Julien Chenal 
email: chenal@iecn.u-nancy.fr
  
Generalized flag geometries associated with (2k + 1)-graded Lie algebras

Keywords: AMS classification: 17A15, 17B66 Jordan pair, Kantor pair, graded and filtered Lie algebra, Bergman operator, torsor

In this paper, we present the construction of a geometric object, called a generalized flag geometry (X + , X -), corresponding to a (2k + 1)-graded Lie algebra g = g k ⊕ • • • ⊕ g -k . We prove that (X + , X -) can be realized inside the space of inner filtrations of g and we use this realization to construct "algebraic bundles" on X + and X -and some sections of these bundles. Thanks to these constructions, we can give a realization of g as a Lie algebra of polynomial maps on the positive part of g, n + 1 := g1 ⊕ • • • ⊕ g k , and a trivialization in n + 1 of the action of the group of automorphisms of g by "birational"maps.

Introduction

It is well-known (see [START_REF] Loos | Jordan pairs[END_REF]) that 3-graded Lie algebras g = g 1 ⊕ g 0 ⊕ g -1 give rise to Jordan pairs (V + , V -) = (g 1 , g -1 ), where the trilinear Jordan-structure is given by T ± (x, y, z) = [[x, y], z], and that, conversely, the 3-graded Lie algebra can be reconstructed from a (linear) Jordan pair by the Tits-Kantor-Koecher construction. The Jordan pair can then be interpreted as the "infinitesimal structure" corresponding to a global geometry (X + , X -), called generalized projective geometry in [START_REF] Bertram | Generalized projective geometries: general theory and equivalence with Jordan structures[END_REF]. Thus 3-graded Lie algebras correspond to generalized projective geometries, and in [START_REF] Bertram | Projective completions of Jordan pairs. I. The generalized projective geometry of a Lie algebra[END_REF], an explicit and purely algebraic construction of a "universal model" of these geometries in terms of 3-filtrations of the Lie algebra has been given.

The topic of the present work is to extend these results to Z-graded Lie algebras of the type

g = g k ⊕ g k-1 ⊕ . . . ⊕ g -k ,
which we call (2k + 1)-graded. Especially the 5-graded case has already attracted much attention, mainly because every simple complex Lie algebra (of dimension bigger than 3) admits a 5-grading having the special feature that the spaces g ±2 are one-dimensional, and then the pair g ±1 corresponds to Freudenthal-Kantor pairs (see [START_REF] Kantor | Some generalizations of Jordan algebras[END_REF], [START_REF] Kamiya | A structure theory of Freudenthal-Kantor triple systems[END_REF] or [START_REF] Allison | Elementary groups and invertibility for Kantor pairs[END_REF]); also, this particular situation is related to geometric topics such as symplectic geometry (see [START_REF] Rubenthaler | Les paires duales dans les algèbres de Lie réductives[END_REF]) and quaternionic symmetric spaces (the so-called Wolf-spaces, cf. [START_REF] Bertram | Complex and quaternionic structures on symmetric spaces -Correspondance with Freudenthal-Kantor triple systems. Theory of Lie Groups and Manifolds[END_REF]). The typical situation that we consider here is in a certain sense opposite to this very particular case: we do not assume g to be simple, nor finite-dimensional, nor even defined over a field but rather over a commutative base ring K (the only assumption we will need is that certain integers are invertible in K). In this general situation, it is much less clear what object replaces the Jordan pair from the 3-graded case; it is known, by work of I. Kantor, that the pair (g 1 , g -1 ) is a generalized Jordan pair (a sort of non-commutative version of a Jordan pair, see [START_REF] Kantor | Graded Lie algebras[END_REF] and [START_REF] Kantor | Some generalizations of Jordan algebras[END_REF]), but this pair seems to be "too small" if one is looking for an object corresponding to the geometry of the whole graded algebra. Indeed, the problem of finding the good analog of the Jordan pair in the higher graded case remains open, but we hope that a good understanding of the geometry (X + , X -) we construct will be a step towards the solution of this problem.

The geometry associated to a (2k + 1)-graded Lie algebra g, which we call a generalized flag geometry, is constructed as follows: we consider the space F of all (2k + 1)-filtrations of g, and we define a natural notion of transversality of filtrations (Definition 2.3). We prove that two filtrations e and f are transversal (denoted by e⊤f ) if and only if they come from a grading (then e is the "ascending" and f the "descending" filtration, see Part 1) of Theorem 2.1). Our key result (Part 3) of Theorem 2.1) says that the set f ⊤ of all filtrations e that are transversal to a given filtration f carries a natural torsor structure (where we use the term "torsor" in the same way as in [START_REF] Bertram | Associative Geometries. I: Grouds, linear relations and Grassmannians[END_REF]): there is a natural, simply transitive group action on f ⊤ , hence, after choice of an arbitrar origin, f ⊤ becomes a group. In the case of 3-filtrations, this group is a vector group (underlying an affine space, see [START_REF] Bertram | Projective completions of Jordan pairs. I. The generalized projective geometry of a Lie algebra[END_REF]), whereas for k > 1, it is no longer abelian but rather unipotent, with "Lie algebra" the positive (or negative, according to choice) part n + 1 := g 1 ⊕ . . . ⊕ g k , and instead of an affine space, we have a dilatation action making this group a Carnot group (see, e.g., [START_REF] Buliga | Dilatation structures. I. Fundamentals[END_REF]). These facts make the higher graded situation geometrically much more complicated, as we shall explain now.

We fix a (2k + 1)-grading of g as "base point", which corresponds to two transversal filtrations o + and o -, and we consider the "connected components" X ± of F containing o ± (Section 3). For any f ∈ X ± , the torsor f ⊤ belongs to X ∓ (Theorem 3.1); we call this structure a linear pair geometry. Our aim is then to describe geometric structures of X ± with respect to the "charts" f ⊤ : first of all, we give an algebraic description of the "intersection of chart domains" f ⊤ ∩ e ⊤ in terms of certain cocycles called denominators and co-denominators (Definition 3.5 and Corollary 3.1). These are related to a generalization of the well-known Bergman operator from Jordan-theory; more intrinsically, we define, in a purely algebraic way, certain vector bundles over X ± , and then relate these operators to invariant sections of such bundles, called the canonical kernel (Definition 4.3 and Theorem 4.2). Next, we describe the action of the projective elementary group (which is the natural symmetry group in this context, acting transitively on X ± , see Section 3.1) with respect to the "charts" f ⊤ . This description is explicit and algebraic (in case of finite dimension over a field, it is indeed a birational group action), but the formulas are considerably more complicated than in the 3-graded case (Proposition 4.2). They generalize the classical description of the projective group on projective space, given in an affine picture by fractionallinear maps (see Example 4.4.1). In subsequent work, we will use this description for proving that, under suitable topological assumptions on K and on g, the geometries X ± are indeed smooth manifolds and that the algebraically defined bundles are smooth bundles with smooth section given by the canonical kernel. These results will give new and interesting examples of smooth infinite dimensional geometries, associated to infinite dimensional Lie algebras.

As an intermediate step to the description of the group action, we give a realization of its "Lie algebra" (which is essentially g) with respect to the "chart" f ⊤ . It is given by vector fields (sections of the algebraically defined tangent bundle) which turn out to be polynomial (Section 4.3), but again this description is much more complicated than in the 3-graded case; in this case, the polynomials are quadratic, and the algebraic structure of this polynomial Lie algebra is directly related to the Jordan pair structure (see [START_REF] Bertram | Projective completions of Jordan pairs. I. The generalized projective geometry of a Lie algebra[END_REF] and [START_REF] Upmeier | Symmetric Banach manifolds and Jordan C * -algebras[END_REF]). In the higher graded case, the missing analog of the Jordan pair makes it much more difficult to understand the polynomials arising from the polynomial realization of g. It seems likely that a conceptual understanding of this situation should use the notion of generalized contact structure, proposed in [START_REF] Cowling | Contact and conformal maps in parabolic geometry[END_REF]: indeed, in loc. cit. it is shown that (under suitable assumptions on a simple Lie algebra over R), the projective elementary group can be indeed characterized as the group preserving the generalized contact structure, which thus appears to be a key feature of this situation. We intend to come back to this question in subsequent work. This results are part of the author's thesis [START_REF]Structures géométriques liées aux algèbres de lie graduées[END_REF] and some of them have been anounced in a note [START_REF]Generalized flag geometries and manifolds associated to short Z-graded Lie algebras in arbitrary dimension[END_REF].

Notation: In this paper, K is a commutative ring with N ⊂ K × . Let k ∈ N.

Filtered and graded Lie algebras

In this part, we define the two notions of filtrations and gradings for a K-module and for a Lie algebra and focus on links between them. Let V be a K-module and g a Lie algebra over K.

Filtrations and gradings of K-modules

Definition 2.1. A k-filtration of the module V is a flag of subspaces of V :

f = (0 ⊂ f k ⊂ f k-1 ⊂ • • • ⊂ f 1 = g) .
Two filtrations e and f are called transversal, and we write e⊤f, if

V = e n ⊕ f k-n+2 , for 2 ≤ n ≤ k -1. Definition 2.2. A k-grading of V is a family (V 1 , . . . , V k ) of subspaces of V , such that V = V 1 ⊕ • • • ⊕ V k .
Each grading (V 1 , . . . , V n ) defines two transversal filtrations f + and f -, defined, for 1 ≤ n ≤ k, by:

f + n := V k ⊕ • • • ⊕ V n , f - k-n+1 := V n+1 ⊕ • • • ⊕ V 1 .
Conversely, by [START_REF] Bertram | Inner ideals and intrinsic subspaces of linear pair geometries[END_REF], two transversal filtrations come from a grading of V : Proposition 2.1. Two filtrations e and f of V are transversal if and only if they come from a grading of V , i.e. if and only if there exists a grading

V = V 1 ⊕ • • • ⊕ V k such that e = f + and f = f -.
Moreover, if e and f are transversal, the corresponding grading is defined by

V n := e n ∩ f k-n+1 . Proof. See Proposition 3.3 of [BL08].

Filtrations of Lie algebras

Definition 2.3. A (2k + 1)-filtration of a Lie algebra g is a flag of subspaces of g:

n = (0 = n k+1 ⊂ n k ⊂ • • • ⊂ n -k+1 ⊂ n -k = g), such that [n m , n n ] ⊂ n m+n .
Such a flag will be denoted by n = (n k ⊂ • • • ⊂ n -k+1 ). Two (2k + 1)-filtrations m and n are called transversal, and we write m⊤n, if they are transversal flags in the sense of the preceding subsection, i.e. g = m n ⊕ n -n+1 , for all -k + 1 ≤ n ≤ k. We say that a filtration is complemented if it admits a transversal filtration, and the set of such complemented filtrations will be denoted by F.

Given a filtration n, we define the Lie algebra

u(n) := {X ∈ Der(g)| Xn n ⊂ n n+1 , for all -k + 1 ≤ n ≤ k} .
The elements X of u(n) are nilpotent. Hence, since integers are assumed to be invertible in K, we can consider the unipotent "Lie group" corresponding to u(n) :

U (n) := e u(n) := e X |X ∈ u(n) , where e X = 2k n=0 X n n! ∈ Aut(g).

Short Z-gradings of Lie algebras

Definition 2.4. A (2k + 1)-grading of g is a family (g -k , . . . , g k ) of submodules of g such that

g = k n=-k g n , with [g m , g n ] ⊂ g m+n and g n = 0 if |n| > k. If g = g k ⊕ • • • ⊕ g -k is (2k + 1
)-graded, the map D : g → g defined, for x ∈ g n , by Dx = nx, is a derivation, called the characteristic derivation of the grading, which satisfies

(D -k Id) . . . (D -Id) D (D + Id) . . . (D + k Id) = 0.
(1)

Conversely, any derivation D satisfying (1) is diagonalizable and the eigenspace decomposition is a (2k + 1)-grading of g. Hence, we can identify the space of (2k + 1)-gradings of g with the set

G := {D ∈ Der(g)| (D -k Id) . . . (D -Id) D (D + Id) . . . (D + k Id) = 0} .
If an element D ∈ G can be written D = ad (E), E ∈ g, then the grading is called inner, and the element E is called an Euler operator of the grading. We denote by

G := ad (E) |E ∈ g, ad (E) ∈ G ,
the set of inner (2k + 1)-gradings of g.

Transversality and gradings

If g = g k ⊕ • • • ⊕ g -k is a (2k + 1
)-graded Lie algebra, two filtrations are defined by

n + (D) := (g k ⊂ g k ⊕ g k-1 ⊂ • • • ⊂ g k ⊕ • • • ⊕ g -k+1 ),
and

n -(D) := (g -k ⊂ g -k ⊕ g -k+1 ⊂ • • • ⊂ g -k ⊕ • • • ⊕ g k-1
). (2

) Let n = n + (D) ∈ F . Then U (n) • D = D + u(n), where U (n) acts on Der(g) by g • D := g • D • g -1 .
(3) Let n ∈ F . Then the group U (n) acts simply transitively on n ⊤ := m ∈ F , m⊤n .

Proof.

(1) We have already remarked that n + (D)⊤n -(D). Conversely, let us assume that m⊤n. According to Proposition 2.1, the flags m and n come from a grading of the module g, defined by

g n = m n ∩ n -n . This is actually a grading in the sense of Lie algebras, i.e. [g m , g n ] ⊂ g m+n . Indeed, [g m , g n ] ⊂ [m m , m n ] ∩ [n -m , n -n ] ⊂ m m+n ∩ n -(m+n) = g m+n .
Hence, m and n come from a (2k + 1)-grading of g.

(

) Since e X = Id + 2k n=1 X n , for X ∈ u(n), the inclusion U (n) • D ⊂ D + u(n) holds. 2 
In order to prove the converse, let us fix X ∈ u(n) and show, by induction, that for 2

≤ n ≤ 2k + 1, there exist Y n , R n ∈ u(n) such that e Yn De -Yn = D + X + R n and R n (n i ) ⊂ n i+n , for all -k + 1 ≤ i ≤ k.
This implies that, for n = 2k + 1, R n (g) ⊂ n k+1 = 0, hence e Y 2k+1 De -Y 2k+1 = D + X, and the claim follows:

U (n) • D ⊃ D + u(n) .
Now, we start the inductive proof: let n = 2 and define Y 2 := -X ∈ u(n). Then

e Y2 De -Y2 =   1 -X + 2k+1 j=2 (-1) j X j j!   D   1 + X + 2k+1 j=2 X j j!   = D + [D, X] + R 2 , with R 2 (n i ) ⊂ n i+2 .
Let us consider g = g n , the (2k + 1)-grading of g defined by D. On the one hand, for x ∈ g i , XDx = iXx ∈ n i+1 , while, on the other hand, DXx = (i + 1)Xx + Z i+2 , where Z i+2 ∈ n i+2 . Thus, [D, X] x = Xx + Z i+2 , and

e Y2 De -Y2 = D + X + R 2 , with R 2 (n i ) ⊂ n i+2 . Moreover, R 2 = e Y2 De -Y2 -D -X ∈ u(n)
, and our claim is proved for n = 2. Now, let n ∈ N and assume that there exist

Y n , R n ∈ u(n) such that e Yn • D = D + X + R n and R n (n i ) ⊂ n i+n .
We define Y n+1 by

Y n+1 := Y n + 1 n R n ∈ u(n) .
It follows that

e Yn+1 = e Yn+ 1 n Rn = 2k+1 j=0 Y n + 1 n R n j j! = 1 + Y n + 1 n R n + 2k+1 j=2 Y n + 1 n R n j j! = e Yn + 1 n R n + R + n+1 , with R + n+1 (n i ) ⊂ n i+n+1 .
Similarly, e -Yn+1 = e -Yn -

1 n R n + R - n+1 , with R - n+1 (n i ) ⊂ n i+n+1 . For x ∈ g i , De -Yn+1 x = De -Yn x - i + n n R n x + Z (1) i+n+1 , with Z (1) i+n+1 ∈ n i+n+1 . Hence e Yn+1 De Yn+1 x = e Yn De -Yn x - i + n n e Yn R n x + 1 n R n De -Yn x + Z (2) i+n+1 , with Z (2) i+n+1 ∈ n i+n+1 = Dx + Xx + R n x - i + n n R n x + i n R n x + Z (3) i+n+1 , with Z (3) i+n+1 ∈ n i+n+1 = Dx + Xx + Z (3) i+n+1 , thus e Yn+1 • D = D + X + R n+1 , with R n+1 (n i ) ⊂ n i+n+1 .
As explained above, the claim follows.

(3) First, we prove the transitivity of the action. Let n = n + (D) be a filtration and m ∈ n ⊤ a filtration transversal to n. According to Part 1), there exists a grading 

D ′ such that m = n -(D ′ ) and n = n + (D ′ ). We claim that D -D ′ ∈ u(n). Indeed, if
(D) = n = n + (D ′ ), we have g k ⊕• • •⊕g n = n n = g ′ k ⊕• • •⊕g ′ n . It follows that, for x ∈ n n , Dx = nx + Z n+1 , with Z n+1 ∈ n n+1 , and similarly, D ′ x = nx + Z ′ n+1 with Z ′ n+1 ∈ n n+1 . Hence, (D -D ′ ) x = Z n+1 -Z ′ n+1 ∈ n n+1 . In other words, D -D ′ ∈ u(n), i.e. D ′ ∈ D + u(n) .
It follows, from Part 2), that there exists

X ∈ u(n) such that D ′ = e X • D. Then m = n -(D ′ ) = n -(e X • D) = e X .n -(D),
proving that the group U (n) acts transitively on n ⊤ . Moreover, if e X .n -(D) = n -(D) with X ∈ u(n), necessarly e X = Id, and hence the action is simply transitive.

According to Theorem 2.1 and using the terminology of [START_REF] Bertram | Inner ideals and intrinsic subspaces of linear pair geometries[END_REF], F , F , ⊤ is a linear pair geometry, i.e. for any filtration n ∈ F , there is a transversal filtration m, and the set n ⊤ carries a structure of K-module by declaring the map u(n) → n ⊤ , X → e X .m to be a linear isomorphism.

Corollary 2.1.

If n = n + (ad (E)) ∈ F is an inner filtration of g, then we have u(n) = ad (n 1 ) and U (n) = e ad(n1) .
Moreover, two transversal inner filtrations come from an inner grading of g.

Proof.

For the first statement, we fix X ∈ u(n) and prove by induction that, for all 2 ≤ n ≤ 2k + 1, there are an element

Y n ∈ n 1 and a derivation R n ∈ u(n) such that ad (Y n ) = X + R n and R n (n i ) ⊂ n n+i , for all -k + 1 ≤ i ≤ k.
The second statement is proved in [START_REF]Generalized flag geometries and manifolds associated to short Z-graded Lie algebras in arbitrary dimension[END_REF].

Generalized flag geometry

In this section, we shall define a geometric object, called a generalized flag geometry, associated with an inner (2k + 1)-grading of g, and realize this geometry by inner filtrations of g. Definition 3.1. We call a base point of F × F a couple (m, n) of transversal inner filtrations. In this instance, according to Corollary 2.1, m and n come from an inner grading of g. In other words, m = n + (ad (E)) and n = n -(ad (E)). That is why, the base points of F × F will be denoted by (n + , n -).

Projective elementary group

Let (n + , n -) be a base point of F × F , i.e. we fix an inner grading of g. Then n + = n + (ad (E)) and n -= n -(ad (E)). We consider the following subgroups of Aut(g):

U + := U n + = e ad(n + 1
) and U -:= U n -= e ad(n - 1 ) .

Definition 3.2. The group generated by U + and U -, G := P E(g , E) :=< U + , U ->⊂ Aut(g), is called the projective elementary group of (g, E).

We also consider the following subgroups of G: the subgroup of G preserving the grading,

H := {g ∈ G, g • ad (E) = ad (E)
• g}, and P + := HU + and P -:= HU -.

Since the elements of H commute with the characteristic derivation, they normalize U ± . Thus, P + and P -are indeed subgroups of G.

Generalized flag geometry

With notation as above, we define homogeneous spaces:

M := G/H, X + := G/P -and X -:= G/P + .

The base point (P + , P -) of X -× X + is denoted by (o -, o + ).

Theorem 3.1. With the above notation, we have:

(1) The orbits of D = ad (E), respectively of n ± , under the action of G are isomorphic to M , respectively to X ∓ , i.e.

H = {g ∈ G, g.(n + , n -) = (n + , n -)} and P ± = {g ∈ G, g.n ± = n ± }.
Moreover, P + ∩ P -= H, P ± ∩ U ∓ = {1}, and

P ± = {g ∈ G, gDg -1 -D ∈ ad n ± 1 }.
(2) Let x ∈ X + and y ∈ X -. If we identify X ± with the corresponding orbits in F , then x and y are transversal if and only if there exists g ∈ G such that x = g.o + and y = g.o -.

(3) For any m ∈ X -, we have m ⊤ ⊂ X + . In particular, n + 1 is identified with (o -) ⊤ via v → e ad (v) .o + so that we may consider that the space n + 1 is embedded in X + . (4) Let us consider the set

Ω + := {g ∈ G, g.o + ∈ n + 1 }. The map n + 1 × H × n - 1 → Ω + , (v, h, w) → e ad(v) he ad(w)
is a bijection.

Proof.

(1) An element g ∈ G stabilizes (n + , n -) if and only if it stabilizes the grading of g, which means that g commutes with the derivation D, i.e. g ∈ H. Hence

H = {g ∈ G, g.(n + , n -) = (n + , n -)}.
Moreover, U + and H stabilize n + . This implies that P + also stabilizes n + . Conversely, if g ∈ G satisfies g.n + = n + , then g.n -is transversal to g.n + = n + . It follows that there exists v ∈ n + 1 such that g.n -= e ad(v) .n -. Hence h := e -ad(v) g stabilizes n + and n -, i.e. h ∈ H. Therefore g = e ad(v) h ∈ P + . The same also holds for P -.

Thus P + ∩ P -is the stabilizer of (n + , n -). It means that P + ∩ P -= H.

Next, if g ∈ P + ∩U -, then g = e ad(v) , with v ∈ n - 1 . By Part 3) of Theorem 2.1, the map v → e ad (v) .n + is injective. Hence, since g.n + = n + , v = 0 and g = 1.

Finally, g.n + = n + if and only if D and gDg -1 have the same plus-filtration, that is to say, from Section 2.4, if and only if gDg -1 -D ∈ ad n + 1 = u(n + ). Once again, the same applies for P -.

(2) Clearly, if g ∈ G, then g.o + ∼ = g.n -and g.o -∼ = g.n + are transversal. Conversely, let x ∈ X + and y ∈ X -such that x and y are transversal. As y ∈ X -, there exists g ∈ G such that y = g.o -∼ = g.n + . Hence g -1 y ∼ = n + , and g -1 x is transversal to n + . By Part 3) of Theorem 2.1, there exists v ∈ n + 1 such that g -1 x = e ad(v) .n + . Thus x = ge ad (v) .o + , and y = g.o -= ge ad(v) .o -, since e ad(n + 1 ) preserves

n + ∼ = o -. (3) Let m = g.o -∈ X -. By Part 3) of Theorem 2.1, m ⊤ ⊂ X + . In particular, o -∈ X -and (o -) ⊤ = e ad(n + 1 ) .o + . (4) Let (v, h, w) ∈ n + 1 × H × n - 1 .
We define g := e ad(v) he ad(w) ∈ U + P -. Hence g.o + ∈ n + 1 . It means that the map is well-defined. Now, we assume that g ∈ Ω + and we consider v := g.o + ∈ n + 1 . Then e -ad(v) g.o + = o + and by Part 1), p := e -ad(v) g ∈ P -= HU -. This implies that there is w ∈ n - 1 such that e -ad(v) g = he ad(w) . Thus g = e ad(v) he ad(w) , and the map is surjective. Now, if g = e ad(v1) h 1 e ad(w1) = e ad(v2) h 2 e ad(w2) , then e -ad(v2) e ad(v1) h 1 ∈P + = h 2 e ad(w2) e -ad(w1) ∈P - . But, by Part 1), P + ∩ P -= H so v 1 = v 2 . Similarly, w 1 = w 2 and it implies that h 1 = h 2 . Therefore, the map is injective too, hence is a bijection.

Actually, we have a G-equivariant imbedding X + × X -֒→ F × F . Definition 3.3. The data (X + , X -, ⊤) is called the generalized flag geometry (of k-graded type) of (g, D).

Moreover, according to Theorem 3.1, (X + , X -, ⊤) is also a linear pair geometry. Indeed, for any x ∈ X ± , there exists y ∈ X ∓ such that x⊤y, and x ⊤ carries a structure of K-module. In particular,

X ± = y∈X ∓ y ⊤ .
In other words,

X + = g∈G g n + 1 and X -= g∈G g n - 1 .
Definition 3.4. We shall say that

A := g n + 1 , ϕ g , g ∈ G , where ϕ g : g n + 1 ⊂ X + → n + 1 , g • x → x,
is the natural atlas of X + and the maps ϕ g will be called the charts of the atlas A.

Now, let us define some operators which will be useful in the sequel.

Definition 3.5. For any x ∈ n + 1 and g ∈ Aut(g), we define the denominators, resp. co-denominators, of g by:

d g (x) i = pr n + i •(e -ad(x) g -1 )•ι n + i ∈ End(n + i ), resp. c g (x) i = pr n - i •(ge ad(x) )•ι n - i ∈ End(n - i ), for 1 ≤ i ≤ k,
where pr n ± i is the projection of g onto n ± i and ι n ± i is the imbedding of n ± i into g. Observe that, for any 1 ≤ i ≤ k, the maps

d g : n + 1 → End(n + i ), x → d g (x) i and c g : n + 1 → End(n - i ), x → c g (x) i
are polynomial maps. We also define, for

x ∈ n + 1 , w ∈ n - 1 and 1 ≤ i ≤ k, B + (x, w) i := d e ad(w) (x) i and B -(w, x) i := c e ad(w) (x) i .
These operators are called generalized Bergman operators.

Indeed, they can be considered as a generalization of Bergman operators of a Jordan pair [START_REF] Loos | Jordan pairs[END_REF]. More precisely, if g = T KK(V + , V -) is the Kantor-Koecher-Tits algebra of a Jordan pair (V + , V -) (see [START_REF] Meyberg | Jordan-Tripelsysteme und die Koecher-Konstruktion von Lie-Algebren[END_REF] for the definition of T KK(V + , V -)),then k = 1 and the operators B + (x, w) = d e ad(w) (x) and B -(w, x) = c e ad(w) (x) are actually the Bergman operators of (V + , V -) (see [START_REF] Bertram | Projective completions of Jordan pairs. I. The generalized projective geometry of a Lie algebra[END_REF]).

Corollary 3.1. Let x ∈ n + 1 and g ∈ Aut(g). Then the following statements are equivalent: i) g • x ∈ n + 1 , i.e. n + and ge ad(x) .n -are transversal. ii) For all i ∈ {1, . . . , k}, d g (x) i and c g (x) i are invertible.

Proof. By definition, n + and ge ad(x) .n -are transversal if and only if g = n + n ⊕ ge ad(x) n - -n+1 , for all -k+1 ≤ n ≤ k. In other words, they are transversal if and only if, for all 1

≤ i ≤ k, ge ad(x) (g -k ⊕ • • • ⊕ g -i ) is a complement of g k ⊕ • • • ⊕ g -i+1 and g -k ⊕ . . . g i-1 is a complement of e -ad(x) g -1 (g k ⊕ • • • ⊕ g i ),
and this last statement is equivalent to ii).

In particular, with the notation of Theorem 3.1, we have Ω + = {g ∈ G, ∀i ∈ {1, . . . , k}, d g (0) i and c g (0) i are invertible}.

Realization of g by polynomial vector fields

In this part, we define some algebraic objects that we call "bundles" on F , even if we do not consider a topology. For example, we shall define the tangent and structural bundle of F , as well as some sections of these bundles. Then, fixing a grading of g, we shall consider the corresponding generalized flag geometry and construct a realization of g by polynomial fields on the positive part of the grading:

n + 1 = k n=1 g n .
Finally, we shall give a global version of this realization, i.e. we shall study the action of the projective elementary group on X + in the "chart" n + 1 .

Bundles and vector fields

Definition 4.1. For any (2k + 1)-

filtration n = (n k ⊂ n k-1 ⊂ • • • ⊂ n -k+1
) ∈ F , and any integer 1 ≤ i ≤ k, we define the following K-modules:

T (i) n F := g/n -i+1 and T ′(i) n F := n i .
To simplify the notations, instead of T

(1)

n F , we write T n F and call this module the tangent space of F at n, using the terminology of [START_REF] Bertram | Projective completions of Jordan pairs. I. The generalized projective geometry of a Lie algebra[END_REF]. Similarly, T ′(1) n F shall be denoted by T ′ n F and called the structural space of F at n. Observe that, if n = n -(ad (E)) is the minus filtration defined by the Euler operator E, then

n -i+1 = g -k ⊕ • • • ⊕ g i-1 , n i = g -k ⊕ • • • ⊕ g -i ,
and

T (i) n F ∼ = g k ⊕ • • • ⊕ g i and T ′(i) n F = g -k ⊕ • • • ⊕ g -i .
We also define the disjoint unions:

T (i) F := n∈F T (i) n F and T ′(i) F := n∈F T ′(i)
n F , so that the following projections may be defined:

π (i) : T (i) F → F , Y ∈ T (i) n F → n and π ′(i) : T ′(i) F → F , x ∈ T ′(i) n F → n.
We write T F := T (1) F and T ′ F := T ′(1) F and call them the tangent bundle of F and the structural bundle of F . Lemma 4.1. If g is a semi-simple, finite dimensional Lie algebra over a field K, then, for all n ∈ F and

1 ≤ i ≤ k, T (i) n F * ∼ = T ′(i) n F .
Proof. Let n ∈ F be an inner filtration. Since n is inner, it comes from a grading g

= g k ⊕ • • • ⊕ g -k .
If x ∈ g i and y ∈ g j , then ad (x) ad (y) (g l ) ⊂ g i+j+l . But, g l ∩ g i+j+l = {0} if i + j = 0. It implies that, if we choose a basis of each g n , we obtain a basis of g in which the matrix of ad (x) ad (y) has only zeros on the diagonal, so that the Killing form B(x, y) = Tr (ad (x) ad (y)) is zero. Hence, we can consider B : n i × g/n -i+1 → K, which is non-degenerate because g semi-simple. Therefore,

T (i) n F * ∼ = T ′(i) n F .
Thus, if g is a semi-simple, finite dimensional Lie algebra over a field, then the bundles T ′(i) F are dual bundles of T (i) F , i.e. T ′(i) F ∼ = T (i) F * . In particular, the structural bundle T ′ F is the cotangent bundle T * F .

Since the group Aut(g) acts on G and F , the following linear maps may be defined for any g ∈ Aut(g):

T (i) n g : T (i) n F → T (i) g.n F Y mod n -i+1 → gY mod gn -i+1 and T ′(i) n g : T ′(i) n F → T ′(i) g.n F Y → gY .
Then, defining the maps T (i) g and T ′(i) g as usual, it holds:

T (i) (g • h) = T (i) g • T (i) h and T ′(i) (g • h) = T ′(i) g • T ′(i) h.
Now, let us fix an inner grading of g and consider the associated generalized flag geometry. According to Theorem 3.1, X ± ⊂ F , so that we may define the spaces T

(i) n X ± , T ′(i)
n X ± , as well as the bundles T (i) X ± and T ′(i) X ± . These bundles are, in an algebraic way, bundles associated to representations of P -given by the denominators at 0, d p (0) i , and the co-denominators at 0, c p (0) i , introduced in Definition 3.5. More precisely, according to Corollary 3.1, for g = p ∈ P -and x = 0, d p (0) i and c p (0) i are bijections and the following lemma holds.

Lemma 4.2. The maps ρ + i :

P -→ Gl(n + i ), p → d p (0) -1 i and ρ - i : P -→ Gl(n - i ), p → c p (0) i are group homomorphisms. Proof. Let p 1 , p 2 ∈ P -. We have d p1p2 (0) i = pr n + i • p -1 2 p -1 1 • ι n + i
. Now, since p 2 ∈ P -, there is the identity:

pr

n + i • p -1 2 = pr n + i • p -1 2 • pr n + i .
We deduce that d p1p2 (0

) i = pr n + i • p -1 2 • pr n + i • p -1 1 ι n + i = d p2 (0) i d p1 (0) i . Therefore, d p1p2 (0) -1 i = d p1 (0) -1 i d p2 (0) -1 i .
Moreover, it is obvious that c p1p2 (0

) i = c p1 (0) i c p2 (0) i .
Now, let us focus our attention on ρ + i . We consider the quotient

G × P -n + i := G × n + i / ∼, where (g, x i ) ∼ (gp, ρ + i (p) -1 x i ) for g ∈ G, x i ∈ n + i and p ∈ P -. Theorem 4.1. For 1 ≤ i ≤ k, T (i) X + ∼ = G × P -n + i , i.e.
there exists a G-equivariant bijection between T (i) X + and G× P -n + i . We equally have T ′(i) X + ∼ = G× P -n - i and the same holds for X -, if we exchange P -and P + .

Proof. In order to prove the identity T (i) X + ∼ = G × P -n + i , we consider the following map:

ϕ (i) : G × P -n + i → T (i) X + , [g, x i ] → T (i) o + g x i = gx i mod g(n - -i+1 ) First, let us prove that ϕ (i) is well-defined. If (gp, ρ + i (p) -1 x i ) is another representative of [g, x i ], then T (i) o + (gp) (ρ + i (p) -1 x i ) = T (i) o + g • T (i) o + p d p (0) i x i . But the map T (i)
o + p is defined by

T (i) o + p : T (i) o + X + ∼ = n + i → T (i) o + X + ∼ = n + i , x i → (pr n + i • p)x i .
In other words, T

o + p = d p (0) -1 i . It implies that T (i) o + (gp) ρ + i (p) -1 x i = T (i) o + g x i , so that ϕ (i) is well-defined. Let m = g.o + ∈ X + and x ∈ T (i) m X + = g/m -i+1 . Since g -1 x ∈ T (i) o + X + ∼ = n + i , it follows, from ϕ (i) [g, g -1 x] = x ∈ T (i) m X + , that ϕ (i) is surjective. Now, let (g 1 , g 2 , x 1 , x 2 ) such that T (i) o + g 1 x 1 = T (i) o + g 2 x 2 . First, we have g 1 .o + = g 2 .o + , i.e. g -1 1 g 2 .o + = o + so g -1 1 g 2 = p ∈ P -, i.e. g 2 = g 1 p. Hence T (i) o + g 2 x 2 = T (i) o + g 1 • T (i) o + p x 2 = T (i) o + g 1 d p (0) -1 i x 2 . Therefore x 1 -d p (0) -1 i x 2 ∈ Ker T (i) o + g 1 . But, if x ∈ n + i is in the kernel of T (i) o + g 1 , then g 1 x ∈ g(n - -i+1 ), i.e. x ∈ n + i ∩n - -i+1 = {0}. Thus, x 1 = d p (0) -1 i x 2 and (g 1 , x 1 ) ∼ (g 2 , x 2 ), so that ϕ (i) is injective. Finally, ϕ (i) (g ′ • [g, x i ]) = ϕ (i) ([g ′ g, x i ]) = T (i) g.o + g ′ • T (i) o + g x i = T (i) g.o + g ′ • ϕ (i) ([g, x i ]). Thus ϕ (i) is G-equivariant, (i) 
and T (i) X + and G × P -n + i are isomorphic G-bundles. The proofs are similar for the other statements. Now, let us focus on sections on these bundles. In fact, sections of T (i) F can be easily constructed. Indeed, the following holds: Definition 4.2. For any Y ∈ g and 1 ≤ i ≤ k, we define the map

Y (i) : F → T (i) F , n → Y (i) n ,
where

Y (i) n := Y mod n -i+1 ∈ T (i) n F . In particular, for i = 1, Y n := Y (1) n
is called the value of Y at n, and the map Y : F → T F , n → Y n defines a vector field on F , called a projective vector field.

Lemma 4.3. The maps Y (i) are sections of

T (i) F . Proof. By definition, π (i) • Y (i) (n) = π (i) (Y mod n -i+1 ) = n. Hence π (i) • Y (i) = Id F .

The canonical kernel

Let (m, n) ∈ F . The spaces T n F and T ′ m F are filtered K-modules:

T n F = T (1) n F ։ T (2) n F ։ . . . ։ T (i) n F ։ . . . ։ T (k) n F and T ′(k) m F ֒→ T ′(k-1) m F ֒→ . . . ֒→ T ′(k-i) m F ֒→ . . . ֒→ T ′(1) m F = T ′ m F .
Observe that, for 1

≤ i ≤ k, T ′(i)
m F is a subspace of g which defines sections of T (i) F , so that we may define the following K-linear maps:

K (i) n,m : T ′(i) m F = m i → T (i) n F = g/n -i+1 , Y → Y (i) n = Y mod n -i+1 .
By definition, there is the following diagram:

T ′(1) m F = m 1 K (1) n,m / / g/n 0 = T (1) n F T ′(2) m F = m 2 ? O O K (2) n,m / / g/n -1 = T (2) n F . . . ? O O . . . T ′(i) m F = m i K (i) n,m / / ? O O g/n -i+1 = T (i) n F . . . ? O O . . . T ′(k) m F = m k K (k) n,m / / ? O O g/n -k+1 = T (k) n F Definition 4.3. The collection of maps K (i) m,n , K (i)
n,m , for (m, n) ∈ F × F , and 1 ≤ i ≤ k, is called the canonical kernel.

We shall now prove that

K (i) : (m, n) → K (i)
n,m defines a section of a bundle over F × F . To this end, we define

Hom (i) (T ′ F , T F ) := m,n∈F Hom K T ′(i) m F , T (i) n F ,
where the union is disjoint, and the projection

Π (i) : Hom (i) (T ′ F , T F ) → F × F , ϕ n,m ∈ Hom K T ′(i) m F , T (i) n F → (m, n).

By definition, K

(i) n,m ∈ Hom T ′(i) m F , T (i)
n F and we define

K (i) : F × F → Hom (i) (T ′ F , T F ) , (m, n) → K (i) n,m .
Thus Π (i) • K (i) = Id F ×F . Hence, K (i) is a section of the bundle

Hom (i) (T ′ F , T F ) F × F .
Remark According to Lemma 4.1, if g is a semi-simple, finite dimensional Lie algebra over a field, the space T

′(i) m F is isomorphic to T (i) m F * . Hence Hom (i) (T ′ F , T F ) ∼ = T ′(i) F * ⊠ T (i) F = T (i) F ⊠ T (i) F .
In other words, Hom (i) (T ′ F , T F ) is a bundle over F × F and if (m, n) ∈ F are two filtrations, the fiber over (m, n) is isomorphic to

T (i) m F ⊗ T (i)
n F . In general case, the following holds: Theorem 4.2. (1) The map K (i) is a G-equivariant section of Hom (i) (T ′ F , T F ).

(2) Let (m, n) ∈ F × F be two inner filtrations. Then, they are transversal if and only if, for all i = 1, . . . , k, the maps

K (i) m,n and K (i)
n,m are isomorphisms.

Proof.

(1) The projective elementary group G acts on Hom (i) (T ′ F , T F ) as follows: if g ∈ G and ϕ ∈ Hom T

′(i) m F , T (i) n F , then g • ϕ = T (i) n g • ϕ • T ′(i) m g -1 ∈ Hom T ′(i) g.m F , T (i) 
g.n F .

Since we have already noted that K (i) is a section, we only have to prove that it is equivariant. Let (m, n) ∈ F × F and g ∈ G. The map K (i) g.n,g.m is defined by:

K (i) g.n,g.m : T ′(i) g.m F → T (i) n F , Y ∈ g(m i ) → Y mod g(n -i+1 ).
Let Y ∈ g(m i ). There exists Z ∈ m i such that Y = gZ = T ′(i) m g Z, and

K (i) g.n,g.m (gZ) = gZ mod g(n -i+1 ) = T (i) n g (Z mod n -i+1 ) = T (i) n g K (i)
n,m (Z) In other words,

K (i) g.n,g.m = T (i) n g • K (i) n,m • T ′(i) m g -1 = g • K (i) n,m , i.e. K (i) is G-equivariant.
(2) The map K From Theorem 3.1, there is an imbedding X ± ⊂ F . Therefore, we can consider Hom (i) (T ′ X + , T X -) or Hom (i) (T ′ X -, T X + ). These bundles are isomorphic to "associated bundles" (like T (i) X ± in Theorem 4.1). Indeed, the following holds: Theorem 4.3. For all i = 1, . . . , k, we have

Hom (i) T ′ X + , T X -∼ = (G×G)× (P -×P + ) End(n - i ) and Hom (i) T ′ X -, T X + ∼ = (G×G)× (P + ×P -) End(n + i ),
where (G×G)× (P -×P + ) End(n - i ) := (G×G)×End(n - i )/ ∼ with (g, g ′ , ϕ) ∼ (gp -, g ′ p + , c p + (0) -1 i ϕc p -(0) i ) and (G×G)× (P + ×P -) End(n + i ) := (G×G)×End(n + i )/ ∼ with (g, g ′ , ϕ) ∼ (gp + , g ′ p -, d p + (0) i ϕd p -(0) -1 i ). Proof. The proof is similar to the one of Theorem 4.1. Now we can consider restrictions of canonical kernel K (i) over X ± × X ∓ and regard it as a section of Hom

(i) (T ′ X ± , T X ∓ ). Moreover, if x ∈ n + 1 ⊂ X + and y ∈ n - 1 ⊂ X -, the maps K (i)
x,y are given by

K (i) x,y : T ′(i) y•o -X -→ T (i) x•o + X + , e ad(y) Y → pr n + 1 e -ad(x) e ad(y) Y .
In other words, K

x,y = B + (x, -y) 1 , i.e. K

x,y is a generalized Bergman operator.

Realization of g by polynomial fields

Now, let us fix an inner (2k + 1)-grading of g and consider the general flag geometry associated with (g, D). In the previous part, we proved that T (i) X + is isomorphic to G × P -n + i . It allows us to identify T (i) X + and G × P -n + i . In addition, the maps Y (i) define sections of T (i) X + . But, we know that the sections of G × P -n + i are identified with the induced representation of G, so that they correspond to the functions f : G → n + i such that, for all p ∈ P -, f (gp) = d p (0) i f (g). Indeed, let us consider such a function f and define

s f : X + → T (i) X + , g.o + → T (i) o + g f (g).
In this case, G = Gl n (C) and

X -∼ = Gras p (C n ) and X + ∼ = Gras n-p (C n ),
i.e. X -is the set of p-dimensional subspaces of C n and X + the one of n -p dimensional subspaces. In

addition, n + 1 ∼ = M p,n-p (C) and n + 1 ֒→ X + via X → v Xv , v ∈ C n-p .
In this chart, the action of the group G = Gl n (C) is given by

A B C D • v Xv = v (C + DX)(A + BX) -1 v , if (A + BX) is invertible. This condition means that the point x = v Xv ∈ Gras p (C n ) is not sent to infinity by g = A B C D
. In other words, the projective group acts, in the chart n + 1 , by homographies.

General case: action by "birational" maps

In the sequel, we shall focus our attention on the action of the projective elementary group G in the chart n + 1 . More precisely, for g ∈ Aut(g) and x ∈ n + 1 such that g • x ∈ n + 1 , g • x has a "birational" expression. For example, if g is 3-graded, by [START_REF] Bertram | Projective completions of Jordan pairs. I. The generalized projective geometry of a Lie algebra[END_REF], it holds:

g • x = d g (x) -1 n g (x)
, where x → n g (x) is a quadratic polynomial map.

When the grading is longer, the following holds:

Proposition 4.1. Let g ∈ Aut(g), and x ∈ n + i such that g • x ∈ n + i . Then (g -1 Y ) +(i) (x) = d g (x) i e ad(g•x) Y +(i) (g • x).
Moreover, if x ∈ n + i , and g 1 , g 2 ∈ Aut(g) are such that g 2 • x ∈ n + i and g 1 g 2 • x ∈ n + i , then d g1g2 (x) i = d g2 (x) i e ad(g2•x) d g1 (g 2 • x) i = d g2 (x) i d Id (g 2 • x) -1 i d g1 (g 2 • x) i .

Proof. Let x ∈ n + i and g ∈ Aut(g) such that g • x ∈ n + i . By Part 4) of Theorem 3.1, there exists p(g, x) ∈ P -such that ge ad(x) = e ad(g•x) p(g, x). It follows that p(g, x) -1 = e -ad(x) g -1 e ad(g•x) , which implies that p(g, x) -1 i

:= pr n + i • p(g, x) -1 • ι n + i = d g (x) i e ad(g•x) • ι n + i = d g (x) i d Id (g • x) -1 i because g • x ∈ n + 1 . Hence, (g -1 Y ) +(i) (x) = pr n + i e -ad(x) g -1 Y = pr n + i p(g, x)
-1 e -ad(g•x) Y .

Moreover, since p(g, x) -1 ∈ P -, we have pr n + i • p(g, x) -1 = p(g, x) -1 i • pr n + i , i.e. for y ∈ g, the components in n + i of p(g, x) -1 y depend only on components of y in n + i . Thus (g -1 Y )

+(i)
(x) = d g (x) i e ad(g•x) pr n + i e -ad(g•x) Y = d g (x) i e ad(g•x) Y +(i) (g • x).

In particular, for Y = v ∈ n + i , we have (g -1 v)

+(i)
(x) = d g (x) i e ad(g•x) pr n + i e -ad(g•x) v = d g (x) i v.

Now, if g 2 • x ∈ n + i and g 1 g 2 • x ∈ n + i , then

d g1g2 (x) i v = g -1 2 g -1 1 v +(i) (x) = d g2 (x) i e ad(g2•x) g -1 1 v +(i) (g 2 • x) = d g2 (x) i e ad(g2•x) d g1 (g 2 • x) i v.
Hence d g1g2 (x) i = d g2 (x) i e ad(g2•x) d g1 (g 2 • x) i . Now, we can give a "rational" expression for the action of G on n + 1 ⊂ X + . Definition 4.4. Let g ∈ Aut(g) and x ∈ n + 1 . We define n g (x) := pr n + 1 e -ad(x) g -1 E ,

where E is the Euler operator of the grading of g. Observe that n g (x) = (g -1 E)

+(1)
(x) and the map n g : n + 1 → n + 1 , x → n g (x), called the numerator of g, is polynomial. Proposition 4.2. Let g ∈ Aut(g) and x ∈ n + 1 such that g • x ∈ n + 1 . Then E -e ad(g•x) E = d g (x) -1 1 n g (x). More precisely, there is a map ψ :

n + 1 → n + 1 such thaht [E, g • x] = d g (x) -1 1 n g (x) + ψ(g • x).
Proof. By definition, (g -1 E) In other words, d g (x) 1 e ad(g•x) pr n + 1 e -ad(g•x) E = n g (x),

+(1) (x) 
i.e. e ad(g•x) pr n + 1 e -ad(g•x) E = d g (x) -1 1 n g (x). Since g • x ∈ n + 1 , pr n + 1 e -ad(g•x) E = e -ad(g•x) E -E which implies that e ad(g•x) pr n + 1 e -ad(g•x) E = E -e ad(g•x) E.

Hence

E -e ad(g•x) E = d g (x) -1 1 n g (x). Now, let us fix v ∈ n + 1 and write v = k n=1 v n , with v n ∈ g n . Then

E -e ad(v) E = [E, v] + 1 2 [v, [E, v]] + • • • = k n=1 nv n + ψ n (v 1 , . . . , v n-1 ),
where the map ψ n : g 1 ×g 2 ו • •×g n-1 → g n is (n-1)-linear and is the part of the component of E-e ad(v) E in g n which only depends on v 1 , . . . , v n-1 . For example, we have ψ 1 , ψ 2 = 0, ψ 3 (v 1 , v 2 ) = 1 2 [v 1 , v 2 ] and

ψ 4 (v 1 , v 2 , v 3 ) = [v 1 , v 3 ] + 1 6 [v 1 , [v 1 , v 2 ]]. Therefore, if we write v =    v k . . . v 1    ∈ n + 1 , it holds:        k(g • x) k + ψ k ((g • x) 1 , . . . , (g • x) k-1 ) . . . 3(g • x) 3 + 1 2 [(g • x) 1 , (g • x) 2 ] 2(g • x) 2 (g • x) 1        = d g (x) -1 1 n g (x) .

  The filtration n + (D) is called the plus-filtration and n -(D) the minus-filtration of the grading. If D = ad (E) is inner, the filtration n + (ad (E)) is also called inner and we denote by F the set of all inner filtrations. Observe that, by construction, the filtrations n + (D) and n -(D) defined by a grading of g are transversal. Conversely, the following holds: Theorem 2.1. (1) Let m and n be two filtrations of g. Then m and n are tranversal if and only if they come from a grading of g, defined by g n = m n ∩ n -n , i.e. there exists D ∈ G such that m = n + (D) and n = n -(D). In other words, F = n + (D), D ∈ G .

  by D and D ′ , as n +

  is bijective if and only if g = m i ⊕ n -i+1 . Thus m and n are transversal if and only if, for all 1 ≤ i ≤ k, the maps K (i) n,m and K (i) m,n are isomorphisms.

  = n g (x), and by Proposition 4.1, (g -1 E)+(1) (x) = d g (x) 1 e ad(g•x) pr n + 1 e -ad(g•x) E .

Then s f is a section of

, and all sections arise in this way. Precisely, the function corresponding to Y (i) is

In particular, if g = e ad(x) , with x ∈ n + i , we identify the restriction of Y (i) on n + i with

We remark that x → Y +(i) (x) is a polynomial map of x. Thus, we obtain a map

where P ol n + i is the space of polynomial self-mappings of n + i . In particular for i = 1, we obtain a realization of g by polynomial fields on n + 1 . For example, if g is 3-graded, there is only one such map:

] and we recover formulas of [START_REF] Bertram | Projective completions of Jordan pairs. I. The generalized projective geometry of a Lie algebra[END_REF].

If g is 5-graded, there are two such maps:

. Hence, we obtain the formulas corresponding to the 3-grading

Note that we also have Y +(1) :

4.4 Description of the G-action in the chart n + 1

Example: action by homographies

First, let us consider the example of g = gl n (C) with the 3-grading defined by:

More precisely, the map ad (E) is bijective on n + 1 , so that we may obtain (g • x) 1 = pr g1 d g (x) -1 1 n g (x) , and for all 2 ≤ n ≤ k,

Thus, if g is 3-graded, we recover the formula of [START_REF] Bertram | Projective completions of Jordan pairs. I. The generalized projective geometry of a Lie algebra[END_REF], and in the general case of a (2k + 1)-graded Lie algebra, we note that the projective elementary group acts in the chart n + 1 by birational maps.

As mentionned in the introduction, in this paper, we only consider purely algebraic issues. Using the differential calculus over a general topological ring defined in [START_REF] Bertram | Differential calculus over general base fields and rings[END_REF], it is possible, under suitable assumptions on the subalgebras n + 1 and n - 1 and on the general Bergman operators, to construct a structure of smooth manifold on X + , resp. X -, modelled on n + 1 , resp. n - 1 . All algebraically defined bundles are then smooth bundles, the canonical kernel is a smooth section and the tangent bundle defined in Definition 4.1 coincides with the tangent bundle as a smooth manifold. Such a construction is made in [START_REF] Bertram | Projective completions of Jordan pairs. II. Manifold structures and symmetric spaces[END_REF] for a 3-graded Lie algebra and announced in [START_REF]Generalized flag geometries and manifolds associated to short Z-graded Lie algebras in arbitrary dimension[END_REF] for a general (2k + 1)-graded Lie algebra. Moreover, by definition

1 , and there is a filtration of n + 1 given by 0

which is stable by the action of the group P -, so that we obtain a filtration of T o + X + . By the action of the projective elementary group, we also obtain a filtration of each T x X + , for x ∈ X + . This distribution of filtrations is called a generalized contact structure [START_REF] Cowling | Contact and conformal maps in parabolic geometry[END_REF]. This structure seems to be a key feature to understand the generalized flag geometry better. That is why we intend to come back to this structure in subsequent work.