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On the scaling property in fluctuation theory for

stable Lévy processes

Fernando Cordero∗

July 22, 2010

Abstract

We find an expression for the joint Laplace transform of the law

of (T[x,+∞[, XT[x,+∞[
) for a Lévy process X, where T[x,+∞[ is the first

hitting time of [x,+∞[ by X. When X is an α-stable Lévy process, with

1 < α < 2, we show how to recover from this formula the law of XT[x,+∞[
;

this result was already obtained by D. Ray, in the symmetric case and

by N. Bingham, in the case when X is non spectrally negative. Then,

we study the behaviour of the time of first passage T[x,+∞[ conditioned

to {XT[x,+∞[
− x ≤ h} when h tends to 0. This study brings forward

an asymptotic variable T 0
x , which seems to be related to the absolute

continuity of the law of the supremum of X.

Key words : Fluctuation theory, Scaling property, Lévy processes, Stable
processes, Overshoots, First passage time.

1 Introduction

Let X = (Xt, t ≥ 0) denote a Lévy process with characteristic exponent ψ.

For t ≥ 0 we set :

St = sup
0≤s≤t

Xs and It = inf
0≤s≤t

Xs,

and for x > 0 :

T[x,+∞[ = inf{s > 0 : Xs ≥ x} and Kx = XT[x,+∞[
− x.

We denote by eγ an exponential variable with parameter γ, independent of X .

Our interest focusses on the joint law of (T[x,+∞[, XT[x,+∞[
) (see [5]) and on

questions concerned with the absolute continuity of the law of St.
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In section 2 we present some known results, which we will be needed in the
following sections. The first result (Proposition 1) is a famous formula ob-
tained by Pecherskii and Rogozin which concerns the joint Laplace transform of
(T[eγ ,+∞[, XT[eγ,+∞[

). The second result (Proposition 2) deals with the asymp-

totic behaviour of the quantity P (S1 < x) in the stable case when x tends to 0.

In section 3 we obtain an expression of the joint Laplace transform of the pair
(T[x,+∞[, XT[x,+∞[

). First, we remark that the Laplace transform of this quantity
can be expressed by means of the joint Laplace transform of (T[eγ ,+∞[, XT[eγ,+∞[

),

for which we dispose of a formula (Proposition 1). In this way we obtain the
result by inverting a Laplace transform.

Then, we pass to the α-stable case, with 1 < α < 2. By means of the scaling
property and of Proposition 2, we prove some asymptotic properties associated
to quantities introduced in the previous paragraph. After this, we recover the
law of XT[x,+∞[

, as a corollary of these properties. This law is already known.
In [8] Ray gives an expression of its density in the symmetric stable case. In
[2] Bingham generalises this result for non-spectrally negative stable processes.
However, the interest of this part of the work is to point out the role of the
scaling property in the obtention of this result.

Finally, we focus on the asymptotic behaviour of the random variable T[x,+∞[

conditionned upon {Kx ≤ h} when h tends to 0+. We show that a convergence
in law holds towards a random variable which we denote T 0

x .

2 Preliminaries

First, we introduce some notations that will be useful afterwards. For q > 0,
Reλ ≤ 0 and Reµ ≥ 0, we define :

ψ+
q (λ) = exp

(

−

+∞
∫

0

(eλx − 1)dx

(

+∞
∫

0

u−1e−quP (Xu > x)du
)

)

, (1)

and

ψ−
q (µ) = exp

( 0
∫

−∞

(eµx − 1)dx

(

+∞
∫

0

u−1e−quP (Xu < x)du
)

)

. (2)

We use the following result due to Pecherskii and Rogozin :

Proposition 1 ([7], p.420). For all γ, λ, µ > 0, we have :

E[exp(−λT[eγ ,+∞[ − µKeγ )] =
γ

γ − µ

(

1−
ψ+
λ (−γ)

ψ+
λ (−µ)

)

. (3)

Remark 1. It follows from the definition of ψ+
γ and ψ−

γ that :

ψ+
γ (iλ) ψ

−
γ (iλ) =

γ

γ + ψ(λ)
. (4)
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On the other hand, it has been shown by Rogozin in [9] that for λ, µ ∈ C with
Reλ ≤ 0, Reµ ≥ 0, we have :

ψ+
γ (λ) = E[exp(λSeγ )] and ψ−

γ (µ) = E[exp(µIeγ )]. (5)

Hence, the representation of γ(γ + ψ(λ))
−1

in (4) is an infinitely divisible fac-
torization.

Remark 2. We can find formula (3) in [1] (chap.VI, exercise 1, p.182) expressed
as follows :

+∞
∫

0

e−λaE
[

exp(−βT[a,+∞[ − θXT[a,+∞[
)
]

da =
κ(β, λ + θ)− κ(β, θ)

λκ(β, λ + θ)
, (6)

where κ(·, ·) is defined by :

exp (−κ(β, θ)) = E [exp(−βτ̄1 − θSτ̄1)] , (7)

where τ̄ denotes the right-continuous inverse of the local time at level 0 of the
reflected process S −X .

The relation between formulae (3) and (6) is simple to establish. In fact, using
the following formula ([1], Chap. VI, Corollary 10, p. 165) :

κ(β, θ) = κ(1, 0) exp







+∞
∫

0

dt

∫

[0,+∞[

(e−t − e−βt−θx)t−1P (Xt ∈ dx)






, (8)

we prove that for q, λ > 0, we have :

ψ+
q (−λ) =

κ(q, 0)

κ(q, λ)
.

In the case of a stable process with index α, the following result will play a key
role :

Proposition 2 ([1], Chap.VIII, Proposition 2, p.219). We set ρ = P (X1 > 0).
If ρ ∈]0, 1[, then there exists k > 0 such that :

P (S1 ≤ x) ∼ kxαρ as x→ 0 + . (9)

3 About the law of (T[x,+∞[, XT[x,+∞[
)

3.1 The general case

The purpose of this paragraph is to express the joint Laplace transform of
(T[x,+∞[, XT[x,+∞[

) for x > 0 :

E[exp(−λT[x,+∞[ − µXT[x,+∞[
)].
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Formula (3) gives an expression of the Laplace transform of the quantity we are
interested in. So the problem is reduced to invert this Laplace transform.

First, we note that for γ > µ > 0, we have :

1

γ − µ
=

+∞
∫

0

e−(γ−µ)xdx and
γ

γ − µ
= 1 +

µ

γ − µ
.

On the other hand, from (5), we obtain for γ, λ > 0 :

ψ+
γ (−λ) = E[exp(−λSeγ )] =

+∞
∫

0

λ e−λzP (Seγ ≤ z) dz. (10)

As a consequence, (3) can be expressed as :

+∞
∫

0

e−γxE[ exp(−λT[x,+∞[ − µKx)] dx

=
1

γ − µ
−

1

ψ+
λ (−µ)





γ

γ − µ

+∞
∫

0

e−γzP (Seλ
≤ z)dz





=

+∞
∫

0

e−γx

(

eµx −
P (Seλ

≤ x)

ψ+
λ (−µ)

)

dx−
I(γ, λ, µ)

ψ+
λ (−µ)

, (11)

where :

I(γ, λ, µ) = µ

+∞
∫

0

P (Seλ
≤ z)





+∞
∫

0

e−γ(y+z)eµydy



 dz.

Note that thanks to the change of variables v = z, x = y + z and Fubini’s
theorem, we get :

I(γ, λ, µ) = µ

+∞
∫

0

e−(γ−µ)x





x
∫

0

e−µvP (Seλ
≤ v)dv



 dx.

If we put this expression for I(γ, λ, µ) in (11), we obtain using (10) :

+∞
∫

0

e−γxE[exp(−λT[x,+∞[ − µKx)]dx =
1

ψ+
λ (−µ)

+∞
∫

0

e−(γ−µ)xJ(µ, λ;x)dx,

(12)
where :

J(µ, λ;x) =

+∞
∫

x

µe−µvP (Seλ
≤ v)dv − e−µxP (Seλ

≤ x). (13)

Therefore we have :

E[exp(−λT[x,+∞[ − µKx)] =
eµx

E
[

e−µSeλ

]J(µ, λ;x). (14)
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Observe that :

J(µ, λ;x) = E







+∞
∫

x∨Seλ

µe−µvdv






− e−µxP (Seλ

≤ x)

= E
[

e−µ(x∨Seλ
)
]

− e−µxP (Seλ
≤ x),

and thus :
J(µ, λ;x) = E

[

e−µSeλ1{Seλ
≥x}

]

. (15)

Theorem 3. For all λ, µ > 0 and x ≥ 0 :

E[exp(−λT[x,+∞[ − µXT[x,+∞[
)] =

E
[

e−µSeλ1{Seλ
≥x}

]

E
[

e−µSeλ

] . (16)

Proof. It is immediate from (14) and (15).

3.2 The stable case

Henceforth, X will denote a real-valued stable Lévy process with index α ∈]1, 2].
We denote :

ρ = P (X1 ≥ 0).

We know that in this case, ρ ∈ [1 − 1/α, 1/α] (see [1]), in particular ρ ∈]0, 1[.
The cases ρ = 1 − 1/α and ρ = 1/α correspond to the cases when X has
no negative jumps (spectrally positive case) and no positive jumps (spectrally
negative case), respectively.

3.2.1 Scaling for Seλ
and some asymptotic results

In Theorem 3, we see a link between the random variable Seλ
and the joint distri-

bution of
(

T[x,+∞[, XT[x,+∞[

)

. In this section, we show how the scaling property
allows to study the absolute continuity of the law of Seλ

and the asymptotic
behavior of some quantities associated to this random variable.

Proposition 4. For all λ > 0, the law of the random variable Seλ
is absolutely

continuous. Its density fλ can be expressed as :

fλ(x) =
λα

x
E
[

T[x,+∞[ exp(−λT[x,+∞[)
]

, x > 0. (17)

Proof. If we take the limit when µ goes to 0+ in (16), we get :

P (Seλ
≤ x) = 1− E

[

exp(−λT[x,+∞[)
]

.

On the other hand, the scaling property yields :

E
[

exp(−λT[x,+∞[)
]

= E
[

exp(−λxαT[1,+∞[)
]

.

The result follows.
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Lemma 5 (Scaling). For all λ, µ > 0 and x ≥ 0 :

(i) P (Seλ
≤ x) = P

(

Se ≤ xλ1/α
)

=
+∞
∫

0

e−vP
(

S1 ≤ xλ1/α

v1/α

)

dv.

(ii) E
[

e−µSeλ

]

= E
[

e
− µ

λ1/α
Se

]

=
+∞
∫

0

e−vP
(

Se ≤ vλ1/α

µ

)

dv.

Proof.

(i) We have for any λ, µ > 0 and x ≥ 0. :

P (Seλ
≤ x) =

+∞
∫

0

λe−λuP (Su ≤ x)du

(change of variables λu = v) =

+∞
∫

0

e−vP (Sv/λ ≤ x)dv

(scaling) =

+∞
∫

0

e−vP

(

S1 ≤
xλ1/α

v1/α

)

dv,

which proves (i).

(ii) From (10), (i) and the change of variables µz = v :

E
[

e−µSeλ

]

=

+∞
∫

0

µe−µzP
(

Se ≤ zλ1/α
)

dz =

+∞
∫

0

e−vP

(

Se ≤
vλ1/α

µ

)

dv,

which completes the proof.

Proposition 6. There exists a constant k∗ > 0 such that :

(i) P (Seλ
≤ x) ∼ k∗ xαρ λρ when λ→ 0+.

(ii)
+∞
∫

x

µe−µvP (Seλ
≤ v)dv ∼ k∗

(

+∞
∫

µx

e−yyαρdy

)

µ−αρλρ when λ→ 0+.

(iii) E
[

e−µSeλ

]

∼ k∗ Γ(1 + αρ) µ−αρ λρ when λ→ 0+.

(iv) E
[

e−µSeλ1{Seλ
≥ x}

]

∼ k∗αρ

(

+∞
∫

µx

e−yyαρ−1dy

)

µ−αρλρ when λ→ 0+.

Proof.

(i) Thanks to Proposition 2 and Lemma 5 (i), the dominated convergence the-
orem yields :

P (Seλ
≤ x)

λρ
=

+∞
∫

0

e−v
P
(

S1 ≤ xλ1/α

v1/α

)

λρ
dv −→

λ→0+
k Γ(1− ρ) xαρ.

It suffices to choose k∗ = k Γ(1− ρ) to finish the proof of (i).
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(ii) Applying the dominated convergence theorem, we deduce from (i) :

+∞
∫

x

µe−µvP (Seλ
≤ v)dv

λρ
−→
λ→0+

k∗
+∞
∫

x

µe−µvvαρdv.

we obtain (ii) by the change of variables y = µv.

(iii) It suffices to consider x = 0 in assertion (ii).

(iv) Using formulae (13) and (15), (iv) is a consequence of (i) and (ii).

In [8], Ray gives an expression for the density of the law of XT[x,+∞[
in the

symmetric case. In [2], Bingham generalizes this result to the case when X is
not spectrally negative. Now, we recover this result as a corollary of Theorem
3 and Proposition 6 (see also Lemma 4.1 in [10]).

Corollary 7 ([8], [2]). If αρ < 1, then :

XT[x,+∞[

(loi)
=

x

βαρ,1−αρ
. (18)

Consequently :

P (XT[x,+∞[
∈ dy) = ρ(x, y)dy, when ρ(x, y) =

sin(παρ)

π

1

y

(

x

y − x

)αρ

1]x,∞[(y).

Proof. If we let λ tend to 0+ in (16), we get with the help of Proposition 6,

E[exp(−µXT[x,+∞[
)] =

1

Γ(αρ)

+∞
∫

µx

e−yyαρ−1dy,

and by using the identity yαρ−1 = 1
Γ(1−αρ)

+∞
∫

0

e−yvv−αρdv, we obtain :

E[exp(−µXT[x,+∞[
)] =

sin(παρ)

π

+∞
∫

µx

dy

+∞
∫

0

e−y(v+1)v−αρdv

=
sin(παρ)

π

+∞
∫

0

e−µx(v+1)

v + 1
v−αρdv (Fubini’s theorem)

=
sin(παρ)

π

1
∫

0

e−µx/zzαρ−1(1− z)
−αρ

dz (change of

variables z = 1/(v + 1)),

which proves Corollary 7.

Remark 3. Similarly, the law of Kx is absolutely continuous. Its density is given
by :

ρK(x, y) = ρ(x, x + y) =
sin(παρ)

π

1

(y + x)

(

x

y

)αρ

1]0,∞[(y).

Remark 4. This result has been generalized in the papers [4] and [6].
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3.2.2 An asymptotic law

Note first that a standard application of the Markov property permits to show
that :

P (St ∈ ]x, x+h ]) =

∫∫

[0,t[×]x,x+h]

P (T[x+h−y,+∞[ ≥ t−s)P (T[x,+∞[ ∈ ds,XT[x,+∞[
∈ dy).

Taking the limit in this equality when h tends to 0, we may expect to find links
between the absolute continuity of the law of St and the asymptotic behavior
of the random variable T[x,+∞[ conditioned to {Kx ≤ h}.

With this motivation, we introduce for each x, h > 0 the random variable T h
x

whose law is given by :

P (T h
x ∈ · ) = P (T[x,+∞[ ∈ · |Kx ≤ h).

Thus the aim in this section is to study the asymptotic behavior of the variables
T h
x when h goes to 0+. For this, we start by computing the asymptotic proba-

bility of the events {Kx ≤ h}.

Lemma 8. For all x > 0 :

P (Kx ≤ h)

h1−αρ
−→
h→0+

sin(παρ)

π(1− αρ)
xαρ−1. (19)

Proof. By Corollary 7, we have :

P (XT[x,+∞[
≤ x+ h) =

sin(παρ)

π

x+h
∫

x

1

y

(

x

y − x

)αρ

dy

=
sin(παρ)

π
xαρh1−αρ

1
∫

0

1

(uh+ x)uαρ
du (change of

variables u = (y − x)/h).

The result follows by dividing both sides by h1−αρ and applying the dominated
convergence theorem.

Now, we define the probability measure P
(x)
λ by :

P
(x)
λ (A) =

E
[

1A exp(−λT[x,+∞[)
]

E
[

exp(−λT[x,+∞[)
] , A ∈ F∞.

The following lemma is the analogue of Lemma 8 for the probability measure

P
(x)
λ .

Lemma 9. For all λ, x > 0, we have :

P
(x)
λ (XT[x,+∞[

− x ≤ h)

h1−αρ
−→
h→0+

sin(παρ)

k∗παρ(1 − αρ)

λ−ρfλ(x)

P (Seλ
≥ x)

, (20)

where k∗ is the constant appearing in Proposition 6.
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Proof. We consider the fonction U : [0,+∞[→ [0,+∞[ defined by :

U(h) = P
(x)
λ (Kx ≤ h) .

By Tauberian theorem (see p.10 in [1]), the behavior of U around 0+ is related
to the behavior of its Laplace transform at infinity.

We remark that :

+∞
∫

0

e−µyU(dy) = E
(x)
λ [exp(−µKx)] =

E
[

exp(−λT[x,+∞[ − µKx)
]

E
[

exp(−λT[x,+∞[)
] . (21)

On the other hand, thanks to (13), (14) and an obvious change of variables, we
obtain :

E
[

exp(−λT[x,+∞[ − µKx)
]

=

+∞
∫

0

e−y
(

P
(

Seλ
≤ y

µ + x
)

− P (Seλ
≤ x)

)

dy

E
[

e−µSeλ

] .

(22)
Using Lemma 4 and applying the dominated convergence theorem, we show that
:

µ

+∞
∫

0

e−y

(

P

(

Seλ
≤
y

µ
+ x

)

− P (Seλ
≤ x)

)

dy −→
µ→+∞

fλ(x). (23)

We know from part (ii) of Lemma 5 that :

E
[

e−µSeλ

]

= E
[

e
− 1

λ1/α Se

µ−α

]

,

and therefore, from part (iii) of Proposition 6, we obtain that :

µαρE
[

e−µSeλ

]

−→
µ→+∞

k∗Γ(1 + αρ)λρ. (24)

Thus, from (21), (22), (23) and (24), we get :

µ1−αρ

+∞
∫

0

e−µyU(dy) −→
µ→+∞

1

k∗Γ(1 + αρ)

λ−ρfλ(x)

P (Seλ
≥ x)

, (25)

and then, thanks to the Tauberian theorem (see p.10 in [1]), we obtain :

1

h1−αρ
U(h) −→

h→0+

1

k∗Γ(1 + αρ)Γ(2 − αρ)

λ−ρfλ(x)

P (Seλ
≥ x)

, (26)

which completes the proof.

Proposition 10. For every λ, x > 0, we have :

E
[

exp(−λT[x,+∞[ ) | Kx ≤ h
]

−→
h→0+

1

k∗αρ
x1−αρ λ−ρ fλ(x). (27)
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Proof. We remark that :

E
[

exp(−λT[x,+∞[ ) | Kx ≤ h
]

=
P

(x)
λ (Kx ≤ h)

P (Kx ≤ h)
E
[

exp(−λT[x,+∞[)
]

.

Now, the result is a consequence of Lemmas 8 and 9.

Lemma 11. For all x > 0 :

lim
λ→0+

1

k∗αρ
x1−αρ λ−ρ fλ(x) = 1. (28)

Proof. The scaling property entails :

E[T[x,+∞[ exp(−λT[x,+∞[)] =

+∞
∫

0

e−v(1− v)P

(

S1 ≤
xλ1/α

v1/α

)

dv,

and then, by definition of fλ we obtain from Proposition 2 and the dominated
convergence theorem that :

λ−ρ fλ(x) −→
λ→0+

k αxαρ−1

+∞
∫

0

e−v (1− v) v−ρ dv

= k α ρΓ(1− ρ)xαρ−1.

The result follows.

Theorem 12. For each x > 0, the family of random variables {T h
x }h>0 con-

verges in law as h tends to 0+. The limit is denoted by T 0
x and its law is given

by :

P
(

T 0
x ≤ t

)

=
sin(πρ)

k πρ
x−αρE

[

T[x,+∞[ 1{T[x,+∞[≤ t}
(

t− T[x,+∞[

)1−ρ

]

.

Proof. For x, h > 0, we denote by Lx
h the Laplace transform of the random

variable T h
x and by Lx the fonction defined by :

Lx(λ) =
1

k∗αρ
x1−αρ λ−ρ fλ(x).

According to Proposition 10, the Laplace transform Lx
h converges pointwise to

the fonction Lx. Since we have already shown in Lemma 11 that :

lim
λ→0+

Lx(λ) = 1,

it appears that the fonction Lx is the Laplace transform to some probability
measure with support in R+ (see [3], Theorem 6.6.3, p.190). We denote this
limit measure by νx.

We remark that :

Lx(λ)

λ
=

1

λ

∫

[0,+∞]

e−λyνx(dy) =

+∞
∫

0

e−λyνx([0, y]) dy. (29)
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On the other hand, we have :

Lx(λ)

λ
=

1

k∗ρ
x−αρ λ−ρE

[

T[x,+∞[ exp(−λT[x,+∞[)
]

.

By using the identity λ−ρ = 1
Γ(ρ)

+∞
∫

0

e−λzzρ−1dz, we get :

Lx(λ)

λ
=

sin(πρ)

k πρ
x−αρ

+∞
∫

0

e−λuE

[

T[x,+∞[ 1{T[x,+∞[≤u}
(

u− T[x,+∞[

)1−ρ

]

du. (30)

The result is obtained by comparing (29) and (30).

3.2.3 The laws of T[x,+∞[ and T 0
x have no point masses

In [7] (Lemma 1), it has been demonstrated in a more general framework that
the law of St admits no point masses, i.e., for any x ≥ 0, P (St = x) = 0. Since
we have {St ≥ x} = {T[x,+∞[ ≤ t} ∪ {St = x}, then :

P (St ≥ x) = P (T[x,+∞[ ≤ t).

So, by using the scaling property, we obtain in particular :

S−α
1

(loi)
= T[1,+∞[.

Thus we see that T[1,+∞[ admits no point masses either (the same for T[x,+∞[,
by scaling). In the following proposition, we find this result directly from the
scaling property.

Proposition 13. For every x, t > 0 :

P (T[x,+∞[ = t) = P (T 0
x = t) = 0.

Proof. We first show the result for T[x,+∞[. By scaling property, with no loss of
generality, we may suppose that x = 1.

Suppose, by contradiction, that there is t0 > 0 such that :

δ := P (T[1,+∞[ = t0) > 0.

Suppose now that there is h0 > 0 satisfying :

η := P (T[1,+∞[ = t0, K1 > h0) > 0.

In this case, we have :

P (∀u ∈ [1, 1 + h0/2] : T[u,+∞[ = t0) > η,

and therefore, for every u ∈ [1, 1 + h0/2], we have P (T[u,+∞[ = t0) > η. Thus,
the scaling property yields that for each u ∈ [1, 1 + h0/2] :

P (T[1,+∞[ = t0/u
α) > η.
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In other words, for all s ∈ [(2/(2 + h0))
αt0, t0] :

P (T[1,+∞[ = s) > η,

which can not be true. We have therefore, for any h > 0 :

P (T[1,+∞[ = t0, K1 > h) = 0.

Thus, for every h > 0 :

0 < δ = P (T[1,+∞[ = t0) = P (T[1,+∞[ = t0, K1 ≤ h) ≤ P (K1 ≤ h),

which is a contradiction, because the right-hand side converges to 0 when h
tends to 0.

The result for T 0
x can be obtained from the result for T[x,+∞[, since thanks to

Theorem 12 we have :

P (t− h < T 0
x ≤ t) ≤

sin(πρ)

k πρ
x−αρE

[

T[x,+∞[ 1{t−h<T[x,+∞[≤ t}
(

t− T[x,+∞[

)1−ρ

]

.

Comment. In a forthcoming publication, I would like to establish more precise
links between the absolute continuity of the law of St and the asymptotic random
variable T 0

x .
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