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DETERMINATION OF TDC IN INTERNAL COMBUSTION ENGINES BY A 
NEWLY DEVELOPED THERMODYNAMIC APPROACH 

 
 

Emiliano Pipitone, Alberto Beccari 
Dipartimento di Meccanica – University of Palermo 

 
ABSTRACT 
In-cylinder pressure analysis is nowadays an indispensable tool in internal combustion engine 
research & development. It allows the measure of some important performance related parameters, 
such as indicated mean effective pressure (IMEP), mean friction pressure, indicated fuel 
consumption, heat release rate, mass fraction burned, etc.. Moreover, future automotive engine will 
probably be equipped with in-cylinder pressure sensors for continuous combustion monitoring and 
control, in order to fulfil the more and more strict emission limits. For these reasons, in-cylinder 
pressure analysis must be carried out with maximum accuracy, in order to minimize the effects of 
its characteristic measurement errors. The exact determination of crank position when the piston is 
at top dead centre (TDC) is of vital importance, since a 1° degrees error can cause up to a 10% 
evaluation error on IMEP and 25% error on the heat released by the combustion: the position of the 
crankshaft (and hence the volume inside the cylinder) should be known with the precision of at least 
0.1 crank angle degrees, which is not an easy task, even if the engine dimensions are well known: it 
corresponds to a piston movement in the order of one tenth of micron, which is very difficult to 
estimate. A good determination of the TDC position can be pursued by means of a dedicated 
capacitive TDC sensor, which allows a dynamic measurement (i.e. while engine is running) within 
the required 0.1 degrees precision [1, 2]. Such a sensor has a substantial cost and its use is not really 
fast, since it must be fitted in the spark plug or injector hole of the cylinder. A different approach 
can be followed using a thermodynamic method, whose input is in-cylinder pressure sampled 
during the compression and expansion strokes: some of these methods, more or less valid, can be 
found in literature [5,6,7,8,7,8]. This paper will discuss a new thermodynamic approach to the 
problem of the right determination of the TDC position. The base theory of the method proposed is 
presented in the first part, while the second part deals with the assessment of the method and its 
robustness to the most common in-cylinder pressure measurement errors. 
 
 
1. BASE THEORY OF THE METHOD 
The compression and expansion processes in a motored (i.e. without combustion) engine can be 
described observing the energy transformations regarding the unity mass which remains in the 
cylinder. The first law of thermodynamics states that: 
 

uvpdq dd =−      (1) 
 
where dq represents the elementary specific heat received by the gas from the cylinder walls, p and 
v represent the gas pressure and specific volume, and u the specific internal energy. 
The gas involved in the process is air and can be assumed to be a perfect gas, thus the following 
equations are also valid: 
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being T the gas temperature, cP and cV the constant pressure and constant volume specific heat, and 
R’ the gas constant. 
The compression-expansion process in a motored engine can be assumed to be frictionless, hence 
the second law of thermodynamics states that the specific entropy variation dS of the in-cylinder gas 
is:  

T
dqS =d        (3) 

 
thus, from equations (1) and (2) the specific entropy variation results: 
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Due to mass leakage through valve seats and piston rings, the available volume V for the in-cylinder 
gas increases, hence its specific volume changes: 
 

m
m
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v  m  vV ddd

−=⇒⋅=      (5) 

 
where m represents the in-cylinder mass. 
Hence, considering the finite increment “δ“ due to a crank rotation δϑ, the specific entropy 
variation in equation (4) will now result: 
 

m
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being δm the mass entering the cylinder (which is negative whenever in-cylinder pressure is higher 
than outer pressure); from equation (6) the in-cylinder pressure changes then results: 
 

[ ]
m
mk pVkp)Q(k

V
p δδδδ +−−= 11

    (7) 

 
where δQ=m δq represents the heat received by the gas (which is negative when the gas 
temperature is higher than wall temperature, i.e. δQ∝ (Twall–T)) and k =cP/cV is the isentropic 
coefficient. 
In an ideal adiabatic motored engine both δQ and δm would be zero, and pressure would reach its 
maximum (δp=0 in equation( 7)) when the volume is minimum (δV=0): the compression and the 
expansion strokes would cause in-cylinder pressure variations symmetric with respect to TDC and 
the Location of the Peak Pressure LPP (which can be easily determined with 0.1 precision by means 
of polynomial interpolation of the pressure curve sampled with 1 crank angle degrees resolution) 
would coincide with the position of the TDC. As is known, in a Temperature-Entropy (T, S) 
diagram the adiabatic compression-expansion process of the in-cylinder gas would be represented 
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by two coincident segments (AB and BA in Fig. 1). If the compression-expansion process is 
diabatic, according to the second law of thermodynamics (equation (3)), the entropy variation 
depends on the gas temperature: when this is lower then wall temperature, heat transfer is positive 
and hence entropy increases; on the contrary, whenever gas temperature is above the wall 
temperature, entropy decreases. This explains the diabatic evolution reported both in Fig. 1 and Fig. 
2: as can be observed, in a diabatic process, the maximum pressure condition is reached before the 
minimum volume, i.e. before the TDC. In a real motored engine, pressure variation is also 
influenced by mass leakage δm and, as shown by equation (7), together with heat transfer, it causes 
the pressure increase to be zero when the volume changes are still negative (i.e. during 
compression); hence these two phenomena cause the pressure curve to be asymmetric with respect 
to the TDC, shifting the LPP in advance with respect to the TDC position (as can also be seen from 
the pressure curve reported in Fig. 3, obtained by means of thermodynamic simulations performed 
using the model described in Appendix A): the angular distance between LPP and the TDC position 
is called “loss angle” (ϑloss), being related to the energy and mass losses, and usually assumes 
values between -0.4 and -1 CA degrees, depending on the entity of the heat transferred and the 
escaped mass: 

ϑloss= LPP−LTDC     (8) 
 

 

Vmax 

Vmin 

Tmax 

Twall 

pmax 

 
Fig. 1 Temperature-Entropy diagram of the 
compression-expansion process in a motored 
cylinder: ideal engine (segments AB and BA) 
and diabatic engine (dashed curve) 
 

 
Fig. 2 Temperature-Entropy diagram of the 
diabatic compression-expansion process: 
peak pressure (point D) occurs before the 
TDC (point E) 
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Fig. 3 Qualitative progress of in-cylinder pressure and volume near TDC 
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1.1 The Loss Function and its increment 
Equation (6) also shows that two easily measurable quantities, the in-cylinder pressure and volume, 
allow the evaluation of the entropy variation (i.e. heat transfer) together with the mass leakage by 
means of the functions δV/V and δp/p, which are plotted as example in Fig. 5; defining the “Loss 
function” F so that: 

p
pc

V
VcF VP

δδδ +=       (9) 

it will result:    
m
mcSF P

δδδ +=       (10) 

 
 The entity of the variation of the Loss 
function, δF, which gathers the sum of 
the two losses, is then determined by 
the capability of the cylinder walls to 
exchange heat with the gas and by the 
amount of gas escaping from the 
cylinder. The qualitative progress of 
the Loss function variation in a real 
cylinder during a compression-
expansion process, together with its 
two constitutive terms δS and cP 
δm/m, is shown for example in Fig. 4: 
the entropy variation starts with a 
positive value (being T<Twall) and 
decreases, crossing the zero line when 
T=Twall, and reaching a minimum near 
the TDC position (here the heat flux 
from the gas to the wall is maximum), 
then starts to increase becoming 
positive before the Bottom Dead 
Centre (BDC); the relative mass 
leakage δm/m, being related to the 
difference between in-cylinder 
pressure and outer pressure, follows a 
similar trend, reaching a minimum 
near the TDC: it follows that, in this 
position, the loss function variation 
equals the sum of the two loss angle 
causes. Following this concept the 
authors tried to obtain information on 
the loss angle entity directly from the 

loss function variation. When the gas pressure reaches the peak value (i.e. at LPP), the ratio δp/p is 
zero, and equation (9) becomes: 

LPP
pLPP V

VcF ⎥⎦
⎤

⎢⎣
⎡=

δδ       (11) 

 
The latter equation shows that at the peak pressure position the knowledge of the loss function 
increment δF allows to determine the value of δV/V which, depending only on engine geometry (see 
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Fig. 4 Loss function variation δF and its two constitutive terms  
(obtained using the model described in Appendix A with δϑ =1 

CAD) 
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Fig. 5  Qualitative progress of δV/V and δp/p (obtained using the 
model described in Appendix A with δϑ =1 CAD) 
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Fig. 5 and equation (12)), is a known function of the crank shaft position, and hence of the loss 
angle. The function δV/V can be expressed as: 
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where ρ is the volumetric compression ratio and μ expresses the rod to crank ratio (i.e. the ratio 
between connecting rod length and crank radius). Since the loss angle is normally around -1 degree 
(= -0.017 radians), further approximations can be made: 
 

sin(ϑloss)≈ϑloss  cos(ϑloss)≈1   
 
It follows that, at the peak pressure position, equation (12) becomes: 
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Hence, being ϑloss

2<<μ2, equation (11) and (13) yield: 
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This demonstrates that the loss angle can be easily correlated to the loss function increment δF 
evaluated at the peak pressure position. Unfortunately δF undergoes great distortions even with 
small phase errors between δp/p and δV/V: Fig. 6, as example, shows some loss function variation 
curves calculated by means of the thermodynamic model exposed in Appendix A assuming 
different phase errors (expressed as fraction of the loss angle). As can be seen, a pressure phasing 
error equal to the loss angle (which means LPP=0) introduces a considerable error in the evaluation 
of the function δF. This fact, without a reliable way to evaluate the δF at the peak pressure position, 
would make equation (14) useless. The same Fig. 6 however shows the existence of two zones 
common to each of the curves: in these two crank positions the two fundamental functions for the 
calculus of the entropy variation, δp/p and δV/V, reach their extreme values (at about ±30 CAD 
ATDC in Fig. 5), and hence are poorly influenced by small phase errors (i.e. in the order of the loss 
angle); for this reason, according to equation (9), in these two crank positions the loss function 
variation remains almost unchanged. This fact implies that assuming a TDC position error equal to 
the loss angle (easily achievable setting LPP=0), the values of the loss function variation δF1 and 
δF2 in the two points relative to the minimum and maximum of the function δV/V will be nearly 
correct. Hence, in order to determine the loss angle from equation (14), a correlation between δF1 
and δFLPP has been searched, and, as shown in Appendix B, it has been found that, for a given 
engine, the ratio between δFLPP and δF1 is almost constant, i.e.: 
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δFLPP ≈ Φ ·δF1= Φ ·δFmin dV/V    (15) 
 
where Φ is a proportionality constant.  
As shown in Appendix B this constant mainly depends on the engine compression ratio and on the 
heat transfer law, and its mean value has been estimated to be 1.95. Thus equation (15) becomes: 
 

δFLPP ≈ 1.95 ·δFmin dV/V     (16) 
As a result, the top dead centre 
position can be determined phasing 
the pressure cycle with an initial 
error equal to the loss angle (i.e. 
setting LPP=0) and calculating the 
loss function increment δF1 at the 
minimum δV/V position ϑ1, which 
requires, according to equation (9), 
the estimation of the functions δV/V 
and δp/p. Unfortunately both of 
these functions can be affected by 
measurement errors: the in-cylinder 
pressure acquisition can be in fact 
subjected to bias error (above all if 
an un-cooled piezoelectric 
transducer is used) and to electric 
and mechanical noise, while the in-

cylinder volume estimation may 
present inaccuracy related to the 
compression ratio, which is normally 
known with some approximation 
(±3%). Moreover, as shown in 
equation (9), the specific heat at 
constant pressure and volume are 
required, which are functions of the 
gas temperature; this in turn can be 
deduced applying the perfect gas law 
by means of the gas temperature at 
inlet valve closure, which is normally 
known with an approximation as 
high as 30°C. 
All these uncertainties may strongly 
affect the δF1 evaluation, as shown 
for example in Fig. 7: here the loss 
function variation is calculated 
supposing both different compression 
ratio errors (top figure) and pressure 
bias errors (bottom figure). As can be 
seen, in presence of these 
measurement errors, the evaluated 
δF1 may considerably differs from 
the real one (i.e. error=0) thus 
preventing a reliable evaluation of 
the δFLPP and hence of the loss angle.  
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Fig. 6  Loss function variation δF for different phase errors 
(obtained using the model described in Appendix A with δϑ =1 
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Fig. 7 Loss function variation δF in presence of compression ratio 
error (top) and pressure bias error (bottom): δF1 (◊) and δF2(∆) 

are shown (pressure cycles phased with LPP=0 obtained using the 
model described in Appendix A with δϑ =1 CAD) 
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However the same Fig. 7 also shows that the evaluated δF1 and δF2 move in different directions in 
consequence of the measurement errors: this effect implies their mean value δFm remains almost 
constant, as shown in Table 1 and Table 2. 
 

⎟
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⎛ +
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⎞

⎜
⎝
⎛ +

=
22

 dv/vmax dv/vmin 21
m

FFFFF δδδδδ    (17) 

 
pressure  

bias error [bar] Err% δF 1 err% δF m 

-0.15 -332% 18% 
-0.10 -202% 11% 
-0.05 -93% 5% 
0.00 0% 0% 
0.05 82% -4% 
0.10 155% -8% 
0.15 221% -11% 

Table 1 Percentage error on both δF1 and δFm 
for different pressure bias errors 

Compression 
ratio error err% δF1 err% δF m 

-6% -219% -3% 
-4% -144% -2% 
-2% -71% -1% 
0% 0% 0% 
2% 70% 1% 
4% 138% 2% 
6% 205% 3% 

Table 2 Percentage error on both δF1 and 
δFm for different compression ratio errors 

 
It follows that, in order to correctly evaluate the loss angle, the loss function increment at the peak 
pressure position δFLPP should be correlated with the mean value δFm rather than with δF1. Thus 
relations (15) becomes: 

mLPP  FΦF δδ ⋅=      (18) 
 
Therefore the method proposed by the authors reposes on the evaluation of loss function increment 
δF1 and δF2 at the minimum and maximum δV/V positions (ϑ1 and ϑ2), which, according to 
equation (18), allows to evaluate the loss function variation at the peak pressure position δFLPP; this, 
in turn, is linked to the loss angle ϑloss by means of equation (14) and furnishes the top dead centre 
position (see equation (8)). The determination of the angular positions ϑ1 and ϑ2 at which the 
function δV/V is minimum and maximum requires the derivation of equation (12), whose result is a 
function not solvable in the variable ϑ.  

Hence these angular positions must 
be evaluated using numeric methods; 
considering compression ratios ρ 
ranging from 10 to 20 and rod to 
crank ratios μ ranging from 2.8 to 
4.0, the authors determined the 
angular positions ϑ1 (=−ϑ2) using a 
2nd order polynomial interpolation on 
the δV/V curve extended to a range 
of ±0.4 degrees around the position 
of the extreme values. The results, as 
pointed out in Fig. 8, showed that the 
angular positions ϑ1 and ϑ2 depend 
both on the compression ratio and on 
the rod to crank ratio. The data 

obtained allowed to trace a formula for the calculation of the minimum and maximum δV/V angular 
positions with a precision of 0.1 degrees: 
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1,2 76.307   −⋅⋅= ρμϑ m     [CAD ATDC]   (19) 
 
 
1.2 Procedure for TDC position estimation 
Summarizing, once the motored pressure cycle has been sampled, the procedure for the TDC 
estimation consist of 5 steps, here resumed: 
 
1) the pressure cycle must be phased setting LPP=0 (in this way the position error is exactly 

equal to the unknown loss angle ϑloss): for this purpose a 2nd order polynomial fitting 
performed on the pressure curve around the maximum pressure value position allows a 
sufficient precision 

2) the angular position ϑ1 and ϑ2 of the minimum and maximum δV/V must be evaluated (for 
example using equation (19)) 

3) the loss function increments δF1 and δF2 at the angular position ϑ1 and ϑ2 must be 
calculated by means of equation (9) 

p
pc

V
VcF VP

δδδ +=        

and hence their mean value δFm=1/2 (δF1+δF2) 

4) the loss function increment δFLPP at the peak pressure position can be determined from 
equation (18) 

mLPP  FΦF δδ ⋅=        

where the constantΦ can be estimated by means of equation (46) (reported Appendix B) or 
set to the mean value 1.95, as determined in Appendix B 

5) the loss angle ϑloss, and hence the TDC location, can be then evaluated by means of equation 
(14) 

LPPp
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It is worthwhile to mention that the first step is not necessary if the pressure cycle has already been 
phased with an error lower than the loss angle. Moreover the specific heat cP and cV in equation (6) 
(9) (11) and (14) should be temperature dependent and evaluated according to the classical known 
functions valid for air, as reported in Appendix A. However a satisfactory approximation is equally 
reached if the cP and cV are supposed to be constant. In this case the evaluation of the gas 
temperature is completely avoidable for the TDC determination. 
 
 
2. ASSESSMENT OF THE METHOD 
In order to ascertain the reliability of the method proposed, a series of simulations has been 
performed to generate plausible in-cylinder pressure curves compatible with the real compression-
expansion process which takes place in a motored engine cylinder, taking into account both mass 
leakages and heat transfers. The pressure curves obtained have been then used to test both the 
reliability of the proposed method in the determination of TDC and its robustness to the most 
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common encountered measurement problems. Details on the thermodynamic model used for the 
generation of the pressure curves are given in Appendix A. 
A first series of simulations has been performed in order to estimate the entity of the loss angle and 
its dependence from the engine operative condition of speed and Manifold Absolute Pressure 
(MAP). The simulations were carried out, as resumed in Table 3, taking into consideration the 
dimensions of a commercial available automotive engine, two compression ratios (10 and 22), 
different conditions of MAP and speed and employing three different heat transfer models (reported 
in Appendix A). For each simulated pressure curve, the seven points around the maximum value 
have been interpolated by means of a 2nd order polynomial, thus obtaining the location of the 
pressure peak (LPP) as the vertex abscissa: this procedure ensured a precision of 0.001 CAD, which 
is amply higher than the required one of 0.1 CAD. Once known the LPP, the loss angle is known by 
its definition: 

ϑloss= LPP−LTDC 
 

Manifold absolute pressure 0.4 to 1.0 bar           (steps of 0.1) 
Engine speed 1000 to 3000 rpm    (steps of 500) 
Compression ratio 10 and 22 
Rod to crank ratio 3.27 
Bore 70.80 mm 
Stroke 78.86 
Leakage flow area AN 0.507 mm2 
Walls temperature 70°C 

Table 3 Simulation conditions for the evaluation of the loss angle entity  
(more details can be found in Appendix A) 
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Fig. 9 Loss angle value determined with compression ratio ρ=10 using the Woschni heat transfer model 
 
As a result, the diagrams in Fig. 9 shows 
the loss angle values obtained with 
compression ratio=10 employing the 
Woschni heat transfer model. It can be 
observed that the loss angle, whose values 
go from -0.46 to -0.88, mainly depends on 
engine speed, while the manifold pressure 
plays a minor role. Since the two causes of 
the loss angle, heat transfer and mass 
leakage, decrease their entities with 
growing engine speed, then the loss angle 
diminishes too. The manifold pressure 
influences both the relative mass leakage 

δm/m and the specific heat exchanged with walls, causing then lower loss angles with higher MAP. 
The mean loss angle values estimated both for low and high compression ratio engines according to 

Comp. ratio = 10 
heat transf. model Woschni Eichelberg Hoenberg 

loss angle -0.62 -0.64 -0.85 
variation range ± 0.21 ± 0.36 ± 0.31  

Table 4 Loss angle values determined with low compression 
ratio 

 
Comp. ratio = 22 

heat transf. model Woschni Eichelberg Hoenberg 
loss angle -0.63 -0.62 -0.88 

variation range ± 0.22 ± 0.34 ± 0.31  
Table 5 Loss angle values determined with high 

compression ratio 
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each of the three heat transfer models are resumed in Table 4 and Table 5, together with their 
variation ranges. As shown, there are no great differences between the two compression ratios: 
using the Woschni and the Eichelberg models, the loss angle resulted to be about -0.63 CAD, while 
employing the Hoenberg model, the mean loss angle was found to be about -0.87 CAD. This 
different prediction is due to the higher heat exchange coefficient which characterize the Hoenberg 
model with respect to the other two (see Fig. 10 and Fig. 11). 
 

MAP 0.6 bar

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

500 1000 1500 2000 2500 3000 3500

engine speed [rpm]lo
ss

 a
ng

le
 [C

A
D

 A
TD

C
]  

 .

Woschni

Eichelberg

Hoenberg

Fig. 10 Comparison between the loss angle values 
determined at MAP=0.6 bar using the three heat transfer 
models (engine with ρ=10) 
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Fig. 11 Heat exchange coefficients according to the 
three heat transfer models at 2000 rpm and MAP=0.6 
bar (engine with ρ=10) 

 
 
2.1 APPLICATION OF THE METHOD PROPOSED  
The application of the proposed method requires the calculation of the loss function increment δF at 
the angular position ϑ1 and ϑ2 (see equation (19)) relative to the minimum and maximum δV/V; in 
these two positions both δV/V and δp/p must be evaluated (see equation (6)), together with the gas 
temperature, which allows the determination of both cP and cV (see equation (32) in Appendix A). 
The relative volume change δV/V can be easily estimated, since the engine dimensions are generally 
known; hence, as already shown in equation (12): 
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where ϑ represents the crank angular position (ϑ=0 at TDC). It must be pointed out that this 
expression is valid for a centred crank mechanism: the case of a non centred crank mechanism is 
discussed below. 
The evaluation of the relative pressure change δp/p may presents, instead, some problems related to 
the in-cylinder pressure acquisition, which is generally performed with one crank angle degree 
resolution. The authors propose the following procedure for the calculation of δp/p at ϑ1 and ϑ2: 
first of all the relative pressure increment must be numerically evaluated, hence: 
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Then the δp/p values must be interpolated, as function of the crank position, by means of a 3rd 
degree polynomial (which revealed to give better results than the 2nd and the 4th order polynomial) 
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in the range of ±20 degrees around ϑ1 and ϑ2; the fitting polynomials thus obtained permit the 
precise evaluation of δp/p at ϑ1 and ϑ2 position. As pointed out below, this procedure is also useful 
for noise filtering purpose. 
The first series of simulations aimed to verify, both for a constant mass process and in presence of 
gas leakage, the value of the proportionality constant Φ calculated in the Part 1. To that end the 
pressure curves have been computed according to each of the three heat transfer models with and 
without mass leakage, for different manifold pressure and engine speed conditions, and assuming 
various compression ratio and rod to crank ratio (i.e. the ratio between connecting rod length and 
crank radius), thus generating 1050 different pressure cycles, as summarized in Table 6.  
For each of the simulated pressure cycles, the above resumed 5-steps procedure has been applied in 
order to evaluate the loss angle value, which in turn allows to estimate the TDC location: this, 
compared to the known TDC location of the thermodynamic model, allowed to determine the TDC 
estimation error of the method proposed for each of the pressure cycles. 
 

Manifold absolute pressure 0.4 to 1.0 bar           (steps of 0.1) 
Engine speed 1000 to 3000 rpm    (steps of 500) 
Compression ratio 10 to 20                   (steps of 2) 
Rod to crank ratio 2.8 to 4.0                 (steps of 0.3) 
Bore 70.8 mm 
Bore to stroke ratio 1 
Leakage flow area 0.507 mm2 
Walls temperature 70°C 

Table 6 Simulation conditions for the evaluation of the proportionality 
constant Φ 

 
 
The results obtained confirmed the 
evaluation carried out in Appendix B: in 
fact the top diagram in Fig. 12, which 
reports the maximum error in the TDC 
position evaluation for a constant mass 
process and for each of the heat transfers 
models, shows that Φ=1.92 provides the 
best compromise between the different 
heat transfer models. When also the effect 
of gas leakages is considered, as predicted 
in Appendix B, the proportionality 
constant tends to increase, as confirmed by 
the bottom diagram in Fig. 12: in this case 
in fact a safer value would lie between 1.95 
and 2, minimizing thus the loss angle 
evaluation error. It is worthwhile to 
mention that this result however depends 
on the gas leakage entity, i.e. on the value 
adopted for the equivalent flow area (see 
Appendix A for more details). The 
diagrams in Fig. 12 also show that in both 
cases the entity of the error committed on 
the loss angle value is safely below the 
allowable 0.1 CAD: this result confirms 

the validity of the method proposed for the determination of the top dead centre position. 
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Fig. 12 Maximum TDC position error as function of the 
proportionality constant Φ: heat transfer only (top), both 

heat transfer and mass leakage (bottom) 
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2.2 ASSESSMENT OF THE METHOD’S ROBUSTNESS  
Once confirmed the validity of the method proposed, the authors assessed its robustness towards the 
most common in-cylinder pressure measurement problems and uncertainties, which are here listed: 
 
1) Pressure bias error: this kind of error is typical when dynamic sensors or sensors subjected 
to thermal drift (e.g. an un-cooled piezoelectric sensors) are employed. If the measured pressure 
cycle is compensated by means of one of the most known methods [12, 13], the pressure evaluation 
uncertainties may be as high as 10 kPa: the effect of such a measurement error on the loss function 
increment δF has already been shown in Fig. 7 and Table 1. 
 
2) Engine compression ratio: this fundamental parameter is normally known with some 
approximation, typically ±3%. Such uncertainty may introduce an estimation error on the evaluation 
of in-cylinder volume, which in turn may affect the reliability of the method proposed, which relies 
on the function δV/V; Fig. 7 and Table 2 show the effect of a ±4% compression ratio error on the 
estimation of the loss function increment δF. 
 
3) In-cylinder gas temperature: during the compression-expansion process it can be evaluated 
by means of the perfect gas law, on the base of the gas temperature at inlet valve closure TIVC, 
which, taking into account wall heat transfer during the intake stroke, is usually assumed to be 
15÷30°C higher than the manifold gas temperature. This estimation may introduce an error as high 
as ±30°C. 
 
4) Pressure measurement noise: it is known to internal combustion engine researchers that a 
noise component is always present in the pressure signal measured. It may origin from the 
mechanical vibrations perceived by the transducer or from electromagnetic interferences. Analysing 

some experimental pressure cycles 
sampled on a spark ignition engine, it 
was found that the intensity of such a 
noise typically reaches a 600 Pascal 
standard deviation. Fig. 13 shows the 
strong effect on the loss function 
increment δF of a uniform noise with 
a standard deviation of 400 Pa. 
 
 
The dimensions of the engine 
considered in the robustness were the 
same of Table 3. The compression-
expansion process has been simulated 
by means of the thermodynamic 
model described in Appendix A on 
different conditions of engine speed 

and MAP (35 operative points), as summarized in Table 7.  
 

Manifold absolute pressure 0.4 to 1.0 bar           (step = 0.1) 
Engine speed 1000 to 3000 rpm    (step = 500) 
TIVC 35 °C 
Twall 70 °C 

Table 7 Simulation conditions for the robustness tests 
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For these simulations, just the Woschni heat transfer model was employed (which is the only one 
developed both on motored and fired engine cycles [9]) since the attention was focused on the 
robustness of the methods. The pressure curves obtained by the simulations were modified 
introducing the above mentioned measurement errors, as described in the following equations: 
 

)+error1('=
+error'=TT
+pp'=p+p

ρ

TIVCIVC

noisebias

⋅ρρ
   (21) 

 
On a first step the measurement errors were introduced one at a time, then the resulting pressure, 
volume and temperature data were employed to compute the loss angle by means of the proposed 
method. Table 8 reports the maximum TDC position error found for each of the disturbances 
introduced: as can be seen, it remained always below the 0.1 degrees. The worst effect is played by 
the negative pressure bias error, while noise effect was adequately attenuated by means of the 
filtering properties of the 3rd order polynomial used to fit the δp/p values. 
 

 Disturbance 
entity 

Max TDC position 
error [CAD] 

No disturbance  0.042 
TIVC +30°C 0.041 
TIVC −30°C 0.044 
Compression ratio +5% 0.045 
Compression ratio −5% 0.038 
Pressure bias error +10 kPa 0.034 
Pressure bias error −10 kPa 0.063 
Pressure signal noise st. dev. 600 Pa 0.043 

Table 8 Maximum TDC position errors for different measurement 
disturbances – (ρ=10, Φ=1.95) 

 
In order to test the robustness of the method also for a high compression ratio engine, the 
simulations of Table 7 have been repeated setting the compression ratio to 22. Each disturbance has 
been applied again identically, except for the noise, which has been supposed to increase 
proportionally to the pressure levels, and has been amplified to reach a standard deviation of 1800 
Pa. As shown in Table 9 the results obtained confirmed the reliability of the method even with high 
compression ratio engine, safely reaching the required precision of 0.1 CAD. 
 

 Disturbance 
entity 

Max TDC position 
error [CAD] 

No disturbance  0.048 
TIVC +30°C 0.050 
TIVC −30°C 0.048 
Compression ratio +5% 0.050 
Compression ratio −5% 0.047 
Pressure bias error +10 kPa 0.045 
Pressure bias error −10 kPa 0.059 
Pressure signal noise st. dev. 1800 Pa 0.041 

Table 9 Maximum TDC position errors for different measurement 
disturbances – (ρ=22, Φ=1.95) 
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Even if the method proposed revealed to be robust against each of the measurement errors assumed, 
it must be considered that in a real experimental test these disturbances may occur simultaneously. 
Hence, in order to assess the robustness of the method when the disturbances are simultaneously 
present, the pressure cycles simulated in the 35 operative conditions of Table 7 were modified using 
the combination of disturbances reported in Table 10 and then employed to determine the loss angle 
by means of the proposed method. The maximum TDC position errors obtained for each 
disturbances combination are presented in Table 11 both for low and high compression ratio: as 
shown, in the case of low compression ratio (ρ=10), the simultaneous presence of disturbances 
induced a maximum errors of 0.066 CAD, while in the case of high compression ratio engine 
(ρ=22), the maximum TDC position evaluation error was 0.048 CAD. 
 
Pressure signal noise st. dev. 600 Pa (ρ=10) or 1800 Pa (ρ=22) 
TIVC error −30°C +30°C 
Compression ratio error −5% +5% −5% +5% 
Pressure bias error [kPa] −10 +10 −10 +10 −10 +10 −10 +10 

Table 10  Disturbances combinations used in the robustness test 
 
 Maximum TDC position errors [CAD] 
compression ratio = 10 0.058 0.035 0.065 0.039 0.061 0.032 0.066 0.036 
compression ratio = 22 0.041 0.037 0.045 0.041 0.045 0.037 0.048 0.040 

Table 11  Maximum TDC position error obtained in the robustness test of Table 10 
 
The method proposed hence revealed to be robust enough to allow a safe evaluation of the TDC 
position (the maximum error was lower than the required 0.1 crank angle degrees) even in presence 
of the typical in-cylinder pressure measurement errors and disturbances. 
 
 
2.3 NON CENTRED CRANK MECHANISM 
If the engine is endowed of a non centred crank mechanism, the crank angle position with respect to 
the cylinder axis when the connecting rod and the crank are aligned (i.e. when the piston is at top 
dead centre) is not zero but assumes the value ϑT, as depicted in Fig. 14. 
If the angular position are still evaluated with respect to the cylinder axis, then the angle ϑT must be 
accounted for in order to correctly evaluate the TDC position by means of the thermodynamic 
method. As shown in Fig. 14, the angular positions of Top (ϑT) and Bottom (ϑB) Dead Centre can 
be calculated since: 

rl
z

rl
z

BT −
=

+
= ϑϑ sin             sin      (22) 

 
where z is the crank pin offset (i.e. the distance between the crank pin and the cylinder axis), while l 
and r are the connecting rod length and the crank radius respectively. For a non centred crank 
mechanism, the piston stroke results to be: 
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hence, from Fig. 14, the in-cylinder volume is: 
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being AC the cylinder section area and τ the ratio z/l. 
 

Fig. 14 Representation of a non centred crank mechanism 
 
Equation (12) then becomes: 
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which, besides allowing the correct estimation of the loss function increment δF by means of 
equation (6), can also be used for the numerical evaluation of the angular position ϑ1 and ϑ2 of 
minimum and maximum δV/V through polynomial interpolation: the authors however observed that, 
for this purpose, equation (19), which has been derived for centred crank mechanism, still gives 
good results. Being the loss angle in the order of -1 CAD ≈ -0.017 radians, the following 
approximation can be made: 
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hence equation (25) becomes: 
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The crank pin offset z is usually small with respect to the rod length l, then also ϑT <<1 and hence 
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Equation (27) thus gives: 
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which, together with the latter of equations (28) and equation (11), allows to evaluate the loss angle: 
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As can be noted equation (30) differs from equation (14) for the presence of the angular offset ϑT 
and for the ratio c/r which is less than 2 for a non centred crank mechanism.  
In order to verify the reliability of the method with a non centred crank mechanism, the simulations 
in the operative conditions of Table 7 have been repeated with and without measurement 
disturbances using the engine data of Table 12: the results, resumed in Table 13, clearly show that 
the method proposed still estimates the TDC position with a maximum error of 0.049 CAD.  
 

Compression ratio 10 
Rod to crank ratio 3.27 
Bore 70.80 mm 
Crank radius 35.40 mm 
Crank pin offset 2 mm (τ=0.017) 
Leakage flow area 0.507  mm2 
Table 12 Dimensions of the engine with crank pin offset 

 
 Disturbance 

entity 
Max TDC position 

error [CAD] 
No disturbance  0.015 
TIVC +30°C 0.014 
TIVC −30°C 0.024 
Compression ratio +5% 0.018 
Compression ratio −5% 0.018 
Pressure bias error +10 kPa 0.032 
Pressure bias error −10 kPa 0.039 
Pressure signal noise st. dev. 600 Pa 0.049 
Table 13 Maximum TDC position errors for different measurement 

disturbances (non centred crank mechanism, Φ =1.95) 
 
Table 14 instead reports the maximum TDC position estimation errors obtained with the 
simultaneous presence of the measurement disturbances for each of the 35 operative conditions: 
also in this case the maximum TDC position errors found remained under the required accuracy of 
0.1 CAD. The method proposed thus revealed a good reliability even when the engine used is 
characterized by a non centred crank mechanism. 
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Pressure signal noise st. dev. 600 Pa 
TIVC error −30°C +30°C 
Compression ratio error −5% +5% −5% +5% 
Pressure bias error [kPa] −10 +10 −10 +10 −10 +10 −10 +10 
Max TDC position error 0.044 0.058 0.044 0.058 0.045 0.073 0.045 0.073 

Table 14 Maximum TDC position errors obtained in the robustness test  
(non centred crank mechanism, Φ =1.95) 

 
 
3. CONCLUSIONS 
As is known to internal combustion engines researcher, the exact determination of the crank 
position when the piston is at Top Dead Centre (TDC) is of crucial importance for indicating 
analysis: the maximum allowable error results to be about 0.1 Crank Angle Degrees (CAD). Due to 
wall heat transfer and mass leakage, under motored condition (i.e. without combustion) the TDC 
position does not coincide with the Location of Pressure Peak (LPP) but follows it by an angular arc 
called “loss angle” , which, depending on the engine, is normally in the range of 1 Crank Angle 
Degrees (CAD).  
This paper presents a new thermodynamic method for the estimation of the TDC position in internal 
combustion engines. The method relies on the definition of a proper function, called “loss function” 
whose increment is directly connected to the two “losses”, i.e. wall heat transfer and gas leakage.  
As described in the first part of the paper, the estimation of the loos function increment in two 
particular crank positions allows to determine the loss angle. 
In the second part of the paper, the method is put to the test by means of thermodynamic 
simulations, thus verifying its capability to determine the loss angle under many different operative 
conditions of engine speed and manifold pressure, both for low and high compression ratio engines, 
and using three different heat release models. Moreover, typical in-cylinder pressure measurement 
errors and disturbances (pressure bias errors, pressure signal noise, compression ratio and gas 
temperature uncertainty) have been taken into account in order to test the robustness of the method 
proposed: as a result, the proposed thermodynamic method revealed a very good accuracy and 
reliability in determining the TDC position, assuring the required accuracy of 0.1 CAD even in 
presence of considerable disturbances, both for centred and non centred crank mechanism. 
It is worthwhile to mention that the method proposed is intrinsically robust towards the entity of 
both heat transfer and mass leakage because it “weighs up” the effect of both “losses” in two 
particular crank positions and then estimates the entity of the two “losses” at the peak pressure 
position, which in turn allows to evaluate the loss angle. This means that the method proposed 
maintain its precision apart from the amount of both heat exchanged with wall and mass escaped 
from the cylinder. 
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APPENDIX A - THERMODYNAMIC MODEL USED FOR THE SIMULATION OF THE 
COMPRESSION-EXPANSION PROCESS IN A MOTORED ENGINE CYLINDER 
 
This section gives some details on the thermodynamic model used for the compression-expansion 
process simulation.  
The model employed is zero dimensional and has been implemented on a spreadsheet with a 
resolution of 1 crank angle degree. It is based on the first law of thermodynamics, which allows to 
calculate the pressure variation of the gas (air) due to in-cylinder volume changes during both the 
compression and expansion strokes. As already described above, equations (1) (2) (3) (4) (5) and 
(6) allow the estimation of the in-cylinder pressure variation during a crank rotation δϑ: 
 

[ ]
m
mk pVkp)Q(k

V
p δδδδ +−−= 11

    (31) 

 
where V represents the in-cylinder volume, p the gas pressure, δQ the heat received by the gas from 
the cylinder walls, k= cP/cV is the isentropic coefficient, m represents the in-cylinder mass while δm 
is the mass entering the cylinder (hence for mass leakage δm is negative). 
In the thermodynamic model both cP and cV were considered function of the gas temperature by 
means of the equations valid for Air: 
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cV = cP -R’  and  R’=287.1 [J/kg K]  k=cP/cV   

 
As regards wall heat transfers, three different models have been considered, in order to assess the 
results of the method independently from the heat exchange law: 
 
a) Woschni model [9,10]  h=3.26 d-0.2 (2.28 um)0.8 T-0.53 p0.8 [W/m2 K] 
 
where  

d = cylinder bore [m] 
T = gas temperature [K] 
p = gas pressure [kPa] 
um = mean piston speed [m/s] 

 
b) Hoenberg model [9]  h=130 V-0.06 (um+1.4)0.8 T-0.4 p0.8  [W/m2 K] 
 
where  

V = instantaneous cylinder volume [m3] 
T = gas temperature [K] 
p = gas pressure [bar] 
um = mean piston speed [m/s] 

 
c) Eichelberg model [9,11] h=2.43 um

0.33 (p T)0.5    [W/m2 K] 
 
where  

T = gas temperature [K] 
p = gas pressure [bar] 
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um = mean piston speed [m/s] 

 
It is worth to mention that in the above listed heat transfer models, any term related to the 
combustion pressure has been omitted, since the task is to simulate the pressure changes in a 
motored (i.e. without combustion) engine. Once fixed the model, the heat received by the gas 
during the interval time δt (i.e. in the rotation arc δϑ) can be evaluated as:  
 

ω
ϑδΑΔΤhδt ΑΔΤhQδ ⋅⋅⋅

 =⋅⋅⋅ =  

 
being ω the engine speed [rad/sec], ΔT=Twall-T the temperature difference between cylinder walls 
and gas, and A the instantaneous in-cylinder walls surface. 
Gas leakage has been modelled as the mass flowing through an equivalent convergent nozzle, hence 
the mass δm entered in the time interval δt can be evaluated as: 
 

ω
δϑδδ ⋅−

=⋅−= nozzle
nozzle

GtGm      (33) 

 
where the mass flow Gnozzle naturally depends on the in-cylinder condition of pressure and 
temperature, and on the expansion ratio pout/p: 
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   (34) 

 
Here AN represents the equivalent nozzle flow area, which has been estimated by-means of the 
results exposed in [7] keeping a constant proportionality with the piston surface area (see Table 6 
and Table 12). 
The crank rotation taken into consideration in the simulation ranged from -180 to +180 CAD after 
top dead centre (ATDC), with neither inlet valve lag angle nor advanced opening of the exhaust 
valve. 
The pressure increment of equation (31) has been numerically integrated using the Runge-Kutta 
fourth order method thus obtaining the in-cylinder pressure; the gas temperature has been calculated 
by means of the perfect gas law: 

IVC
IVCIVC

T
V
V

p
pT =       (35) 

 
where pIVC, VIVC and TIVC denote the thermodynamic state of the gas at the inlet valve closure. 
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APPENDIX B 
 
In this section an analytical relation between the loss function variation at the peak pressure position 
δFLPP and at the minimum δV/V position δF1 is derived. 
As first step, the in-cylinder evolution will be considered without mass leakage; hence the ratio 
between the two loss function increments can be expressed in terms of entropy variations: 
 

[ ]
[ ]  

/
/   

111

LPP LPPLPP

ϑϑϑ δ
δ

δ
δ

δ
δ

TQ
TQ

S
S

F
F

=≡     (36) 

 
where the amount of heat received by the gas from the walls during the time interval δt is: 
 

δQ = h A (Twall –T) δt      (37) 
 
being h the heat transfer coefficient, A the area of the heat exchange surface, T and Twall the gas and 
wall temperatures. Hence the entropy variations ratio becomes: 
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The total in-cylinder wall surface area A is: 
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where x represents the piston distance from the cylinder top (function of the crank angle ϑ): 
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Here ρ is the volumetric compression ratio, while μ is the rod to crank ratio (i.e. the ratio between 
the connecting rod length and the crank radius). Introducing the dimensionless variable χ = 2x/d, 
the ratio between the heat transfer surfaces become: 
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According to the most used model for heat transfer between gas and internal combustion engine 
cylinder, the heat transfer h coefficient is related to gas pressure p, temperature T and volume V by 
means of three power with exponents a, b and c respectively: 
 

h ∝ pa Tb Vc        
 
Hence the ratio of the heat transfer coefficient becomes: 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

[ ]
[ ]     

11

LPPLPP

ϑϑ
cba

cba

VTp
VTp

h
h

=      (42) 

 
Both gas pressure and temperature are linked to in-cylinder volume by the polytropic law: 
 

p V γ =cost 
T V γ-1 = cost 

 
where γ  is the mean polytropic index. 
It follows that the ratio between the heat transfer coefficient is: 
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The last fundamental ratio in equation (38) regards the temperature difference between gas and 
wall: 
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If TIVC represents the gas temperature at inlet valve closure, then the ratio between the temperature 
differences becomes: 
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Hence, from equations (38)(41)(43)(44) and (45), the entropy variations ratio can be evaluated by 
means of: 
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being the exponent β=γ (a+b) – (b+c) – (γ –1). 
As can be noted, this ratio mainly depends on the engine geometry and on the heat transfer law, 
then for a given engine, it can be considered a constant: 
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       (47) 
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Assuming the values in Table 15 and taking into consideration three different heat transfer models 
(Woschni [9, 10], Eichelberg [9, 11] and Hohenberg [9]) it has been found that the values assumed 
by the ratio of equation (46) ranges from 1.81 to 2.05 according to the compression ratio and the 
engine heat transfer law, as shown in Fig. 15. A negligible dependence has been found with respect 
to the rod to crank ratio μ. The mean results obtained by each heat transfer model are resumed in 

Table 16, and, as can be noted, for the 
constantΦ a mean value equal to 1.92 
could be adopted. 
Thus the following relation can be 
assumed to calculate the loss function 
increment δFLPP at the peak pressure 
position, once the δF1 at the minimum 
δV/V position has been evaluated: 
 

δFLPP ≈ 1.92 δF1  (48) 
 
This relation however has been derived 
for a constant mass process; it will be 
now shown that a similar relation can be 
derived in presence of mass leakage.  
As shown in equation (10), for a real 
adiabatic evolution the loss function 
increment is:  

 
m
mcF P

δδ =   (49) 

 
It follows that for an adiabatic process in 
presence of mass leakage (neglecting the 

specific heat change) the ratio of the loss function increment is: 
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The mass escaping from cylinder 
through valve seats and piston rings 
during the crank rotation δϑ (i.e. during 
the time interval δt) can be evaluated by 
means of the equation for the mass flow 
through a convergent nozzle. Once the 
gas pressure is above the critical 
pressure (which is about 2 times the 
outer pressure), the leakage mass is: 

 

compression ratios ρ 10 to 20  
rod to crank ratios μ  2.8 to 4.0  
Twall 70 °C 
TIVC 40 °C 
γ 1.32  
ϑLPP -1  

Table 15 
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Fig. 15 Entropy variation ratio as function of compression 
ratio for three different heat transfer models 

Heat transfer 
model a b c 

Φ 
(mean value) 

Woschni 0.8 -0.53 0 1.91 
Eichelberg 0.5 0.50 0 1.83 
Hohenberg 0.8 -0.40 -0.06 2.03 

Table 16 Mean entropy variation ratio using three different 
heat transfer models 
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where AN is the constant equivalent flow area. It follows that the ratio in equation (50) becomes: 
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Assuming that during the rotation arc from ϑ1 to TDC the isentropic coefficient k remains constant, 
the loss function ratio becomes: 
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The mass escaped in the considered crank rotation arc can amount to few percentage points of the 
total mass, hence: 

1  
LPP

1 ≈
m
mϑ

      (54) 

 
Thus by means of the polytropic law pVγ=constant and of the already introduced dimensionless 
variable χ = 2x/d, the ratio in equation (53) becomes: 
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Using the same values of Table 15 it was found that this ratio moves from 1.94 to 2.07, with a mean 
value of 2, which is not too far from the result obtained in the case of heat transfers and no mass 
leakage (see equation 48), i.e. 1.92. Hence, considering a real diabatic process, the constant Φ 
should assume a value between 1.9 and 2, i.e. 1.95 
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SYMBOLS AND ABBREVIATIONS 
 
A = in-cylinder heat exchange surface area 
Ac = cylinder section area=  (π d2)/4 
AN = equivalent nozzle flow area for mass leakage calculation 
c = engine stroke 
cP = constant pressure specific heat of the gas 
cV = constant volume specific heat of the gas 
d = piston bore 
dY = differential of the generic function Y 
errorT = gas temperature uncertainty at inlet valve closure 
errorρ = engine compression ratio uncertainty 
F = loss function 
h = heat exchange coefficient 
k = gas isentropic coefficient = cP/cV 
l = rod length 
m = in-cylinder gas mass 
p = in-cylinder gas pressure 
p’ = in-cylinder gas pressure affected by measurement errors 
Q = heat received by the gas from the cylinder walls 
q = specific heat received by the gas from the cylinder walls 
r = crank radius 
R’ = in-cylinder gas constant 
S = in-cylinder gas specific entropy 
T = in-cylinder gas temperature 
t = time 
Twall = cylinder walls temperature 
u = in-cylinder gas specific internal energy 
um = mean piston speed 
v = in-cylinder gas specific volume 
V = in-cylinder volume 
x = piston distance from the cylinder top 
z = crank pin offset 
 
 
χ = adimensional piston position = 2x/d 
δF1 = δFmin dV/V = loss function increment at the minimum dV/V angle  
δF2 = δFmax dV/V = loss function increment at the maximum dV/V angle 
δFLPP = loss function increment at the peak pressure position 
δFm = mean loss function increment = 1/2 (δF1+δF2) 
δt = time interval during the elementary crank rotation δϑ 
δY = finite increment of the generic function Y during the elementary crank rotation δϑ 
Φ  = proportionality constant 
γ = exponent of the polytropic evolution 
μ = engine rod to crank ratio 
ϑ = crank position 
ϑ1 = crank position for the minimum dV/V 
ϑ2 = crank position for the maximum dV/V 
ϑB = BDC crank position measured with respect to cylinder axis (non centred crank mechanism) 
ϑloss = loss angle 
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ϑT = TDC crank position measured with respect to cylinder axis (non centred crank mechanism) 
ρ = engine compression ratio 
τ = adimensional crank pin offset = z/l 
 
 
 
ATDC = after top dead centre 
BDC = bottom dead centre 
BTDC = before top dead centre 
CA = crank angle 
CAD = crank angle degree(s) 
IMEP = indicated mean effective pressure 
IVC = inlet valve closure 
LPP = location of pressure peak 
LTDC = location of top dead centre 
MAP = manifold absolute pressure 
TDC = top dead centre 


