
HAL Id: hal-00505186
https://hal.science/hal-00505186v1

Submitted on 22 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling Joint Synergies to Synthesize Realistic
Movements

Matthieu Aubry, Frédéric Julliard, Sylvie Gibet

To cite this version:
Matthieu Aubry, Frédéric Julliard, Sylvie Gibet. Modeling Joint Synergies to Synthesize Realistic
Movements. (Revised Selected Papers), Feb 2009, Bielefeld, Germany. pp.231-242. �hal-00505186�

https://hal.science/hal-00505186v1
https://hal.archives-ouvertes.fr


Modeling Joint Synergies to

Synthesize Realistic Movements

Matthieu Aubry1, Frédéric Julliard1, and Sylvie Gibet2,3
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Abstract. This paper presents a new method to generate arm gestures
which reproduces the dynamical properties of human movements. We
describe a model of synergy, defined as a coordinative structure respon-
sible for the flexible organization of joints over time when performing a
movement. We propose a generic method which incorporates this syn-
ergy model into a motion controller system based on any iterative inverse
kinematics technique. We show that this method is independent of the
task and can be parametrized to suit an individual using a novel learning
algorithm based on a motion capture database. The method yields dif-
ferent models of synergies for reaching tasks that are confronted to the
same set of example motions. The quantitative results obtained allow us
to select the best model of synergies for reaching movements and prove
that our method is independent of the inverse kinematic technique used
for the motion controller.
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1 Introduction

Designing virtual characters that generate human-like gestures is still a major
challenge, the research domain ranging from interactive ergonomics or virtual
entertainment, to human gesture studies for different performances (sport, motor
disabilities, etc.). One of the main issues that researchers are trying to resolve is
how the human performer coordinates and controls a complex musculo-skeleton
system, with many degrees of freedom (DoFs). The rotations applied by the
muscles on the DoFs controlling the different joints - shoulder, elbow, wrist -
are combined in order to perform a smooth movement. When groups of muscles,
corresponding to one or several DoFs, cooperate in this way, they form a synergy
[1, 2].

We follow here the assumption that synergies can be modeled in a flexible and
dynamic fashion in order to produce a reaching movement, according to the task
to perform (reaching different target points) and to physical characteristics of



the individual. One of the basic problems underlying this notion of synergy, from
a kinematic point of view, is the amount of use of each DoF within the formation
of a movement [2]. Moreover, we may consider that synergies dynamically evolve
through time. Therefore the temporal characteristics of the synergies along the
movement are a key issue that need to be investigated.

In this paper, we present a new approach to imitate human reaching gestures,
based on the modeling of these synergies. Here, the notion of synergy expresses
both the spatial interrelation between joints and the dynamical patterns acting
on each joint during the course of the movement. Our synergy model can be
included into any inverse kinematics (IK) technique, which iteratively computes
the posture of the arm system from the specification of goals defined as reaching
targets in the 3D space. The originality of our approach relies in the incorpo-
ration into the sensorimotor model of an explicit joint synergy function which
can be parametrized from captured movements. The goal is to finely reproduce
the gesture while preserving the natural characteristics of the real movements.
This approach is compared to other classical IK methods, and quantitatively
analyzed for a set of reaching movements.

The rest of this paper is organized as follows: in section 2, we briefly discuss
related works, and then continue with the mainstay of this paper; in section 3,
we describe our method for controlling motion and modeling joint synergies; ex-
periments and results are presented in section 5 for a set of reaching movements;
and lastly we conclude by a discussion and give future perspectives for this type
of work.

2 Related Work

Over the years, different methods aiming to produce natural gestures reproduc-
ing characteristics of real movements have been proposed. We try to highlight to
what extent these works may explain the underlying synergies when performing
movements.

Learning model of motion from examples has been an active and productive
area of research. In these approaches, the main objective consists of synthe-
sizing new sequences of movements from existing ones. Some approaches use
Hidden Markov models [3], or use a Linear Dynamic System to learn the style
of training motions [4]. Gibet et al. [5] use the Nadarada Watson estimate to
learn local transformations of the Jacobian. Rose et al. [6] and Grochow et al.
[7] propose respectively a Radial Basis Function model and a Scaled Gaussian
Process Latent Variable model to learn inverse kinematics from human poses.
Wang et al. [8] learn a probabilistic mapping between poses and style variables,
using a parametric Gaussian mixture model. Ong et al. [9] propose a novel modu-
lar neural network architecture for learning inverse kinematics. Other approaches
determine physical constraints by using Non Linear optimization techniques [10],
or clustering models [11], learned from captured motion. Chai et al. [12] learn a
statistical dynamical model from motion capture data and use this model to gen-
erate new motions from a variety of user-defined constraints. These approaches



produce natural-looking and physically plausible motions, and have proven to
be effective for a large variety of human motions. Some of them result in the
generation of new motions by interpolating or extrapolating the learned param-
eters. But, for these new motions, the physical laws of motion are not necessarily
guaranteed. Moreover, these learning models do not explicitly incorporate the
modeling of synergies.

Numerous inverse kinematics (IK) techniques have also been developped to
produce realistic motions from the specification of geometrical user-defined con-
straints. Among these techniques, traditional IK solvers use numerical optimiza-
tion methods, such as Jacobian pseudo inverse, which implicitly capture the
correlation between joints when performing a movement. In order to avoid non
realistic situations, constraints may be introduced, such as physical-based con-
straints [13], shape constraints [14], or ergonomic constraints [15]. These methods
rely on the validity of the constraints for a given task and usually do not take
into account features specific to an individual.

In order to take advantage of both methods, example-based IK methods are
an effective alternative. They combine goal-directed and data-driven methods,
thus relying on real motions with an explicit model for solving IK. Komura et al.
[16] extract joints’ weights from captured data and re-use them during synthesis
to reproduce the synergies. Some recent studies perform inverse kinematics in
low-dimensional space, such as latent spaces [17], and [18], thus including within
the solver the linear combination between the DoF. In these cases, synergies
are explicitly specified within the motion. However, these methods make the
asumption that the inter-relation between the joints within the synergies may
be represented by linear functions. Moreover, they require the passage of one
posture to another, and do not take into account the dynamical effect of the
synergies over time when performing a movement.

Our approach is also related to example-based IK methods. But in contrast to
the above methods, we propose to model the dynamical effect of synergies over
time. In the line of previous work [19], based on a sensorimotor optimization
loop, we propose a novel approach which uses a motion capture database and a
learning technique that automatically computes the parameters of the synergy
model.

3 Proposed Model

3.1 Inverse Kinematics Formulation

In this section, we consider the control of a kinematic chain C composed of n

joints linking segments of different lengths, each segment representing a bone of
the virtual character. Each joint is characterized by 1, 2 or 3 rotations, defin-
ing several DoFs. The set of rotations can be represented by the state vector
Θ = {θ1, . . . , θn}.

We define the forward kinematic operator H which computes the end effector
situation X of the chain C, given its state Θ. Usually, the situation is determined



by a position and an orientation.

X = H(Θ)

The IK problem can be defined as a method that determines a vector Θ so
that the end effector is in the desired situation Xd.

Θ = H−1(Xd)

As the human arm is a complex and redundant system, the kinematic chain C
cannot be inverted in general. Most of previous work solves the IK problem with
local linearization methods. In this case, the IK formulation determines small
variations of the posture from small variations of the end effector situation, thus
trying to converge towards the desired situation.
Different iterative methods can be used to solve IK. Whereas the pseudo-inverse
methods can be expressed as:

∆Θ = λJ(Θ)+∆X

where J(Θ)+ is the pseudo-inverse of the Jacobian of C corresponding to the
state Θ, and λ is a scalar changing the rate of convergence. This pseudo-inverse
can be obtained, for example, using the Singular Value Decomposition (SVD) of
the Jacobian.

Another method: JT , uses the transpose of the Jacobian J(Θ):

∆Θ = λJT (Θ)∆X

presents smaller convergence rates in the general case. In our study, we also define
a slightly derived method of the JT (called NJT ) which computes the normalized
variations of the rotations. The iterative algorithm resulting from the numerical
solutions of IK can be represented in fig. 1, where O is the optimized function
(J+, SVD, JT , NJT ), I the integrated function, and H the forward kinematic
transformation.
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Fig. 1. Iterative method used to solve inverse kinematics.

Other optimization functions may be used, thus improving the convergence
rate towards the solution, and avoiding singularities [13, 20]. Whereas these



methods propose optimized solutions to the problem of IK, they do not guaran-
tee the natural quality of the movement through time. We will introduce below
a synergy model which is compatible with a traditional IK formulation, and dy-
namically modifies the temporal evolution of the synthesized motion, according
to characteristics of human arm movements.

3.2 Modeling Synergies

In our approach, synergies can be represented by dynamical functions interacting
within a set of joints. More precisely, we define synergies as a combination of
gains applied to each of the n DoFs and a temporal function. By modifying the
level of involvement of the DoFs along the motion, we may completely control
the velocity and the shape of the motion.

We define a synergy transformation as a function S(t, Θ) of time and joint
angular values. The calculation of the synergy gains is achieved according to the
following equation:

∆Θ′
i = S(t, Θ).∆Θ = φi(t).(M [Θ].∆Θ)i

where the function φi(t) and the matrix M [Θ] represent respectively the tem-
poral part and the spatial part of the synergy function.

The synergy function S(t, Θ) is thus parametrized, the parameters depending
on the subject physical characteristics, as well as on the task. We will consider
in our simulation a parameter vector p with a dimension m which may vary with
S; its values are constant over the movement and is noted:

p = {p1, . . . , pm}

By using a global learning approach, based on the comparison between sim-
ulated movements and captured ones, our methodology consists in determining
the generic synergy model for specific tasks and the set of parameters corre-
sponding to an individual.

3.3 Learning Joint Synergies Parameters

We define a meta-heuristic based on simulated annealing which requires an op-
timization function O, a synergy model S and captured movements as training
reference. A pseudo-code version of our meta-heuristic is given in algorithm 1.
The principle of our meta-heuristic is to generate a random population of para-
maters (l. 1): population = {p1, . . . , pu} and to make them evolve randomly
by applying small variations (l. 4) on each parameter. The parameters are then
evaluated for each training motion (l. 6-10), by setting the controller in the same
initial posture and by simulating the motion for a task similar to the training
motion’s one. The distance between the training and the synthesized motion is
then computed. If the evolutionary algorithm reduces this distance, the vector
of parameters is kept otherwise previous values are restored (l. 11-16). These
steps are repeated until the average score of the population is stabilized (l. 18)
and finally the best parameter’s vector is returned (l. 19).



Algorithm 1 Meta-heuristic for determining the best parameters p

1: population← GenerateRandom()
2: repeat

3: for all parameters ∈ population do

4: parameters.evolve()
5: score← 0
6: for all mocap ∈ Trainings do

7: controller.setPosture(mocap.initialPosture)
8: simulatedMotion = controller.synthesize(mocap.task)
9: score← score + distance(simulatedMotion, mocap.motion)

10: end for

11: deltaScore← parameters.previousScore− score

12: if deltaScore < 0 then

13: parameters.keep()
14: else

15: parameters.restore()
16: end if

17: end for

18: until population.isStabilized()
19: result← population.findBest()

3.4 Metric for Evaluating Synthesized Movements

The naturality of the synthesized motion is evaluated by superposing two vir-
tual characters and playing captured and synthesized movements for the same
task and comparing the two motions over time. In this case an error metric is
computed by defining a distance between the two motions, based on the mean
distance between postures along the motion. The calculation is stopped at the
end of the shortest motion:

d(MA,MB) =

mini
∑

i=1

dist(PA,i,PB,i)

mini
, mini = min(length(MA), length(MB))

with MA motion A, PA,i posture from motion A at frame i and length(MA)
the number of frames in motion A.

Such a distance gives a measure which takes into account both the velocity
and the shape of the movement. First of all, by using the frame by frame com-
parison over time, we ensure that the movements’ velocities can be compared.
If both movements have a different frame rate, one of the movements has to be
interpolated to match the other’s frame rate. Secondly, the deformed shape of
the movements is computed by using the average Cartesian distance between
joints. This distance between two postures PA and PB is given by equation:

dist(PA,PB) =





l
∑

j=1

||XA,j −XB,j ||

l + 1



 +
||XA,e −XB,e||

l + 1



where the kinematic chain C is composed of l joints, the position of the j-th
joint in global space for the posture PA is noted XA,i and the position of the
end effector is noted XA,e.

4 Experiments and Results

In our experiments, 14 reaching movements have been recorded for one subject.
This one is seated on a chair and targets from different colors are uniformly
distributed in front of him (cf fig. 2). He has been asked, from the rest posture,
to reach a specific target and then come back to the same rest posture. To avoid
the bias of finding the target, he has to locate the target before starting the
motion. The rest posture has been chosen by the subject and is used as the
starting position for each motion.

(a) (b) (c)

Fig. 2. A subject is seated, his back supported by the chair. Color targets are located
in front of him. From its rest posture (a), he is asked to reach a specific target (b) and
then come back to the same rest posture (c).

It should be noted that a Cartesian distance instead of an angular one allowed
us to use two characters with the same joints but different DoFs. In fact, captured
motions are recorded on 4 joints with a total of 12 DoFs, while the synthesis
model has 4 joints but only 7 DoFs.

Three different analysis are performed. First, we test different models of
synergies to find the best compromise between the number of parameters and
the quality of the synthesized motions. Next, different optimization functions are
implemented in order to evaluate the genericity of our model. And finally, some
characteristics of the synthesized motion are compared to captured motions.

First of all, we define different gains models and compare their performances.
These models used for reaching tasks are composed of gains and sigmoids as
temporal functions. In particular we evaluate the influence of using same or
different gains and sigmoids functions for each DoFs.

For the gains, we use diagonal matrix, one with the same gain for each DoF
(MA) and one with a different gain for each DoF (MB). While MA requires only



one parameter, MB will require as many parameters as DoFs. Those matrix are
defined by :

MA =







g1 0
. . .

0 g1






, MB =







g1 0
. . .

0 gn







We also defined three different time functions inspired from work of Gibet et
al. [19]: one neutral and two using sigmoids sig(t) = 1

1+et . These time functions
are defined for each DoF by:

φA,i = 1, φB,i = sig(−s.t + o), φC,i = sig(−si.t + oi)

where φB uses the same parameters s (slope) and o (offset) for each DoF while
φC uses one for each DoFs.

Therefore, four synergy functions are distinguished:

– SA(t, Θ) using MA and φA; p = {g1}
– SB(t, Θ) using MB and φA; p = {g1, . . . , gn}
– SC(t, Θ) using MB and φB ; p = {g1, . . . , gn, o, s}
– SD(t, Θ) using MB and φC ; p = {g1, . . . , gn, o1, . . . , on, s1, . . . , sn}

Taking one by one the 14 training motions, we obtained 14 sets of parameters
associated to 14 distances for each model. To reduce the field of exploration of
the meta-heuristic, we used gi ∈ [−5; 5], si ∈ [1; 10] and oi ∈ [0; 20]. These
values, obtained by experimentation, also reduced the computational cost. The
results in figure 3 show the average, minimum and maximum distances obtained
for each model.

These results clearly show the necessity to separate the gains applied to the
DoFs. In fact, a reduction of 55% of the average distance is obtained if we move
from SA to SB . Next, the insertion of a sigmoid in SC allows us to reduce of
13% more, and separating the sigmoid on each DoF gives another reduction of
10%. In addition, whereas SD gives the best results over the whole set of motions
(1.35), SC gives the minimum distance between two motions (0.90). This can be
explained by the number of parameters used by SD (21) which is more than twice
SC ’s one (9). In fact, our meta-heuristic is more efficient on a smaller number of
parameters.

For the rest of our experiments, we decide to choose the model SC , which
is a compromise between obtaining a good average result and the number of
parameters.

In order to test the genericity of our model according to optimization func-
tions, we have implemented three IK algorithms: the transposed Jacobian (JT ),
the normalized transposed Jacobian (NJT ) and the pseudoinverse Jacobian us-
ing SVD. Each optimization function is tested for each of the 14 motions, once
with SA (raw controller) and once using SC (model selected from previous ex-
periment). This experiment allowed us to compare the average distance between
motion synthesized with the raw controller and with the controller enhanced by
our synergy model.
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Fig. 3. Average, minimum and maximum distance for the different synergy functions
SA, SB , SC , and SD.

Results are displayed in figure 4. They show that for each optimization func-
tion, our synergy model decreases the distance between synthesized and captured
motions. In fact, incorporating SC , we improve the results of 34% for JT , of 66%
for SVD, and of 47% for NJT . Furthermore, the average distance is lower when
using the SVD method (1.71 versus 2.15 and 2.26), but we can observe that
results achieved with JT and NJT can be as good as the SVD’s ones (only 6%
difference between the minimum values).
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NJT 4.02 2.38 5.45
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With SA (in white)

Function Distance
avg. min. max.

NJT 2.15 1.15 2.84

JT 2.26 1.12 2.95

SVD 1.71 1.09 2.18

Using SC (in yellow)

Fig. 4. Average, minimum and maximum distance between training motion and syn-
thesized motion with SA (in white) or with SC (in gray).

Finally, the realism of the movements is evaluated for the different synergy
models. As many researchers have demonstrated that the velocity profiles of
simple reaching arm movements are approximatively bell-shaped [19], we com-
pare the velocities of synthesized and captured trajectories during the movement
execution.

The hand velocities for recorded and synthesized movements, using a raw
controller SA and a SC controller is diplayed in figure 5. These curves clearly
highlight the improvement made by the synergy model. Practically, the trajec-
tories of the synthesized movements produced with SC are very close to the cap-
tured ones, whereas trajectories produced by the raw controllers do not match
at all the bell-shaped curve.
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Fig. 5. Hand speed through time for captured motion (plain gray), synthesized motion
with a raw controller (dotted black), and synthesized motion with the synergy model
SC (plain black) for four different targets.

We also produced videos that make possible to compare a recorded task with
the corresponding synthesized task with and without the synergy model (cf. fig.
6). While we can see that the use of SC instead of SA allowed to the synthesized
motion to match the captured one both in speed and shape, these animations
still need to be perceptually evaluated.

5 Discussion and perspectives

In this paper, we present a novel approach to finely reproduce reaching gestures
by preserving natural human characteristics for an individual. The originality of
the approach relies on the notion of joint synergy which is explicitly included
into the model as a spatio-temporal function, parametrized from motion capture
training data.

In order to precisely tune up our synergetic model, we used a preliminary
database built from 14 motions obtained from a single person. We then tried to
find a sufficiently small relevant set of synergetic parameters able to maximize
the naturality of motions. For estimating this naturality, a motion metric is
defined as an average Cartesian distance between joint positions, computed on
the whole movement. This study reveals that pointing gestures can be naturally
synthesized by the use of only one constant gain per DoF and one shared sigmoid.

The interchangeability of the optimization function, regardless of the syner-
getic function, has then been carried out by testing different numerical inversion
methods as optimization functions. A quantitative analysis of the synthesized
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Fig. 6. Superposition of captured motion and synthesized motions both with SA and
with SC as a synergy model. Motion synthesized with SC match the captured one while
motion synthesized with SA does not (motion is quicker and elbow is moved too high).

motions has been performed. Generated motions reveal that the specific hand’s
velocity bell-shaped profile is close to the velocity of real motions, only when the
synergetic function is employed.

Our experience has been successfully extended to a largest set of captured mo-
tions (192) from two different persons. Results highlight the ability of the model
to learn individual joint synergies regardless of the number of captured data.
Due to the genericity of our approach, we may incorporate synergy mechanisms
into a wide range of inverse kinematics motor controllers. The meta-heuritic also
proves to be fully independent of the task, of the synergetic function, and of the
number of training data.

The main limitation of the current model concerns its generalization to the
synthesis of any kind of gesture: parameters are learned motion by motion and
it is obviously inconceivable to learn the whole accessible space. However, we
observed that for a given set of parameters learned from a particular original
target, it is possible to synthesize new motions, from nearby targets, whose
characteristics are relatively closed to the features of the original motion. The
parameters’ space thus contains continuous regions that we still have to identify
in order to define the applicability domain for a set of synergetic parameters.
Moreover, this perspective should highlight the possibility to efficiently map each
partition of the accessible space with a valid set of parameters, thus lowering the
number of required training motions.
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kinematics. ACM Trans. Graph., 23(3):522 – 531, 2004.

8. Y. Wang, Z. Liu, and L. Zhou. Key-styling: learning motion style for real-time
synthesis of 3d animation. Computer Animation and Virtual Worlds, 17(3-4):229
– 237, June 2006.

9. E.-J. Ong and A. Hilton. Learnt inverse kinematics for animation synthesis. Graph-

ical Models, 68(5-6):472–483, 2006.
10. C. Karen Liu, Aaron Hertzmann, and Zoran Popović. Learning physics-based
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