
HAL Id: hal-00505206
https://hal.science/hal-00505206v1

Preprint submitted on 23 Jul 2010 (v1), last revised 26 Jan 2011 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Burning cars in parkings
Jean Bertoin

To cite this version:

Jean Bertoin. Burning cars in parkings. 2010. �hal-00505206v1�

https://hal.science/hal-00505206v1
https://hal.archives-ouvertes.fr


Burning cars in parkings

Jean Bertoin∗

Abstract

Knuth’s parking scheme is a model in computer science for hashing with linear probing.

One may imagine a circular parking with n sites; cars arrive at each site with unit rate.

When a car arrives at a vacant site, it parks there; otherwise it turns clockwise and

parks at the first vacant site which is found. We incorporate fires to this model by

throwing Molotov cocktails on each site at a smaller rate n−α where 0 < α < 1 is a fixed

parameter. When a car is hit by a Molotov cocktails, it burns and the fire propagates

to the entire occupied interval which turns vacant. We show that with high probability

when n → ∞, the parking becomes saturated at a time close to 1 (i.e. as in the absence

of fire) for α > 2/3, whereas for α < 2/3, the mean occupation approaches 1 at time

1 but then quickly drops to 0 before the parking is ever saturated. Our study relies on

asymptotics for the occupation of the parking without fires in certain regimes which may

be of independent interest.

Key words: Knuth parking scheme, forest fire, phase transition.

1 Introduction

The purpose of this work is to point at a phase transition for a random evolution which combines

the dynamics of two different models in statistical physics and computer science, namely forest

fires and parking schemes. Its motivation partly stems from an interesting paper by Ráth

and Tóth [15] in which the authors introduce forest fires in the Erdős-Rényi random graph

model. It is well-known that the random graph model is closely related to the multiplicative

coalescent [1], and the incorporation of fires causes random shattering of large components. On

the other hand, it is also known that the parking scheme bears close connexions to the additive

coalescent [10, 6] and it seems therefore natural to investigate the effects of random shattering

in this framework.
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Forest fires have been introduced by Drossel and Schwabl [11], see also the review [16]; they

are prototypes of systems displaying self-organized criticality. Typically, imagine a lattice where

each site is either vacant or occupied by a tree; the connected components of occupied sites are

viewed as forests. Each vacant site becomes occupied at some fixed rate, independently of the

others. One may think of seeds being sown uniformly on the lattice; a tree grows each time

a seed falls on a vacant site and seeds falling on a site that is already occupied are discarded.

Furthermore, each tree can also be hit by a lightning at some rate. Then the tree burns and the

fire propagates to the entire forest, i.e. any site that can be connected by a path consisting only

of occupied sites to the site hit by a lightning becomes instantaneously vacant. So, roughly

speaking, forests may grow by addition of trees on their boundaries or coalescence when a

vacant site separating two forests turns occupied, and disappear when hit by a lightning. The

evolution of the system thus results from two opposite trends growth/destruction which should

be viewed as the source of self-organization.

Although forest fires have raised a considerable interest, notably in the physical literature,

mathematical papers on these models are still rather scarce; see e.g. [2, 3, 7, 8, 12, 13]. The

work by Ráth and Tóth [15] which we already mentioned is somewhat special because the

underlying lattice is the complete graph, and basically this circumvents geometrical difficulties.

The study of asymptotics when the rate of lightning tends to 0 is especially challenging since,

informally, a low rate of lightning should enable forests to grow larger although the larger a

forest grows, the more inflammable it becomes.

j

d(j)

Figure 1 : A car arrives at an occupied site j and parks at the first vacant site d(j).

On the other hand, Knuth’s parking is a simple model in computer science for hashing with
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linear probing; we refer the French readers to the very nice survey by Chassaing and Flajolet

[9]. Think of Z/nZ as a circular parking where initially all sites are vacant. Cars arrive one

after the other, uniformly at random. If a car arrives at a site j ∈ Z/nZ which is vacant, then

the car parks at j and this site becomes occupied. Otherwise the car tries to park successively

at sites j + 1, j + 2, . . . until it finally finds a vacant site, see Figure 1 above.

In this work, we incorporate fires to Knuth’s parking model. We may imagine that Molotov

cocktails are thrown on the parking, and when a Molotov cocktail falls on an occupied site, the

car parked there burns, the fire propagates to the neighboring cars, and the entire connected

component of occupied sites becomes instantaneously vacant. See Figure 2 below.

Figure 2 : A Molotov cocktail is thrown on an occupied interval which then becomes vacant.

A fundamental difference with the forest fire model on Z/nZ is that a car may occupy a site

different from that at which it arrived, whereas trees only grow on sites on which a seed falls.

Empty blocks have clearly an important role in the dynamics as, roughly speaking, they forms

barriers that prevent the propagation of fires. In particular, this ensures the independence of

the evolutions of regions separated by such barriers. In the case of forest fires, a barrier remains

effective until a seed has fallen on every single site of that block, which takes typically a long

time when the block is large. However, the occupation of vacant intervals in a parking may

occur much quicker when, loosely speaking, the portion of the parking at the left of this interval

is already densely occupied. Thus the parking model involves a stronger spacial dependency

which makes the study even more tedious.
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In this work, we assume that cars arrive on each site of Z/nZ at a unit rate whereas Molotov

cocktails hit each site at rate n−α for some parameter α ∈ (0, 1), independently of car arrivals.

We are interested in saturation, i.e. when the parking is entirely occupied; note that saturation

times are renewal epochs for the dynamics. Observe that when no Molotov cocktails are thrown,

the parking becomes saturated when n cars have arrived, and thus at a time close to 1. We

are interested in the question of whether Molotov cocktails have a significant impact on the

saturation of the parking. Our main result shows that α = 2/3 is the critical exponent. More

precisely, if α > 2/3, then with high probability1 the parking becomes saturated at a time close

to 1, while if α < 2/3, even though the mean occupation of the parking approaches 1 as time

tends to 1−, it then quickly drops to 0 before the parking is completely saturated.

Let us explain intuitively this phase transition. When α > 2/3, Molotov cocktails are rather

scarce and one can show that the total number of cars which have been burnt until the arrival

of the m-th car with m ≈ n − nβ for some 2/3 < β < α can be bounded from above by nβ.

During approximatively 2nβ−1 units of times, 2nβ new cars arrive on the parking while the

probability that a Molotov cocktail is thrown is only of order n1−α × 2nβ−1 ≪ 1. This suffices

to saturate the parking. The case α < 2/3 is more complex. Roughly speaking, the crucial step

consists in establishing the existence of some β > α and of a small time window before 1 during

which mesoscopic occupied intervals of size of order nβ are formed. In particular, the mean

occupation of the parking is close to 1 at such times. Since nβ−α ≫ 1, with high probability

such mesoscopic intervals are entirely destroyed by a Molotov cocktail shortly after they have

been formed, which causes the mean occupation to quickly drop to 0. More precisely, during

this short time interval, destruction of cars by fires overpasses significantly the arrivals of new

cars, and thus prevents the saturation of the parking.

An obvious difficulty in proving rigorously these statements, and in particular in finding the

critical parameter, lies in the fact that most of the relevant phenomena occur during a very

short time when mesoscopic occupied intervals are formed before being quickly destroyed by

fires. Our approach to investigate their formation consists in establishing that for certain times

close to 1, fires still have essentially a negligible impact on the occupation of the parking. In

particular, we are led to analyze asymptotics of the occupation process for parking schemes

without fires in intermediate regimes which do not seem to have been considered previously in

the literature.

The plan of the rest of this work is as follows. The next section is devoted to preliminary

observations in the deterministic setting. In particular we shall see that the occupation of the

parking can be described in terms of a quasi-periodical path constructed from the processes of

1We say that an event depending on n holds with high probability if its probability tends to 1 as n → ∞.
Similarly, we say that a random variable depending on n is close to c (respectively, is small) with high probability
if it converges in probability to c (respectively, to 0) as n → ∞.
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cars and Molotov cocktails. This will enables us to relate different parkings based on comparable

dynamics. Section 3 deals with key asymptotic estimates for parkings without fires. Specifically,

we shall establish limit theorems for the empirical measure of the sizes of occupied intervals in

a parking of size n when m < n cars have arrived, in certain regimes when n,m → ∞. Our

main result is stated and proved in Section 4. The argument relies on an intermediate claim

which, roughly speaking, states that the impact of fires is essentially negligible until the arrival

of the m-th car provided that m is not too close to n (of course it is crucial to be able to let m

be as large as possible). In other words, asymptotics for the occupation of the parking are then

the same as for the dynamics without fires which have been studied in the preceding section.

The proof of this technical result is presented in Section 5.

2 Preliminaries in the deterministic setting

2.1 Analysis of the model in terms of paths

For n ∈ N fixed, a configuration for a parking with n sites is a map ω : Z/nZ → {0, 1}; the site

j is vacant if ω(j) = 0, and is occupied otherwise. We write 0 for the configuration when the

parking is totally vacant (i.e. for the map ω(j) ≡ 0) and 1 for the configuration corresponding

to saturation. The support of a configuration corresponds to the set of occupied sites; its

connected components are called occupied intervals, or sometimes arcs.

We represent car arrivals by a point process (Ct, t ≥ 0) on Z/nZ, where Ct = j if a car arrives

at time t on the site j and Ct = ∅ if no car arrives at time t. Similarly, Molotov cocktails

form another point process (Mt, t ≥ 0) on Z/nZ; we implicitly assume that times when Molotov

cocktails are thrown never coincide with the arrival time of a car. The occupation of the parking

is given by a process (Θt, t ≥ 0) with values in the space of configurations which is constructed

from these two point processes as follows. We assume that the parking is completely vacant

at the initial time, viz. Θ0 = 0. The occupation remains unchanged on every time-interval

during which no car arrives and no Molotov cocktail is thrown. Suppose first that a car arrives

at time t > 0 on the site j, i.e. Ct = j. If the parking is already saturated, i.e. Θt− = 1, then

we decide that Θt = 1. Otherwise we denote 2 by Dt−(j) the closest vacant site of Θt− to the

right of j for the cyclic order (if j is vacant at time t, then Dt−(j) = j), and we set

Θt = Θt− + 1{Dt−(j)} .

On the other hand, suppose that a Molotov cocktail is thrown at time t on the site j, i.e.

2The notation D and G refer to droite (right) and gauche (left) in French; they are commonly used when
dealing with extremities of components of random subsets of the real line
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Mt = j. If the parking is saturated, i.e. Θt− = 1, then it instantaneously becomes vacant,

i.e. Θt = 0. This should be viewed as a renewal time for the occupation process. If j is

already vacant, i.e. Θt−(j) = 0, then Θt = Θt−. Finally, if j is occupied but the parking is not

saturated, then we write Gt−(j) and Dt−(j) for the first vacant sites at the left and at the right

of j and set

Θt = Θt− − 1]Gt−(j),Dt−(j)[ .

A key tool for the analysis is that the occupation of the parking at some time t can be

conveniently described in terms of a quasi-periodic path. This is a simple observation for

parking without fires (see for instance Chassaing and Louchard [10]), which is easily extended

in the present setting. Specifically, denote for every j ∈ Z by ξt(j) the number of cars that

have arrived before time t at the site j [modn] and are parked at time t, either at j or further

away on the parking. We stress that we do not take into account cars which have been burnt

before time t nor those which have arrived at a time when the parking was already saturated.

Define a path St : Z → Z by

St(0) = 0 and St(j) − St(j − 1) = ξt(j) − 1 , ∀j ∈ Z . (1)

Clearly St is quasi-periodic, in the sense that St(j + n) = St(j) + St(n) for any j ∈ Z. Note

the number of vacant sites on the parking is given by St(n)−, the negative part of St(n); in

particular the parking is saturated if and only if St(n) = 0. The running minimum

St(k) = min
j≤k

St(j) , k ∈ Z

is constant when St(n) = 0, and otherwise is a non-degenerate quasi-periodic path. We now

make the key observation that a site j [modn] of the parking is vacant at time t if and only if

the path St reaches a new minimum at j.

Lemma 1 In the notation above, we have for any j ∈ Z

Θt(j [modn]) = 0 ⇐⇒ St(j) < St(j − 1).

As a consequence, provided that the parking is not saturated (i.e. if St(n) < 0), the interval of

occupied sites at time t that contains 0 is given by ]Gt, Dt[ with

Gt = max{j ≤ 0 : St(j − 1) > St(0)} and Dt = min{j ≥ 0 : St(j) < St(−1)} .

Note that Gt = Dt = 0 (and thus ]Gt, Dt[= ∅) if and only if the site 0 is vacant at time t.

Proof: We shall check the first statement by induction. Denote by 0 < t1 < t2 < . . . the
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sequence of times at which either a car arrives or a Molotov cocktail is thrown. The claim is

obvious for t = t1; assume that it holds for t = tm for some m ∈ N.

Consider first the case when a Molotov cocktail is thrown at time tm+1. Plainly our claim still

holds at time tm+1 when either the parking is saturated at time tm or the Molotov cocktails falls

on a vacant site. So assume that it falls on some occupied interval I 6= Z/nZ and denote by g

and d the first vacant sites at the left and the right of I, i.e. I =]g, d[. By construction, we have

ξtm+1
(j) = 0 if j [mod n] ∈ I and ξtm+1

(j) = ξtm(j) otherwise. Thus the path Stm+1
is derived

from Stm by replacing all the steps on I [mod n] by −1 and leaving the others unchanged. As

the sites g and d are vacant at time tm, our induction assumption ensures that

Stm(g) < Stm(g − 1) and Stm(d) < Stm(d− 1) ,

from which we readily conclude that the claim still holds at time tm+1.

Next, consider the case when a car arrives at time tm+1, say on the site j. If the parking

is already saturated at time tm, then things are obvious. Else, we have ξtm+1
(i) = ξtm(i) for

i 6= j [mod n] and ξtm+1
(i) = ξtm(i) + 1 otherwise. We realize after a moment of though that

this change in the path corresponds precisely to parking the car that has just arrived at j on

the closest vacant site at its right, which is our first claim.

It follows that whenever the parking is not saturated at time t, the first vacant sites at the

left and at the right of 0 can be expressed respectively as

Gt = max{j ≤ 0 : St(j − 1) > St(j)}

and

Dt = min{j ≥ 0 : St(j) < St(j − 1)} .

It is easily checked that these quantities can be re-expressed as in the statement. �

2.2 Comparison with simpler parkings

An important source of difficulties in the study of fire models is the lack of monotonicity of the

dynamics. In the present case, it is not true in general that adding a few cars or suppressing

some Molotov cocktails would increase the occupation of the parking. For instance, adding one

car may induce the merging of two neighboring occupied intervals into a larger one which can

then be entirely destroyed by a single Molotov cocktail, while the latter would have shattered

only one of the two genuine intervals if no car had parked in between to connect them.

A few elementary and intuitively obvious comparisons are nonetheless possible and will be

useful in the present study. More precisely, we shall first compare the occupation process Θ with
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that of the parking driven by the same point process of car arrivals C = (Ct, t ≥ 0) but without

fires, that is for Mt ≡ ∅. The latter occupation process will be denoted by Θ′ = (Θ′
t, t ≥ 0),

and more generally a prime in the notation such as X ′ = X(C,∅) will be used for the analogue

of X = X(C,M) when Molotov cocktails are suppressed. For instance, for every j ∈ Z and

t ≥ 0 , ξ′t(j) denotes the number of cars that have arrived at the site j [modn] before time

t ∧ T ′, where T ′ = inf{s ≥ 0 : Θ′
s = 1} denotes the saturation time (i.e. the arrival time of the

n-th car). For t ≤ T ′, the nonnegative quantity

δt(j) = ξ′t(j) − ξt(j)

represents the number of cars that arrived at j [modn] before time t and have been burnt in

the dynamics with fires; this quantity will play an important role in the sequel.

The following observation should be intuitively obvious.

Lemma 2 For every t ≥ 0, each occupied interval of Θt is contained into some occupied

interval of Θ′
t.

Proof: With no loss of generality, we may assume that the parking Θ′
t is not yet saturated at

time t as otherwise the statement is plain. If we define

∆t(0) = 0 and ∆t(j) − ∆t(j − 1) = δt(j) for every j ∈ Z ,

then ∆t : Z → Z is a non-decreasing quasi-periodic path and, in the obvious notation, St =

S ′
t − ∆t. This implies that, if the path S ′

t reaches a new minimum at j, then so does St. By

Lemma 1, this shows that Θt ≤ Θ′
t, which in turn entails our claim. �

We shall also need a lower bound for occupied intervals. Consider a time t < T ′ at which the

parking without fires Θ′
t is not yet saturated. Recall that S ′

t denotes the quasi-periodic path

defined by (1) for M ≡ ∅ and S ′
t its running minimum.

Lemma 3 In the notation above, consider first the dynamics without fires. Let I ′ be an occupied

interval at time t and [j0, j1] ⊆ I ′ some arc included in I ′. Next consider the dynamics with

fires and suppose that the total number of cars that have arrived on I ′ before time t and have

been burnt, is strictly less than the minimum of S ′
t − S ′

t on [j0, j1], i.e.

∑

j∈I′

δt(j) < min
j0≤j≤j1

(S ′
t(j) − S ′

t(j)) .

Then the entire arc [j0, j1] is occupied at time t for the dynamics with fires, i.e. Θt(j) = 1 for

all j ∈ [j0, j1].
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Proof: Let g′ and d′ be the first vacant sites at the left and right of I ′ in the dynamics without

fires, i.e. I ′ =]g′, d′[. We use the same notation as in the proof of Lemma 2. In particular, the

assumption in the statement reads

∆t(d
′ − 1) − ∆t(g

′) =
∑

j∈I′

δt(j) < min
j0≤j≤j1

(S ′
t(j) − S ′

t(j)) .

By Lemma 1, we have

S ′
t(g

′) = S ′
t(g

′) = S ′
t(d

′ − 1) .

We know from Lemma 2 that the site g′ is vacant for the dynamics with fires as well, and thus

we also have St(g
′) = St(g

′). This yields for every j ∈ [j0, j1]

St(j) − St(j − 1) ≥ St(j) − St(g
′)

= St(j) − St(g
′)

= S ′
t(j) − S ′

t(g
′) − (∆t(j) − ∆t(g

′))

> S ′
t(j) − S ′

t(g
′) − min

j0≤i≤j1
(S ′

t(i) − S ′
t(i)) .

Because S ′
t(i) = S ′

t(g
′) for every i ∈ I ′ and a fortiori for j0 ≤ i ≤ j1, we have

S ′
t(g

′) + min
j0≤i≤j1

(S ′
t(i) − S ′

t(i)) = min
j0≤i≤j1

S ′
t(i) .

We conclude that

St(j) − St(j − 1) > S ′
t(j) − min

j0≤i≤j1
S ′

t(i) ≥ 0

and according to Lemma 1, the site j is thus occupied in the dynamics with fires. �

We stress that Molotov cocktails which are thrown outside I ′ have no impact on the occu-

pation inside I ′, which is intuitively obvious. Indeed the left and right extremities g′ and d′ of

I ′ are vacant in the dynamics with fires until time t. They thus serve as barriers which stop

the propagation of fires started outside I ′.

We will also need lower bounds for the number of cars which are burnt, which will be achieved

by comparison with parkings where car arrivals are stopped after a certain time. More precisely,

let 0 < s < t be two fixed times. Imagine that we stop the arrival of cars after time s, leaving

the point process of Molotov cocktails M unchanged. In other words we work with the car

arrival process C ′′ = (C ′′
u , u ≥ 0) defined by C ′′

u = Cu if u ≤ s and C ′′
u = ∅ if u > s. We denote

by Bs,t the total number of cars which are burnt during the time-interval (s, t] in the original

dynamics, i.e.

Bs,t =
∑

j∈Z/nZ

(δt(j) − δs(j)) ,
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and by B′′
s,t the analog quantity for the dynamics in which no cars arrive after time s. The

following inequality should be intuitively obvious.

Lemma 4 In the notation above, we have B′′
s,t ≤ Bs,t.

Proof: Consider a car parked at time s at some site j ∈ Z/nZ and let I denote the occupied

interval that contains j. If no Molotov cocktails are thrown on I during the time-interval (s, t],

then this car will not burn before time t for the dynamics where car arrivals are stopped after

time s, i.e. this car does not contribute to B′′
s,t. Otherwise, set t̃ = min{u ∈ (s, t] : Mu ∈ I},

and follow the evolution of the occupied interval containing I in the original dynamics during

the time-interval (s, t̃]. If no car parks at the boundary of I before t̃, then this interval remains

unchanged until time t̃ at which is entirely destroyed. Else, let s̃ < t̃ be the first instant after

s at which a car parks on the boundary of I. At this instant, the occupied interval containing

I increases; denote it by Ĩ ⊃ I. Clearly min{u ∈ (s̃, t] : Mu ∈ Ĩ} ≤ t̃ and by induction we see

that all the cars that occupied the interval Ĩ at time s have been burnt at time t̃. In other

words, every car which is burned during the time-interval (s, t] in the dynamics where the car

arrivals are stopped after time s is also burned in the original dynamics. �

3 Asymptotics in absence of fires

In this section, we consider the situation when cars arrive at unit rate on each site and inde-

pendently one of the others and no Molotov are thrown. That is we assume that (Ct, t ≥ 0)

is a Poisson point process on Z/nZ with unit intensity per site and unit of time and M ≡ ∅.

Our goal is to get sharp information about the asymptotic behavior of occupied intervals when

the size of the parking n → ∞ and at a time close to saturation. Such questions have been

considered previously by several authors. In particular, Pittel [14] observed that in the regime

when the number k of vacant sites fulfills k ∼ cn for some 0 < c < 1, then the size of the largest

occupied interval is of order lnn (we stress that Pittel established a much shaper result). Later

on, Chassaing and Louchard [10] proved that a phase transition occurs in the regime when

k ∼ c
√
n; more precisely macroscopic occupied intervals of size of order n appear precisely in

this regime. However these results are not sufficient for our purpose as we will need information

for intermediate regimes, typically when the number k of vacant sites is such that
√
n≪ k ≪ n.

Informally, we may expect the vacant sites to be roughly uniformly spread on the parking;

therefore the length of a typical occupied interval should be of order n/k. However this informal

analysis may be misleading. Indeed, the distribution of the length of the occupied interval that

contains a typical site (say, 0) is related to that of an occupied interval chosen uniformly at

random, say L′ (remember that primes refer to the dynamics with M ≡ ∅), by a size-biased
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transformation. It turns out that when
√
n ≪ k ≪ n, the variance of L′ is much larger than

its mean. As a matter of fact, we will see that the lenght of the occupied interval that contains

a typical site is rather of order (n/k)2.

To keep track of the size of the parking, we introduce an additional index n in the notation.

For every integer m, denote the arrival time of the m-th car by

Γn,m = inf{t ≥ 0 : #Cn,t = m} with #Cn,t =
∑

0≤s≤t

1Cn,s 6=∅ ;

in particular the increments Γn,m+1 − Γn,m are i.i.d. exponential variables with mean 1/n. We

also write (S ′
n,m(j), j ∈ Z) for the quasi-periodic path defined in (1) for the time t = Γn,m.

In our analysis, we shall repeatedly use the following description of the law of S ′
n,m. Let

ξ′n,m(j) denote the total number of cars that have arrived at j [modn] until the arrival of the m-

th car, so the n-tuple (ξ′n,m(j), 0 ≤ j ≤ n−1) has the multinomial distribution with parameters

m and (1/n, . . . , 1/n). It is well-known that the latter also arises as the law of an n-tuple of

i.i.d. standard Poisson variables and conditioned to have total sum equal to m. Hence, consider

a standard Poisson process (Nt, t ≥ 0) and write N c
t = Nt−t for its compensated version. Then

(S ′
n,m(j), 0 ≤ j ≤ n) has the same distribution as the random walk (N c

j , 0 ≤ j ≤ n) conditioned

on N c
n = −k.

3.1 Uniform bound for the mean length of an occupied interval

It will often be convenient to use the notation k = n −m for the number of vacant sites just

after the arrival of the m-th car.

We denote by G′
n,m, respectively D′

n,m, for the first vacant site at the left, respectively the

right, of 0 at time Γn,m, so L′
n,m = (D′

n,m − G′
n,m − 1)+ is the length of the occupied interval

that contains the site 0 when there remain exactly k = n−m vacant sites. The purpose of this

section is to establish the following uniform upper bound for the mean length.

Proposition 1 There is a numerical constant c > 0 such that for every 0 ≤ m < n

E(L′
n,m) ≤ c

(

n

n−m

)2

.

The mass distribution of L′
n,m is known explicitly; see e.g. Equation (2.6) in Chassaing

and Louchard [10]. However the expression is rather involved and as we have not been able

to establish Proposition 1 by direct calculations, we shall use a different route that relies on

special properties of Borel-Tanner distributions.
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To start with, recall that for 0 < s ≤ 1, the Borel distribution with parameter s is the

probability measure on positive integers induced by the masses

e−sℓ(sℓ)ℓ−1

ℓ!
, ℓ ≥ 1 .

We shall denote by βs a Borel(s) variable; it is known that

E(βs) =
1

1 − s
and E(β2

s ) =
1

(1 − s)3
.

The sum of k independent Borel(s) variables has the Borel-Tanner law with parameter (s, k),

its mass distribution is given by

bs,k(ℓ) =
k

ℓ(ℓ− k)!
(sℓ)ℓ−ke−sℓ , ℓ ≥ k .

Rather than working directly with the occupied interval that contains some given site, we

shall consider the spacing between consecutive vacant sites. Recall that there are k vacant

sites on the parking; we pick one of them uniformly at random, denote it by v1, and then by

v2, . . . , vk the remaining ones listed according to the cyclic order. The intervals [vi, vi+1[ for

i = 1, . . . , k (with the convention that vk+1 = v1) form a partition of Z/nZ; we write σ1, . . . , σk

for the sequence of their sizes.

Lemma 5 Under the assumptions and notations above, (σ1, . . . , σk) has the same distribution

as the k-tuple formed by k i.i.d. Borel(s) variables conditioned on having total sum equal to n,

where the parameter s can be chosen arbitrarily in (0, 1].

Remark. One can also establish a slightly weaker version of Lemma 5 using the correspondence

between parking schemes and the additive coalescence (cf. Chassaing and Louchard [10]), and

an observation due to Pavlov, see e.g. Corollary 5.8 in [4].

Proof: This result should belong to the folklore of parking schemes, but as we have been

unable to spot at a precise reference in the literature, we shall sketch the proof for the reader’s

convenience. It is a classical (and easy to check) property of Borel variables that the distribution

of the k-tuple formed by k i.i.d. Borel(s) variables conditioned on having sum n does not depend

on the parameter s ∈ (0, 1], so it suffices to establish the statement in the special case s = 1.

Recall that (S ′
j, 0 ≤ j ≤ n) has the same law as the compensated Poissonian walk (N c

j , 0 ≤
j ≤ n) conditioned on N c

n = −k. An easy application of the ballot theorem then entails that the

cyclic permutation of (S ′
j, 0 ≤ j ≤ n) at the first instant v1 at which it attains an independent

random variable which has the uniform distribution on {−k, . . . ,−1}, has the same law as a

12



first-passage bridge for the random walk N c. More precisely (S ′
v1+j − S ′

v1
, 0 ≤ j ≤ n) has the

same law as (N c
j , 0 ≤ j ≤ n) conditioned on inf{j ≥ 0 : N c

j = k} = n. See for instance Theorem

1 in [5] for details. As it is well-known that the durations of the excursions of the compensated

Poissonian random walk N c above its running minimum form a sequence of i.i.d. variables with

the Borel(1) law, Lemma 1 yields our claim. �

Note that if L′
i is the length of the occupied interval with left exterior boundary vi (i.e. vi is

the first vacant site at the left of that interval), then L′
i = σi − 1, and an immediate argument

of rotational invariance yields the identity

E(L′
n,m) =

1

n
E

(

k
∑

i=1

σi(σi − 1)

)

=
k

n
E(σ2

1 − σ1) . (2)

We are now able to tackle the proof of Proposition 1, relying on (2), Lemma 5 and properties

of Borel-Tanner distributions.

Proof of Proposition 1: We may suppose without loss of generality that k2 ≥ n since

otherwise the statement is obvious (because L′
n,m ≤ n). Further, it suffices to establish the

bound for k ≤ n/2 as clearly the size L′
n,k of the occupied interval containing 0 increases when

the number of vacant sites k decreases, and hence

E(L′
n,k) ≤ E(L′

n,⌊n/2⌋) ≤ 9c for every k ≥ n/2 ,

provided that the bound stated in Proposition 1 holds for k = ⌊n/2⌋.
By Lemma 5 and (2) we have

E(L′
n,m) ≤ k

n
E(σ2

1) =
k

n
E

(

β2
s

bs,k−1(n− βs)

bs,k(n)

)

,

where βs stands for a Borel(s) variable and we agree that bs,k−1(ℓ) = 0 for ℓ < k − 1. Set

b∗s,k = maxℓ bs,k(ℓ), and observe from the additivity property of the Borel-Tanner distributions

that

e−1bs,k−1(ℓ− 1) ≤ bs,1(1)bs,k−1(ℓ− 1) ≤ bs,k(ℓ) ,

which yields inequality
b∗s,k−1

b∗s,k
≤ e .

We now chose the parameter s such that b∗s,k = bs,k(n), and we get

E(L′
n,m) ≤ k

n
e E(β2

s ) =
ke

n(1 − s)3
. (3)
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So we need to estimate the value of the parameter s such that the mass function of the

Borel-Tanner distribution ℓ → bs,k(ℓ) is maximal at ℓ = n. In this direction, it is convenient

to think of the integer variable ℓ as a real one. Taking a logarithmic derivative, we are led to

solving the equation

− 1

n
− s+ ln(sn) +

n− k

n
− ψ(n− k + 1) = 0

where ψ denotes the Digamma function, that is the logarithmic derivative of the Gamma

function. It is well-known that

ψ(x+ 1) = lnx+
1

2x
+O(x−2) as x→ ∞ , (4)

so the preceding equation can be rewritten in the form

s− ln s = 1 − k

n
− ln(1 − k/n) −

(

1

2(n− k)
+O((n− k)−2)

)

.

Next, elementary calculations yields

1 − k

3n
− ln

(

1 − k

3n

)

= 1 − k

n
+

2k

3n
− ln

(

1 − k

n
+

2k

3n

)

≥ 1 − k

n
+

2k

3n
− ln

(

1 − k

n

)

− 2k

3n
× 1

1 − k/n

= 1 − k

n
− ln

(

1 − k

n

)

− 2k2

3n(n− k)

≥ 1 − k

n
− ln

(

1 − k

n

)

− 2

3(n− k)
,

where in the last line we used the assumption that k2 ≥ n.

Recall that k ≤ n/2 and let n be sufficiently large so that

1

2(n− k)
+O((n− k)−2) ≤ 2

3(n− k)
,

where O(·) is the function which appears in (4). The calculation above shows that

s− ln s ≤ 1 − k

3n
− ln

(

1 − k

3n

)

,

and as the function t → t − ln t is non-increasing on (0, 1), we conclude that s ≥ 1 − k/3n.
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Returning to (3), we have thus shown

E(L′
n,m) ≤ 27e

n2

k2

whenever n is sufficiently large. �

We conclude this section with an easy consequence of Lemma 5 which will be useful to

establish a property of propagation of chaos. Recall that σ1, . . . , σk denote the sequence of

spacings between consecutive vacant sites when there remain exactly k vacant sites. We are

interested in the sub-sequence obtained by removing the spacing that contains a site chosen

uniformly at random, that is one of the spacings picked by size-biased sampling. This means

that we consider a random index j∗ ∈ {1, . . . , k} with conditional distribution

P(j∗ = i | σ1, . . . , σk) = n−1σi for i = 1, . . . , k ,

and the sub-sequence

(σ̃1, . . . , σ̃k−1) = (σ1, . . . , σj∗−1, σj∗+1, . . . , σk) .

Corollary 1 For every ℓ ∈ {1, . . . , n − k + 1}, the conditional distribution of (σ̃1, . . . , σ̃k−1)

given σj∗ = ℓ is that of the sequence of the spacings in the parking Z/(n− ℓ)Z with Poissonian

car arrival and no fires when there remain exactly k − 1 vacant sites.

Proof: Let i1, . . . , ik−1 be a sequence of positive integers with i1 + . . . + ik−1 = n − ℓ. By

Lemma 5, we have for every j = 1, . . . , k and ℓ ∈ {1, . . . , n− k + 1}

P ((σ̃1, . . . , σ̃k−1) = (i1, . . . , ik−1), j
∗ = j, σj∗ = ℓ)

= P ((σ1, . . . , σk) = (i1, . . . , ij−1, ℓ, ij, . . . , ik−1), j
∗ = j)

=
ℓ

n
× bs,1(ℓ)

bs,k(n)

k−1
∏

r=1

bs,1(ir) .

Summing over the possible values for j, we deduce that

P ((σ̃1, . . . , σ̃k−1) = (i1, . . . , ik−1), σj∗ = ℓ)

=
kℓ

n

bs,1(ℓ)

bs,k(n)

k−1
∏

r=1

bs,1(ir)

=
kℓ

n

bs,1(ℓ)bs,k−1(n− ℓ)

bs,k(n)
× 1

bs,k−1(n− ℓ)

k−1
∏

r=1

bs,1(ir) .

Note that the second term in the product above corresponds to the mass distribution of the
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(k − 1)-tuple formed by i.i.d. Borel(s) variables conditioned on having sum n − ℓ. Our claim

follows from the comparison with Lemma 5. �

3.2 Brownian limits

Proposition 1 provides a useful uniform upper bound for the expected length of occupied inter-

vals. However such information is not sufficient for our purpose, and we will also need precise

estimates of these lengths in certain regimes. We first analyze the asymptotic behavior of the

path that encodes the occupation of the parking when the number of sites tends to infinity.

Proposition 2 Fix arbitrary a < b. In the regime when n, k → ∞ with n2/3 ≪ k ≪ n, the

rescaled path
k

n
S ′

n,n−k(⌊n2k−2u⌋) , a ≤ u ≤ b

converges in distribution on the space of càdlàg paths on [a, b] endowed with the maximum norm

towards

Wu − u , a ≤ u ≤ b ,

where (Wu, u ∈ R) is a standard two-sided Brownian motion.

For the sake of simplicity, we shall establish Proposition 2 for a = 0 and b = 1, the case of

arbitrary a and b only requiring a heavier notation. The proof relies on a technical asymptotic

property of Poisson mass-distributions

pn(ℓ) =
e−nnℓ

ℓ!
, ℓ ∈ Z+ ,

which we know state.

Lemma 6 Consider two sequences of nonnegative integers (kn)n∈N and (xn)n∈N such that

n2/3 ≪ kn ≪ n and

lim
n→∞

(

kn

n
xn − n

kn

)

= w

for some w ∈ R. Then we have

lim
n→∞

pn−⌊n2/k2
n⌋

(n− kn − xn)

pn(n− kn)
= exp(−w − 1/2) .
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Proof: We express the ratio as

pn−⌊n2/k2
n⌋

(n− kn − xn)

pn(n− kn)
= e⌊n

2/k2
n⌋ × (n− ⌊n2/k2

n⌋)n−kn−xn

nn−kn
× (n− kn)!

(n− kn − xn)!

= e⌊n
2/k2

n⌋ ×
(

1 − n−1⌊n2/k2
n⌋
)n−kn−xn ×

xn−1
∏

i=0

(

1 − kn + i

n

)

.

Recall that n2/k3
n ≪ 1 and xn ∼ n2/k2

n. We estimate the logarithm of the preceding quantity

and get

⌊

n2

k2
n

⌋

− (n− kn − xn)

(

n−1

⌊

n2

k2
n

⌋

+
n2

2k4
n

)

−
xn−1
∑

i=0

(

kn + i

n

)

− 1

2

xn−1
∑

i=0

(

kn + i

n

)2

+ o(1)

=

⌊

n2

k2
n

⌋

−
(⌊

n2

k2
n

⌋

+
n3

2k4
n

− n

kn

− xn
n

k2
n

)

−
(

xn
kn

n
− x2

n − xn

2n

)

− 1

2
xn
k2

n

n2
+ o(1) .

After some simplifications using the identity xnkn/n = n/kn +w+ o(1), we see that the above

quantity can be expressed as −w − 1/2 + o(1), which yields our claim. �

We can now proceed with the proof of Proposition 2.

Proof of Proposition 2: Recall that (N c
u = Nu−u, u ≥ 0) is a compensated Poisson process,

and that
(

k

n
S ′

n,m(⌊n2k−2u⌋) , 0 ≤ u ≤ 1

)

has the same law as the process
(

k
n
N c

⌊n2k−2u⌋ , 0 ≤ u ≤ 1
)

conditioned on N c
n = −k, i.e. on

Nn = m = n− k.

Consider a continuous functional Φ on the space of càdlàg paths on the unit interval, with

values in [0, 1]. Observe that P(N c
ℓ = j) = pℓ(j + ℓ), so an application of the Markov property

for the compensated Poisson process at time n2/k2 yields

E

(

Φ

(

k

n
S ′

n,m(⌊n2k−2u⌋) , 0 ≤ u ≤ 1

))

= E

(

Φ

(

k

n
N c

⌊n2k−2u⌋ , 0 ≤ u ≤ 1

)

pn−⌊n2/k2⌋(n− k −N⌊n2/k2⌋)

pn(n− k)

)

We next let k = kn depend on n with kn ≫ n2/3. By Donsker’s invariance principle,

(

kn

n
N c

⌊n2k−2
n u⌋

, 0 ≤ u ≤ 1

)
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converges weakly as n→ ∞ to a standard Brownian motion on the unit time interval, (Wu, 0 ≤
u ≤ 1). It then follows from Lemma 6 and Fatou’s Lemma that

lim inf
n→∞

E

(

Φ

(

kn

n
S ′

n,n−kn
(⌊n2k−2

n u⌋) , 0 ≤ u ≤ 1

))

≥ E
(

Φ (Wu , 0 ≤ u ≤ 1) e−W1−1/2
)

= E (Φ (Wu − u , 0 ≤ u ≤ 1))

where the last identity stems from the classical relation of absolute continuity between the law

of the Brownian motion with drift and the Wiener measure. Replacing Φ by 1−Φ, we get the

converse upper-bound

lim sup
n→∞

E

(

Φ

(

kn

n
S ′

n,n−kn
(⌊n2k−2

n u⌋) , 0 ≤ u ≤ 1

))

≤ E (Φ (Wu − u , 0 ≤ u ≤ 1)) ,

which completes the proof of (i) in the case a = 0 and b = 1. The general case can be proven

by the same argument, but with a heavier notation. �

Proposition 2 enables us to investigate precisely the asymptotics the occupied interval con-

taining 0 in the regime of interest. Indeed, it suggests that after proper rescaling, the occupied

interval should converge weakly to the interval straddling 0 during which a two-sided Brownian

motion with negative drift makes an excursion above its running minimum. To give a precise

statement, it is convenient to introduce some further notation. Recall that (Wu, u ∈ R) denotes

a two-sided Brownian motion; we write

Ru = Wu − u− min
v≤u

(Wv − v)

for the Brownian motion with negative drift reflected at its running minimum. We set

G = sup{u < 0 : Ru = 0} and D = inf{u > 0 : Ru = 0} ,

so that (G,D) is the excursion interval of the reflected process away from 0 that straddles the

origin. We also denote by

Xu =











0 if u ≤ G

Ru if G < u < D

0 if u ≥ D

(5)
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the corresponding excursion. Similarly, we introduce for every positive integers m < n the

periodic reflected path R′
n,m(j) = S ′

n,m(j) − S ′
n,m(j) and finally we set

X ′
n,m(j) =











0 if j ≤ G′
n,m

R′
n,m(j) if G′

n,m < j < D′
n,m

0 if j ≥ D′
n,m

(6)

where G′
n,m and D′

n,m denote the first vacant site at the left, respectively the right, of 0 at time

Γn,m, viz.

G′
n,m = max{j ≤ 0 : S ′

n,m(j − 1) > S ′
n,m(j)}

D′
n,m = min{j ≥ 0 : S ′

n,m(j − 1) < S ′
n,m(j)} .

Proposition 3 In the regime when n, k → ∞ with n2/3 ≪ k ≪ n, the rescaled path

(

k

n
X ′

n,n−k(⌊n2k−2u⌋) , u ∈ R

)

converges in distribution on the space of càdlàg paths endowed with the maximum norm towards

(Xu, u ∈ R). In particular the pair of rescaled extremities of the occupied interval straddling 0,

(

k2

n2
G′

n,n−k,
k2

n2
D′

n,n−k

)

converges in distribution towards a pair of random variables with joint distribution

1
√

2π(y − x)3
exp(−(y − x)/2)dxdy , x < 0 < y .

The difficulty in deriving rigorously this weak limit from Proposition 2 is that the convergence

stated there only concerns paths on a compact interval, whereas in order to investigate the left-

extremity G′ of the occupied interval, we have to deal with the location of the overall minimum

of the path on (−∞, 0] (the right-extremity D′ is much easier to handle once the location G′

and more precisely the value of the minimum WG′ − G′ are known). To resolve this difficulty,

we shall need an a priori stochastic bound for the left-extremity G′, which in turn relies on the

following technical lemma. Recall that pn(·) denotes the mass-distribution of the Poisson law

with parameter n.

Lemma 7 For every b > 0, in the regime k, n→ ∞ with n2/3 ≪ k ≪ n, we have

max
bn2/k2≤ℓ≤n−k

pn(n− ℓ− k)

pn(n− k)
−→ e−b/2 .
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Proof: Without loss of generality, we may suppose that b is rational. We start by observing

that

lim
pn(n− k − bn2/k2)

pn(n− k)
= e−b/2 , (7)

where the limit is taken as n, k → ∞ in the regime k ≫ n2/3 and bn2/k2 ∈ N. Indeed

pn(n− k − bn2/k2)

pn(n− k)
= ebn2/k2 (

1 − bn/k2
)n−k−bn2/k2

bn2/k2−1
∏

i=0

(

1 − k + i

n

)

,

and the logarithm of this quantity can be expressed as

bn2

k2
−
(

n− k − bn2

k2

)(

bn

k2
+
b2n2

2k4

)

−
bn2k−2−1
∑

i=0

(

k + i

n
+

1

2

(

k + i

n

)2
)

+ o(1)

=
bn2

k2
−
(

bn2

k2
− bn

k
− b2n3

k4
+
b2n3

2k4

)

−
(

bn

k
+
b2n3

2k4
+
b

2

)

+ o(1)

= − b
2

+ o(1) .

Next, consider the function

x 7→ px(x− k) = e−xxx−k/Γ(x− k + 1) ,

and view now the variable x as a positive real number. Take the logarithmic derivative; we get

x 7→ lnx− k/x− ψ(x− k + 1) ,

where ψ denotes the Digamma function. Using the estimate (4), we can re-express this quantity

as

− ln

(

1 − k

x

)

− k

x
− 1

2(x− k)
+O((x− k)−2)

≥ k2

2x2
− 1

2(x− k)
+O((x− k)−2)

and it is easily checked that this is positive on [3k/2, k2/2] for k is sufficiently large. Therefore,

since k2 ≫ n, we have

max
bn2/k2≤ℓ≤n−3k/2

pn(n− ℓ− k) = pn(⌊n− bn2/k2⌋ − k) . (8)
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Finally, an elementary calculation based on Stirling formula yields the estimate

ln pn(n− k) = −k − (n− k) ln(1 − k/n) − 1

2
lnn+O(1)

= −
∞
∑

ℓ=2

1

ℓ(ℓ− 1)
kℓn1−ℓ − 1

2
lnn+O(1) ,

and since k ≪ n, we deduce that

max
n−3k/2≤ℓ≤n−k

pn(n− ℓ− k) = o(pn(n− k)) .

Combining this with (7) and (8) completes the proof. �

We now proceed with the proof of Proposition 3.

Proof of Proposition 3: It is convenient to introduce the dual compensated Poisson pro-

cess Ň c
s = s − Ns, where (Ns, s ≥ 0) is a standard Poisson process. The reversed path

(S ′
n,n−k(−ℓ), 0 ≤ ℓ ≤ n) has then the same distribution as (Ň c

ℓ , 0 ≤ ℓ ≤ n) conditionally

on Ň c
n = k. Fix b > 0 and observe that if −G′

n,n−k > bn2/k2, then necessarily the reversed path

S ′
n,n−k(−ℓ) visits 0 again for some ℓ > bn2/k2. This yields the bound

P(−G′
n,n−k ≥ bn2/k2) ≤ P(Ň c

ℓ = 0 for some bn2/k2 ≤ ℓ < n | Ň c
n = k) .

Applying the strong Markov property of the random walk Ň c at its first return to 0 after bn2/k2,

we get

P(−G′
n,n−k ≥ bn2/k2) ≤ max

bn2/k2≤ℓ≤n−k
P(Ň c

n−ℓ = k)/P(Ň c
n = k)

= max
bn2/k2≤ℓ≤n−k

pn(n− ℓ− k)

pn(n− k)
.

It follows from Lemma 7 that in the regime k, n→ ∞ with n2/3 ≪ k ≪ n

lim sup P(−G′
n,n−k ≥ bn2/k2) ≤ e−b/2 .

This stochastic bound implies that when b is large and n, k → ∞ in the preceding regime,

then with high probability the location and value of the overall minimum of S ′
n,n−k on (−∞, 0]

are the same as on [−bn2/k2, 0]. On the other hand, the location and value of the overall

minimum of Wu − u on (−∞, 0] are also the same as on [−b, 0] with high probability when b

is large. We can then deduce the first claim of Proposition 3 from Proposition 2 by routine

arguments. Finally, that (G,D) has the distribution given in the statement belongs to the

Brownian folklore. �
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We can now deduce from Proposition 3 the asymptotic behavior of the empirical distribution

of the length of occupied intervals by standard arguments involving rotational invariance and

propagation of chaos, see [17].

Corollary 2 For every j ∈ Z/nZ, denote by L′
n,m(j) the length of the occupied interval which

contains the site j just after the arrival of the m-th car (by convention L′
n,m(j) = 0 is the site

j is vacant at that time). Consider the empirical distribution

µ′
n,m =

1

n

∑

j∈Z/nZ

δ(n−m)2n−2L′

n,m(j) .

Then µ′
n,m converges in probability on the space of probability measures on [0,∞) endowed with

Prohorov’s distance as n,m→ ∞ in the regime n2/3 ≪ n−m≪ n, towards

µ(dx) =
1√
2πx

exp(−x/2)dx , x > 0 .

We stress that the result would fail in the regime n−m ∼ √
n, and refer to Theorem 2.1 of

Chassaing and Louchard [10] for a different limiting law in the later case.

Proof: Consider a continuous bounded function f : R+ → R and set

〈µ′
n,m, f〉 =

1

n

∑

j∈Z/nZ

f((n−m)2n−2L′
n,m(j))

and 〈µ, f〉 =
∫

f(x)µ(dx). For every n, we pick two sites in Z/nZ uniformly at random, say j∗

and j†, and write for simplicity L′
n,m(j∗) = L∗

n,m and L′
n,m(j†) = L†

n,m.

By rotational invariance, L∗
n,m and L†

n,m have both the same law as L′
n,m = (D′

n,m−G′
n,m−1)+,

the length of the occupied interval that contains the site 0. As a consequence, we get from

Proposition 3(ii) that

E(〈µ′
n,m, f〉) = E(f((n−m)2n−2L∗

n,m))

= E(f((n−m)2n−2(D′
n,m −G′

n,m − 1)+))

→
∫ 0

−∞

dx

∫ ∞

0

dyf(y − x)
1

√

2π(y − x)3
exp(−(y − x)/2)

= 〈µ, f〉 .

Next we can express the second moment of 〈µ′
n,m, f〉 as

E(〈µ′
n,m, f〉2) = E(f((n−m)2n−2L∗

n,m)f((n−m)2n−2L†
n,m)) .
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Because |j∗−j†| ≫ n2/(n−m)2 with high probability when n,m→ ∞ in the regime of concern,

the occupied intervals I∗n,m and I†n,m containing respectively j∗ and j† are disjoint with high

probability. Further, it follows from Corollary 1 that conditionally on j† /∈ I∗n,m and L∗
n,m = ℓ,

L†
n,m has the same law as L′

n−ℓ,m−ℓ−1. It is then routine to deduce that the rescaled lengths

(n−m)2n−2L∗
n,m and (n−m)2n−2L†

n,m are asymptotically independent. Hence

E(〈µ′
n,m, f〉2) → 〈µ, f〉2

and we conclude that

〈µ′
n,m, f〉 → 〈µ, f〉 in L2(P) ,

which yields our claim. �

4 Main results

Throughout the remainder of this paper, we assume that cars arrive at unit rate on each site

and independently one of the others, while Molotov cocktails are thrown on each site at rate

n−α, independently of the arrivals of cars, where α is some parameter in (0, 1). In other words,

(Ct, t ≥ 0) and (Mt, t ≥ 0) are two independent Poisson point processes on Z/nZ with respective

intensities 1 and n−α per site and unit of time.

We are interested in the following quantities. First, for every n ∈ N, we introduce the first

instant when the parking of size n is saturated,

Tn := inf{t ≥ 0 : Θn,t = 1} .

Next, for every t ≥ 0, we denote the mean occupation of the parking with size n at time t by

θn,t = n−1
∑

j∈Z/nZ

Θn,t(j).

Our main result claims that for any α, the mean occupation at time t is close to t as long

as t < 1, with high probability. When α > 2/3, the parking becomes saturated at time close

to 1. For α < 2/3, the mean occupation drops suddenly to nearly 0 right after time 1 although

the parking is never fully saturated. Here are the formal statements.

Theorem 1 (i) For every 0 < t < 1, we have

lim
n→∞

θn,t = t in probability .

23



(ii) For α > 2/3, we have

lim
n→∞

Tn = 1 in probability .

(iii) For α < 2/3, 1 < t < 2 and ε > 0, we have

lim
n→∞

P(θn,t ≤ t− 1 + ε) = 1 .

(iv) For α < 2/3, we have for every t < 2

lim
n→∞

P(Tn ≤ t) = 0 .

Remark. The first instant when a Molotov cocktail is thrown after the saturation time is a

renewal time for the occupation of the parking. For α > 2/3, we know from (ii) that the latter

is close to 1 when n is large, and thus (i) can be reinforced as

lim
n→∞

θn,t = {t} = t− ⌊t⌋ in probability for all t ≥ 0.

We conjecture that this asymptotic for the mean occupation holds also when α ≤ 2/3, but have

been unable so far to establish this due to the lack of renewal in that situation. In the same

vein, we also conjecture that (iv) holds for all t ≥ 0.

The rest of this section is devoted to the proof of Theorem 1. The parts (i) and (ii) follows

rather easily from the material developed in the preceding sections, while (iii) and (iv) are more

delicate.

Recall that Γn,m denotes the arrival time of the m-th car, and that the increments Γn,m+1 −
Γn,m are i.i.d. exponential variables with mean 1/n. In particular the mean number of Molotov

cocktails that are thrown during the time-interval [Γn,m,Γn,m+1) equals n−α. For every j ∈
Z/nZ, we also denote by δn,m(j) the number of cars that have arrived at the site j and have

been burnt before the arrival time Γn,m of the m-th car. We first point at the following upper-

bound.

Lemma 8 There is a numerical constant c such that for every j ∈ Z and 0 ≤ m < n

E(δn,m(j)) ≤ c
n1−α

n−m
.

Proof: Recall that L′
n,m denotes the length of the occupied interval that contains the site 0

at time Γn,m when no Molotov cocktails are thrown. By rotational invariance, the distribution

of this quantity remains the same if we replace 0 by any other site j ∈ Z/nZ. Lemma 2 now

shows that the size of each occupied interval which is hit by a Molotov cocktail thrown during
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the time-interval [Γn,m,Γn,m+1) can be stochastically bounded from above by L′
n,m. Further,

we deduce from Proposition 1 that the mean number of cars which are burnt before time Γn,m

can bounded from above by

E





∑

j∈Z/nZ

δn,m(j)



 ≤ n−αc

m
∑

ℓ=0

(

n

n− ℓ

)2

≤ c
n2−α

n−m
.

As E(δn,m(j)) does not depend of j ∈ Z/nZ, this establishes our claim. �

We are now able to establish parts (i) and (ii) of Theorem 1.

Proof of Theorem 1(i): Fix an arbitrarily t ∈ (0, 1) and 0 < 2ε < 1 − t. Next set mn =

⌊(t+ ε)n⌋ and m′
n = ⌊(t− ε)n⌋. By the law of large numbers, the bounds

Γn,m′

n
≤ t ≤ Γn,mn

hold with a high probability when n is large. Thanks to Lemma 8, the mean number of cars

which have been burnt up to time Γn,mn
is bounded from above by c(1 − t − ε)−1n1−α. By

Markov inequality, the number of cars which have been burnt up to time Γn,mn
can thus be

bounded from above by n1−α/2 with high probability. Plainly, on the latter event, the mean

occupation at time t fulfills

t− ε− n−α/2 ≤ θn,t ≤ t+ ε ,

which proves our claim. �

Proof of Theorem 1(ii): This follows from a variation of the preceding argument. Take

m = n− ⌊nβ⌋ for some 2/3 < β < α, so by Lemma 8 and Markov’s inequality, the probability

that more than nβ cars have burned at time Γn,m is less than cn2−α−2β. Thus with high

probability, there are at most 2nβ vacant sites at time time Γn,m. Because the mean number

of Molotov cocktails that are thrown between times Γn,n−nβ and Γn,n+nβ is 2n−α+β ≪ 1, we

conclude that with high probability, the parking is saturated when the (n+ nβ)-th car arrives,

and this entails our claim since Γn,n+nβ ∼ 1. �

Our approach to establish Theorem 1 (iii) when α < 2/3 consists in showing first that there

exist times close to 1 at which the length of the occupied interval containing a typical site is of

order nβ for some β > α. The probability that such an interval is not hit by a Molotov cocktail

during a time interval of fixed duration ε > 0 is of order exp(−εnβ−α) ≪ 1. This means that

the lifetime of these intervals is small, and hence a typical site will be vacant shortly after that

time.

In this direction, denote for every j ∈ Z/nZ by Ln,m(j) the length of the occupied interval

which contains the site j just after the arrival of the m-th car (by convention Ln,m(j) = 0 is
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the site j is vacant at that time). We shall investigate the asymptotic behavior of the empirical

distribution

µn,m =
1

n

∑

j∈Z/nZ

δ(n−m)2n−2Ln,m(j) .

Roughly speaking we observe that there exists regimes at which the impact of fires is still low

(in the sense that the behavior is the same as if there were no fires; cf. Corollary 2) even though

the size of typical intervals becomes large, namely greater than nα.

Proposition 4 Suppose α < 2/3. In the regime n,m→ ∞ with

n
2

3
∨(1−2α/3) ln4/3 n≪ n−m≪ n ,

µn,m converges in probability on the space of probability measures on [0,∞) endowed with Pro-

horov’s distance towards

µ(dx) =
1√
2πx

exp(−x/2)dx , x > 0 .

We take Proposition 4 for granted, postponing its proof to the next section, and now establish

Theorem 1(iii).

Proof of Theorem 1(iii): Since α < 2/3, we may pick β ∈ (2
3
∨(1−2α/3), 1−α/2). Then we

set kn = n−mn = ⌊nβ⌋, and we are in the regime of Proposition 4. We work conditionally on

the occupation of the parking after the arrival of the mn-th car. Fix j ∈ Z/nZ and consider the

occupied interval that contains j, say Ij. The probability that a Molotov cocktail will be thrown

on Ij during a time interval of duration t is 1 − exp(−Ln,mn
(j)tn−α), where Ln,mn

(j) = |Ij|
denotes the number of sites in Ij. So, if we consider the dynamics in which car arrivals are

stopped after the arrival of the mn-th car, Γn,mn
, the conditional mean number of cars which

are burnt between times Γn,mn
and t+ Γn,mn

is given by

∑

j∈Z/nZ

(1 − exp(−Ln,mn
(j)tn−α)) = n〈µn,mn

, 1 − exp(−tn−αn2k−2
n ·)〉 .

We pick 0 < η < 2 − α− 2β and take t = tn = n−η, so

lim
n→∞

(1 − exp(−tnn−αn2k−2
n x)) = 1 for every x > 0.

We deduce from Proposition 4 and the porte-manteau theorem that the conditional mean

number of cars that have burnt between Γn,mn
and tn + Γn,mn

is asymptotically close to n. We

may now invoke Lemma 4 and conclude that for the original dynamics, the mean number of

cars which are burnt between Γn,mn
and tn +Γn,mn

is asymptotically bounded from below by n.
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On the other hand, the total number of cars which have arrived between Γn,mn
and tn +Γn,mn

is

close to ntn = n1−η ≪ n. Thus the density of occupation of the parking at time tn +Γn,mn
must

be small with high probability. As tn + Γn,mn
∼ 1 and the increase of the mean occupation on

any time-interval with duration s is obviously bounded from above by s, this entails our claim.

�

We next prepare the ground for the proof of Theorem 1(iv). Roughly speaking, we have to

check that for α < 2/3, destruction of cars by fires at times close to 1 occurs more rapidly than

new cars arrive, which prevents the saturation of the parking. In this direction, we consider

the following setting. Let a > 0 and (xi, i ∈ N) be a collection of nonnegative real numbers

which may be viewed as masses. We mark each xi at rate axi, independently one of the others,

i.e. each xi receives a mark at time (axi)
−1ei where (ei, i ∈ N) is a sequence of i.i.d. standard

variables. For every s ≥ 0, let

Xs =
∞
∑

i=1

xi1ei≤axis

be the sum of the masses that have a mark at time s.

Lemma 9 Let 0 < t0 < t1 and b > 0. There is the inequality

P(Xs ≤ bs for some t0 ≤ s ≤ t1) ≤ (1 + ln(t1/t0)) exp

(

1 − a

be3

∑

i∈I

x2
i

)

where

I = {i : xi ≤ (bt0) ∧ (1/at1)} .

Proof: Observe first that the Laplace transform of Xs is given for every q > 0 by

E(exp(−qXs)) =
∞
∏

i=1

E(1ei>axis + e−qxi1ei≤axis)

=
∞
∏

i=1

(

e−axis + (1 − e−axis)e−qxi
)

= exp

(

∞
∑

i=1

ln
(

1 − (1 − e−axis)(1 − eqxi)
)

)

≤ exp

(

−
∞
∑

i=1

(1 − e−axis)(1 − eqxi)

)

.

Next, observe from the Markov inequality that

P(Xs ≤ ebs) ≤ eE

(

exp

(

− 1

ebs
Xs

))

,
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and hence

P(Xs ≤ ebs) ≤ exp

(

1 −
∞
∑

i=1

(1 − e−axis)(1 − e−xi/ebs)

)

.

Then recall the definition of the set of indices I in the statement and note that for every i ∈ I
and t0 ≤ s ≤ t1, we have the bounds

1 − e−axis ≥ e−1axis and 1 − e−xi/ebs ≥ xi/(e
2bs) ,

and therefore

P(Xs ≤ ebs) ≤ exp

(

1 − a

be3

∑

i∈I

x2
i

)

.

Applying successively this inequality for s = ejt0 and j = 0, . . . , ⌊ln(t1/t0)⌋, we conclude that

P
(

Xejt0 ≤ bej+1t0 for some j = 0, . . . , ⌊ln(t1/t0)⌋
)

≤ (1 + ln(t1/t0)) exp

(

1 − a

be3

∑

i∈I

x2
i

)

,

which yields our claim by an argument of monotonicity. �

We next deduce from Lemma 9 and Proposition 4 an explicit lower-bound for the first

saturation time Tn.

Corollary 3 Suppose α < 2/3 and pick β ∈
(

2
3
∨ (1 − 2α/3), 1 − α/2

)

. Set ℓn = ⌊n2β+α−1⌋.
Then

lim
n→∞

P(Tn ≤ Γn,n+ℓn
) = 0 .

Proof: Let kn = n−mn = ⌊nβ⌋ and note that kn ≤ ℓn. We shall implicitly work on the event

j/2n ≤ Γn,mn+j − Γn,mn
≤ 2j/n for all j ≥ kn − 1

as, by the laws of large numbers, the probability of this event is high when n→ ∞.

Our approach can be described as follows. For every s ≥ 0, let Bs denote the number of cars

which have been burnt during the time interval [Γn,mn
,Γn,mn

+ s]. We aim at showing that

Bs ≥ 2ns for all kn/2n ≤ s ≤ 2(kn + ℓn)/n

with high probability. Note that on this event, the total number of cars that are burnt between

times Γn,mn
and Γn,mn+j exceeds j for all kn ≤ j ≤ kn + ℓn. Since Tn > Γn,n−1, the saturation

of the parking cannot occur before the arrival of the (n+ ℓn)-th car on the preceding event.

Observe that we may work with the dynamics where the car arrival process is stopped after
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Γn,mn
. Indeed, thanks to Lemma 4, it suffices to establish that the event

Λ′′
n = {B′′

s ≥ 2ns for all kn/2n ≤ s ≤ 2(kn + ℓn)/n}

has a high probability, where B′′
s stands for the number of cars which have been burnt during

the time interval [Γn,mn
,Γn,mn

+ s] in these dynamics.

This enables us to apply Lemma 9. More precisely, we consider the occupation of the parking

at time Γn,mn
and write xi for the size of the i-th largest occupied interval. We take a = n−α

so that the rate axi at which xi is marked corresponds to the rate at which a Molotov cocktail

is thrown on the interval with size xi, and then B′′
s = Xs. We also take b = 2n, t0 = kn/2n and

t1 = 2(kn + ℓn)/n. Note that

(bt0) ∧ 1/(at1) ≤ nβ ∧ (n2−2β/2) = n2−2β/2 ;

we get from an application of Lemma 9 that the conditional probability of the complementary

event (Λ′′
n)c given the xi can be bounded from above by

c lnn× exp

(

− 1

2e3n1+α

∑

i∈I

x2
i

)

where I =
{

i : xi ≤ n2−2β/2
}

.

In the notation of Proposition 4, we have

∑

i∈I

x2
i = n3k−2

n 〈µn,mn
, f〉

with f(x) = x1x<1/2, and it follows from Proposition 4 and the porte-manteau Theorem that

〈µn,mn
, f〉 converges in probability to some strictly positive constant. As 3 − 2β > 1 + α,

we conclude from Fatou’s lemma that the probability of (Λ′′
n)c tends to 0 as n → ∞, which

completes the proof. �

We are now able to proceed to the proof of Theorem 1(iv).

Proof of Theorem 1(iv): We keep the notation of Corollary 3 and pick

β′ ∈
(

2

3
∨ (1 − 2α/3), β

)

and η ∈ (2 − α− 2β, 2 − α− 2β′) .

We set m′
n = n−⌊nβ′⌋. We have shown in the proof of Theorem 1(iii) that the mean density at

time Γn,m′

n
+ n−η is small with high probability. As less than 2n1−η cars have arrived between

Γn,m′

n
and Γn,m′

n
+ n−η with high probability, we have Γn,m′

n
+ n−η ≤ Γn,mn+2n1−η .
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On the other hand, 1−η < 2β+α−1, and thus mn +2n1−η ≤ n+ ℓn where ℓn = ⌊n2β+α−1⌋.
According to Corollary 3, saturation does not occur before Γn,n+ℓn

with high probability and

since the mean intensity increases at most linearly with unit rate, saturation does not occur

either before t for every t < 2 with high probability �

5 Proof of Proposition 4

We still need to establish Proposition 4. This will be achieved by showing first that certain

events have a high probability. Let (mn, n ∈ N) be a sequence of integers with

n
2

3
∨(1−2α/3) ln4/3 n≪ n−mn ≪ n . (9)

We introduce two other sequences (jn, n ∈ N) and (ℓn, n ∈ N) such that

jn ≪ n−mn ≪ ℓn . (10)

We will also require these sequences to fulfill certain conditions that will be specified later on.

Recall that G′
n,m and D′

n,m denote the first vacant sites at the left and at the right of 0 just

after the arrival of the m-th car for the dynamics without fires.

Consider the events

Λn,1 =
{

G′
n,mn

> −n2/j2
n and D′

n,mn
< n2/j2

n

}

,

Λn,2 that no Molotov cocktails are thrown on the arc ] − n2/j2
n, n

2/j2
n] between the arrivals of

the (n− ℓn)-th and the mn-th cars, i.e.

Λn,2 =
{

Mt 6∈] − n2/j2
n, n

2/j2
n] for all Γn,n−ℓn

≤ t ≤ Γn,mn

}

.

Finally, set

bn =
n

(n−mn) lnn
,

and consider the event Λn,3 that the total number of cars that have arrived on the arc

] − n2/j2
n, n

2/j2
n] and have been burnt before the arrival of the (n − ℓn)-th car is smaller than

bn, i.e.

Λn,3 =







n2/j2
n

∑

i=−n2/j2
n+1

δn,n−ℓn
(i) ≤ bn







.

Lemma 10 (i) On the event Λn,1 ∩ Λn,2 ∩ Λn,3, the total number of cars that have arrived on
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the arc ]G′
n,mn

, D′
n,mn

[ and have been burnt before the arrival of the mn-th car is smaller than

bn, i.e.
∑

G′

n,mn
<i<D′

n,mn

δn,mn
(i) ≤ bn . (11)

(ii) We can chose the sequences (jn, n ∈ N) and (ℓn, n ∈ N) in such a way that

lim
n→∞

P(Λn,1 ∩ Λn,2 ∩ Λn,3) = 1 .

As a consequence, provided that (9) holds, (11) occurs with high probability

Proof: (i) On the event Λn,1 ∩ Λn,2 ∩ Λn,3, no car is burnt on ]G′
n,mn

, D′
n,mn

[ between the

arrivals of the (n− ℓn)-th and the mn-th car. Note that the sites G′
n,mn

and D′
n,mn

are vacant

for the dynamics without fires at least until time Γn,mn
and thus prevent the propagation of

fires started outside ]G′
n,mn

, D′
n,mn

[ to ]G′
n,mn

, D′
n,mn

[ until that time. Thus the total number

of cars that have arrived on ]G′
n,mn

, D′
n,mn

[ and have been burnt before Γn,m is bounded from

above by the number of cars that have arrived on the arc ]−n2/j2
n, n

2/j2
n] and have been burnt

before the arrival of the (n− ℓn)-th car, which in turn is at most bn.

(ii) We shall write as usual kn = n−mn. First, as jn ≪ kn, we know from Proposition 3 that

P(Λn,1) that can be made as close to 1 as we wish by choosing n sufficiently large. Further, we

get by conditioning on Γn,n−ℓn
and Γn,mn

that

P(Λn,2) = E
(

exp(−2n2j−2
n n−α(Γn,mn

− Γn,n−ℓn
))
)

=

(

n

n+ 2n2−αj−2
n

)ℓn−kn

=

(

1 − 2n2−αj−2
n

n+ 2n2−αj−2
n

)ℓn−kn

,

where the second equality stems from the stationarity of the increments of Gamma processes.

As ℓn ≫ kn, if we further impose n2−αj−2
n ≪ n, then we get

ln P(Λn,2) ∼ −2ℓnn
1−αj−2

n .

Thus P(Λn,2) is as close to 1 as we wish provided that n is large enough and

n(1−α)/2 ≪ jn and ℓn ≪ j2
nn

α−1 . (12)
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Last, by Lemma 8 and Markov inequality, the probability of Λn,3 is at least

1 − 2cn2j−2
n

n1−α

ℓnbn
= 1 − 2c

n2−αkn lnn

j2
nℓn

.

This is close to 1 when n is large whenever

ℓn ≫ n2−αj−2
n kn lnn . (13)

Recapitulating, the proof will be completed if we check that the requirements (10), (12) and

(13) can be fulfilled simultaneously. We can take for instance

jn = n(3−2α)/4k1/4
n lnn and ℓn =

√

nkn lnn .

Indeed, we then have

n(1−α)/2 ≪ n(3−2α)/4 ≪ n(3−2α)/4k1/4
n lnn = jn .

Next, from our assumption, n1−2α/3 ln4/3 n≪ kn; raising this inequality to the cube yields

j4
n = n3−2αkn ln4 n≪ k4

n ,

and hence jn ≪ kn. As clearly ℓn ≫ kn, we have checked (10). Then we also have

ℓn =
√

nkn lnn≪ nα−1n3/2−αk1/2
n ln2 n = nα−1j2

n ,

so (12) holds. Finally we observe that

ℓn =
√

nkn lnn =
n2−αkn lnn

n3/2−αk
1/2
n ln2 n

ln2 n≫ j−2
n n2−αkn lnn ,

which shows that (13) is fulfilled. �

Lemma 10 is the key for a useful asymptotic lower bound for the distribution of the occupied

interval containing a typical site. Specifically, denote by Gn,m and Dn,m the first vacant sites

at the left and at the right of 0 just after the arrival of the m-th car, and recall that G′
n,m and

D′
n,m denote the same quantities for the dynamics without fires. Introduce also the probability

measure on (−∞, ] × [0,∞)

ν(dx, dy) =
1

√

2π(y − x)3
exp(−(y − x)/2)dxdy , x < 0 < y ,
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and recall from Proposition 3 that ν is the limiting distribution of

(

(n−m)2

n2
G′

n,m,
(n−m)2

n2
D′

n,m

)

in the regime n2/3 ≪ n−m≪ n.

Lemma 11 For every x < 0 < y, we have

lim inf P

(

(n−m)2

n2
Gn,m < x,

(n−m)2

n2
Dn,m > y

)

≥ ν((−∞, x) × (y,∞)) .

in the regime n,m→ ∞ with

n
2

3
∨(1−2α/3) ln4/3 n≪ n−m≪ n .

Proof: We use the same notation as for Lemma 10. Denote by I ′n =]G′
n,mn

, D′
n,mn

[ the oc-

cupied interval containing 0 after the arrival of the mn-th car in the dynamics without fires.

According to Lemma 3, the event that Gn,mn
< xn2/k2

n and Dn,m > yn2/k2
n occurs whenever

[xn2/k2
n, yn

2/k2
n] ⊆ I ′n and the total number of cars that have arrived on I ′n and have been burnt

before Γn,m is strictly less than the minimum of R′
n,mn

= S ′
n,mn

−S ′
n,mn

on I ′n,m. We know from

Lemma 10 that on the event with high probability Λn,1 ∩ Λ′
n,1 ∩ Λ′′

n,1, the number of such cars

is bounded by bn = n/(kn lnn).

Now recall Proposition 3 and the notations (5) and (6). By the Skohorod representation

theorem, we may assume that the convergence stated there holds almost surely. Fix ε >

0 arbitrarily small and observe that conditionally on G < x − ε and D > y + ε, we have

minx≤u≤y Xu > 0 a.s. Recall that bn ≪ n/kn and n−1knX
′
n,mn

(⌊n2k−2
n u⌋) converges to Xu

uniformly on u ∈ R. We deduce that the conditional probability of minj∈I′

n
X ′

n,mn
(j) > bn

given that [(x−ε)n2k−2
n , (y+ε)n2k−2

n ] ⊂ I ′n is as close to 1 as we wish whenever n is sufficiently

large. Hence, thanks to Lemma 3,

lim inf P

(

(n−m)2

n2
Gn,m < x,

(n−m)2

n2
Dn,m > y

)

can be bounded from below by

lim inf P

(

(n−m)2

n2
G′

n,m < x− ε,
(n−m)2

n2
D′

n,m > y + ε,Λn,1 ∩ Λ′
n,1 ∩ Λ′′

n,1

)

.
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By Lemma 10, the latter is identical to

lim inf P

(

(n−m)2

n2
G′

n,m < x− ε,
(n−m)2

n2
D′

n,m > y + ε

)

,

and we know from Proposition 3 that this quantity is given by ν((−∞, x − ε) × (y + ε,∞)).

As ε can be chosen as small as we wish, this establishes our claim. �

We may now proceed with the proof of Proposition 4.

Proof of Proposition 4: By the same argument of propagation of chaos as in the proof

of Corollary 2, we just need to establish that after rescaling by the factor (n − m)2n−2, the

length Ln,m of the occupied interval which contains the site 0 converges in distribution to µ.

We known from Lemma 2 that Dn,m ≤ D′
n,m and G′

n,m ≤ Gn,m, and also from Proposition 3

that the distribution of
(

(n−m)2

n2
G′

n,m,
(n−m)2

n2
D′

n,m

)

converges weakly in the regime n2/3 ≪ n−m≪ n towards

ν(dx, dy) =
1

√

2π(y − x)3
exp(−(y − x)/2)dxdy , x < 0 < y .

This ensures that for every x < 0 < y,

lim sup P

(

(n−m)2

n2
Gn,m < x,

(n−m)2

n2
Dn,m > y

)

≤ ν((−∞, x) × (y,∞)) .

The converse lower bound for the lim inf has been established in Lemma 11, which completes

the proof of our claim. �
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