − E (Yn)
√

Var (Yn)
−

Sn − E (Sn)
√

Var (Sn)

L2

−→ 0.

Proof. Since

E





(

Yn − E (Yn)
√

Var (Yn)
−

Sn − E (Sn)
√

Var (Sn)

)2


 = 2− 2
Cov(Yn, Sn)

√

Var (Yn)
√

Var (Sn)

it is equivalent to show that

Cov(Yn, Sn) ∼
n→+∞

√

Var (Yn)
√

Var (Sn).

Equation (8) shows that Var (Yn) ∼
n→+∞

V

2
Var(a)αn, where the constant V is defined

in (6). Besides Lemma 6 ensures that Var (Sn) ∼
n→+∞

V

2
Var(a)αn. As for computing

an equivalent of Cov(Yn, Sn), this is done using techniques similar to the ones of the
proof of Lemma 6. First, observe that

Cov(Yn, Sn) = Cov(a, Tn(a))

p
∑

j=1

p
∑

i=1

wjwi

+∞
∑

k=0

Nn
∑

l=0

α2
nβ

k
nβ

l
nP (t(y, k) = t(z, l)) .

Using the notation of Lemma 5 we get

Cov(Yn, Sn) = Cov (a, Tn(a))

p
∑

j=1

p
∑

i=1

wjwiΓn(yj , yi, (+∞)n, (Nn)n).
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According to Lemma 5, lim
n→0

1

αn

Γn(yj , yi, (+∞)n, (Nn)n) =
γX(yj − yi)

2γX(0)
. Thus

lim
n→0

1

αn

Cov(Yn, Sn) =
V

2
Var(a).

This shows that Cov(Yn, Sn) and
√

Var (Yn)
√

Var (Sn) are equivalent and concludes
the proof.
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