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Abstract
Reproducing the characteristics of human
movements, is a crucial issue in studying
motion. In the context of this work, an
explicit model of synergies which can
be parametrized is used for reproducing
the main features of reaching motions.
This paper evaluates the possibility to
extrapolate learned parameters from a
captured motion to new targets and
shows how learning process is a key issue
to ensure the robustness of parameters.
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1 Introduction

Using virtual humanoids has become a com-
mon trade in many applications like video
games, virtual ergonomics or virtual train-
ing. However realism and autonomy of their
movements is still an open challenge.

In previous work [1], synergies are mod-
eled in a sensory motor loop to ensure both
realism and autonomy in reaching tasks.
This model of synergies uses explicit param-
eters to reproduce specific motion planning.
A methodology is then proposed to learn
these parameters from captured motion.

While attempting to extrapolate learned

parameters to synthesize motion towards
another target, some parameters displayed
poor capacity to extend features of the sam-
ple motion. In this article, differences be-
tween robust and non robust set of parame-
ters are discussed. The learning process is
enhanced to ensure robustness of parame-
ters.

2 State of the art

Over the years, different methods aiming
at producing natural gestures reproducing
characteristics of real movements have been
proposed [2]. This approach stands in the
field of data-driven methods. In these ap-
proaches, the main objective consists of syn-
thesizing new sequences of movements from
existing ones.

On the first side, some methods try to
learn the whole inverse function from a mo-
tion database [3, 4]. Both approaches pro-
duce natural-looking and physically plausi-
ble motions. However, these learning models
require large set of motions.

An alternative is to use statistical learn-
ing to extract style from captured motions
to guide inverse kinematics during synthesis
[5, 6, 7] or to fit a sample motion to a new
task [8, 9, 10, 11]. Relying on both an IK
algorithm and real motions lowers the num-



ber of required data. However, dealing with
implicit models prevents these approaches to
study motor strategy of an individual.

A reduced set of parameters represent-
ing the dynamical effect of the synergies in-
volved in reaching motions has shown to
greatly improve the naturalness of the pro-
duced movements [1]. This work extends the
methodology proposed to learn parameters
from sample motion by evaluating their ex-
trapolation to new targets.

3 Synergies

In this section, we consider the control of a
kinematic chain C which rotations are rep-
resented by the state vector Θ. Contrary to
traditional inverse kinematics methods, tra-
jectory of the end effector is not defined be-
fore synthesis. The motion controller thus
uses an optimization loop, converging to-
wards target’s position Xd (cf. fig. 1).

At each iteration, ∆Θ is obtained using
the optimisation function O, based on the
transpose of the Jacobian JT or its pseudo-
inverse J+. While transposed Jacobian has
a lower convergence rate, it is more stable
than pseudo-inverse which is sensitive to sin-
gularities [12].

Figure 1: Motion control using synergies S

parametrized by P

Synergies are defined as a function of time
S(t) using both by a temporal function φ(t)
(modeling the evolution with time of the mo-
tion), and a gain matrix M (representing
how each DoF is involved in the motion).
This function S(t) is then parametrized to
represent physical characteristics of the sub-
ject performing a specific task.

To find the set of parameters represent-
ing a specific motor strategy, a global learn-
ing approach based on the comparison be-
tween synthesized and captured movement
has been proposed. As motion synthesis is

Figure 2: Iterative learning process used to
evolve Pi to fit motion Mi towards
Xi.

non linear and iterative, finding the set of pa-
rameters Pi corresponding to the reference
motion Mi cannot be done analytically, thus
an heuristic [13] may be used to converge to-
wards an optimal solution.

Optimality of Pi is defined by a fitness
function F(Pi, Mi). The given score repre-
sents the distance between synthesized mo-
tion using Pi and original motion Mi. A
penalty is applied if target is not reached
within a certain amount of time.

Using this fitness, it appears that param-
eters enhancing the realism of synthesized
motions can be found without falling in lo-
cal minima [1]. However, to our knowledge,
no work has been done to evaluate whether
learned parameters can be used when syn-
thesizing motion toward new targets. Such
a possibility would allow to extrapolate mo-
tor strategy of a sample motion towards new
target-based motions.

4 Extrapolating synergies

A system is qualified as a "robust" one if it is
capable of coping well with variations in its
operating environment with minimal alter-
ation or loss of functionality. Following this
definition, a set of parameters Pi is defined
as robust if it can extrapolate the features of
the motion Mi – towards a target Xi – to a
target Xj 6= Xi.

While using the presented learning
method, extrapolating parameters to a new
target led to instabilities of the controller
in some cases (cf. fig. 3). By studying
the results of the learning process, it ap-
peared that the heuristic, given the fitness



(a) Synthesis on original target

(b) Synthesis on close target

Figure 3: Joints trajectories from training
motion (grey) and synthesized one
(black) for the original target (a)
or a new target (b).

presented below, may converge towards a
solution where motion does not stop on
the target but passes through it. In fact,
stopping the motion on the first contact [1]
did not account of whether the target was
reached with non-zero velocity (cf. fig. 4).

Figure 4: End effector’s velocity for mo-
tions: captured (dotted), result-
ing from original (dashed), or en-
hanced (plain) fitness.

To overcome this problem, the fitness has
been enhanced to ensure that the arm ac-
tually reaches the target. In order to ver-

ify whether the target is reached or passed
through, motion synthesized after the first
contact is analyzed. If the end effector re-
mains within the target’s sphere, we assume
that target is reached. Otherwise a penalty
is applied. Fitness can thus be expressed as:
F(P, M) = max(p1, p2).d(Ms, M), with P

the set of parameters, M the original mo-
tion, Ms the synthesized motion, p1 the
penalty applied if target is not reached, and
p2 the one applied if the end effector passes
through the target.

(a) Synthesis without synergies

(b) Extrapolated synergies

Figure 5: Motion with synergies extrapo-
lated (b) is compared to a motion
synthesized without synergies (a).
Joints trajectories displays capac-
ity of synergies to reproduce fea-
ture of the recorded motion (in
grey).

Finally, robustness of synergies learned
with new fitness is tested. Results demon-
strate a good capacity to extrapolate fea-
tures of a motion to a new target (see el-
bow’s trajectory in figure 5). The velocity
of synthesized motion displayed in figure 4,
shows that target in reached with a close to



zero speed.

5 Discussion

Previous work [1] has proved to improve the
realism of synthesized reaching movements
using parametrized synergies. However,
when trying to extrapolate the obtained syn-
ergies to reach new targets, learned synergies
appeared to have poor results in terms of ro-
bustness.

The enhancement proposed in this paper
for the fitness shows capabilities to improve
the robustness of the learned synergy param-
eters. To go further, the fact that a synergy
can be extrapolated to reproduce features of
an original motion over a portion of space
brings numerous perspectives.

Our first perspective is to study how far
from the original target learned synergies
can be used. Depending on results we may
also be able to propose a statistical model al-
lowing to represent a mapping between tar-
get’s position and synergy parameters.
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