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We find an expression for the joint Laplace transform of the law of (T [x,+∞[ , XT [x,+∞[ ) for a Lévy process X, where T [x,+∞[ is the first hitting time of [x, +∞[ by X. When X is an α-stable Lévy process, with 1 < α < 2, we show how to recover from this formula the law of XT [x,+∞[ ; this result was already obtained by D. Ray, in the symmetric case and by N. Bingham, in the case when X is non spectrally negative. Then, we study the behaviour of the time of first passage T [x,+∞[ conditioned to {XT [x,+∞[x ≤ h} when h tends to 0. This study brings forward an asymptotic variable T 0

x , which seems to be related to the absolute continuity of the law of the supremum of X.

Introduction

Let X = (X t , t ≥ 0) denote a Lévy process with characteristic exponent ψ.

For t ≥ 0 we set : S t = sup 0≤s≤t X s and I t = inf 0≤s≤t X s , and for x > 0 :

T [x,+∞[ = inf{s > 0 : X s ≥ x} and K x = X T [x,+∞[ -x.
We denote by e γ an exponential variable with parameter γ, independent of X.

Our interest focusses on the joint law of (T [x,+∞[ , X T [x,+∞[ ) (see [START_REF] Gusak | On the joint distribution of the first exit time and exit value for homogeneous processes with independent increments[END_REF]) and on questions concerned with the absolute continuity of the law of S t .

In section 2 we present some known results, which we will be needed in the following sections. The first result (Proposition 1) is a famous formula obtained by Pecherskii and Rogozin which concerns the joint Laplace transform of (T [eγ ,+∞[ , X T [eγ ,+∞[ ). The second result (Proposition 2) deals with the asymptotic behaviour of the quantity P (S 1 < x) in the stable case when x tends to 0.

In section 3 we obtain an expression of the joint Laplace transform of the pair (T [x,+∞[ , X T [x,+∞[ ). First, we remark that the Laplace transform of this quantity can be expressed by means of the joint Laplace transform of (T [eγ ,+∞[ , X T [eγ ,+∞[ ), for which we dispose of a formula (Proposition 1). In this way we obtain the result by inverting a Laplace transform.

Then, we pass to the α-stable case, with 1 < α < 2. By means of the scaling property and of Proposition 2, we prove some asymptotic properties associated to quantities introduced in the previous paragraph. After this, we recover the law of X T [x,+∞[ , as a corollary of these properties. This law is already known. In [START_REF] Ray | Stable process with an absorbing barrier[END_REF] Ray gives an expression of its density in the symmetric stable case. In [START_REF] Bingham | Maxima of sums of random variables and suprema of stable processes[END_REF] Bingham generalises this result for non-spectrally negative stable processes. However, the interest of this part of the work is to point out the role of the scaling property in the obtention of this result.

Finally, we focus on the asymptotic behaviour of the random variable T [x,+∞[ conditionned upon {K x ≤ h} when h tends to 0+. We show that a convergence in law holds towards a random variable which we denote T 0

x .

Preliminaries

First, we introduce some notations that will be useful afterwards. For q > 0, Re λ ≤ 0 and Re µ ≥ 0, we define :

ψ + q (λ) = exp - +∞ 0 (e λx -1)d x +∞ 0 u -1 e -qu P (X u > x)du , (1) 
and

ψ - q (µ) = exp 0 -∞ (e µx -1)d x +∞ 0 u -1 e -qu P (X u < x)du . (2) 
We use the following result due to Pecherskii and Rogozin :

Proposition 1 ([7], p.420). For all γ, λ, µ > 0, we have :

E[exp(-λT [eγ ,+∞[ -µK eγ )] = γ γ -µ 1 - ψ + λ (-γ) ψ + λ (-µ) . ( 3 
)
Remark 1. It follows from the definition of ψ + γ and ψ - γ that :

ψ + γ (iλ) ψ - γ (iλ) = γ γ + ψ(λ) . (4) 
On the other hand, it has been shown by Rogozin in [START_REF] Rogozin | On distributions of functionals related to boundary problems for processes with independent increments[END_REF] that for λ, µ ∈ C with Re λ ≤ 0, Re µ ≥ 0, we have :

ψ + γ (λ) = E[exp(λS eγ )] and ψ - γ (µ) = E[exp(µI eγ )]. (5) 
Hence, the representation of γ(γ + ψ(λ)) -1 in ( 4) is an infinitely divisible factorization.

Remark 2. We can find formula (3) in [START_REF] Bertoin | Lévy Processes[END_REF] (chap.VI, exercise 1, p.182) expressed as follows :

+∞ 0 e -λa E exp(-βT [a,+∞[ -θX T [a,+∞[ ) da = κ(β, λ + θ) -κ(β, θ) λκ(β, λ + θ) , (6) 
where κ(•, •) is defined by :

exp (-κ(β, θ)) = E [exp(-β τ1 -θS τ1 )] , (7) 
where τ denotes the right-continuous inverse of the local time at level 0 of the reflected process S -X.

The relation between formulae (3) and ( 6) is simple to establish. In fact, using the following formula ([1], Chap. VI, Corollary 10, p. 165) :

κ(β, θ) = κ(1, 0) exp    +∞ 0 dt [0,+∞[ (e -t -e -βt-θx )t -1 P (X t ∈ dx)    , (8) 
we prove that for q, λ > 0, we have :

ψ + q (-λ) =
κ(q, 0) κ(q, λ) .

In the case of a stable process with index α, the following result will play a key role :

Proposition 2 ([1], Chap.VIII, Proposition 2, p.219). We set ρ = P (X 1 > 0). If ρ ∈]0, 1[
, then there exists k > 0 such that :

P (S 1 ≤ x) ∼ kx αρ as x → 0 + . ( 9 
)
3 About the law of (T

[x,+∞[ , X T [x,+∞[ ) 3.

The general case

The purpose of this paragraph is to express the joint Laplace transform of

(T [x,+∞[ , X T [x,+∞[ ) for x > 0 : E[exp(-λT [x,+∞[ -µX T [x,+∞[ )].
Formula (3) gives an expression of the Laplace transform of the quantity we are interested in. So the problem is reduced to invert this Laplace transform.

First, we note that for γ > µ > 0, we have :

1 γ -µ = +∞ 0 e -(γ-µ)x dx and γ γ -µ = 1 + µ γ -µ .
On the other hand, from (5), we obtain for γ, λ > 0 :

ψ + γ (-λ) = E[exp(-λS eγ )] = +∞ 0 λ e -λz P (S eγ ≤ z) dz. ( 10 
)
As a consequence, (3) can be expressed as :

+∞ 0 e -γx E[ exp(-λT [x,+∞[ -µK x )] dx = 1 γ -µ - 1 ψ + λ (-µ)   γ γ -µ +∞ 0 e -γz P (S e λ ≤ z)dz   = +∞ 0 e -γx e µx - P (S e λ ≤ x) ψ + λ (-µ) dx - I(γ, λ, µ) ψ + λ (-µ) , (11) 
where :

I(γ, λ, µ) = µ +∞ 0 P (S e λ ≤ z)   +∞ 0 e -γ(y+z) e µy dy   dz.
Note that thanks to the change of variables v = z, x = y + z and Fubini's theorem, we get :

I(γ, λ, µ) = µ +∞ 0 e -(γ-µ)x   x 0 e -µv P (S e λ ≤ v)dv   dx.
If we put this expression for I(γ, λ, µ) in (11), we obtain using [START_REF] Yano | Penalisation of a stable Lévy process involving its one-sided supremum[END_REF] :

+∞ 0 e -γx E[exp(-λT [x,+∞[ -µK x )]dx = 1 ψ + λ (-µ) +∞ 0 e -(γ-µ)x J(µ, λ; x)dx, (12) 
where :

J(µ, λ; x) = +∞ x µe -µv P (S e λ ≤ v)dv -e -µx P (S e λ ≤ x). ( 13 
)
Therefore we have :

E[exp(-λT [x,+∞[ -µK x )] = e µx E e -µSe λ J(µ, λ; x). (14) 
Observe that :

J(µ, λ; x) = E    +∞ x∨Se λ µe -µv dv    -e -µx P (S e λ ≤ x)
= E e -µ(x∨Se λ ) -e -µx P (S e λ ≤ x), and thus :

J(µ, λ; x) = E e -µSe λ 1 {Se λ ≥ x} . ( 15 
)
Theorem 3. For all λ, µ > 0 and x ≥ 0 :

E[exp(-λT [x,+∞[ -µX T [x,+∞[ )] = E e -µSe λ 1 {Se λ ≥ x} E e -µSe λ . ( 16 
)
Proof. It is immediate from ( 14) and (15).

The stable case

Henceforth, X will denote a real-valued stable Lévy process with index α ∈]1, 2]. We denote :

ρ = P (X 1 ≥ 0).
We know that in this case, ρ ∈ [1 -1/α, 1/α] (see [START_REF] Bertoin | Lévy Processes[END_REF]), in particular ρ ∈]0, 1[. The cases ρ = 1 -1/α and ρ = 1/α correspond to the cases when X has no negative jumps (spectrally positive case) and no positive jumps (spectrally negative case), respectively.

Scaling for S e λ and some asymptotic results

In Theorem 3, we see a link between the random variable S e λ and the joint distribution of T [x,+∞[ , X T [x,+∞[ . In this section, we show how the scaling property allows to study the absolute continuity of the law of S e λ and the asymptotic behavior of some quantities associated to this random variable.

Proposition 4. For all λ > 0, the law of the random variable S e λ is absolutely continuous. Its density f λ can be expressed as :

f λ (x) = λα x E T [x,+∞[ exp(-λT [x,+∞[ ) , x > 0. ( 17 
)
Proof. If we take the limit when µ goes to 0+ in (16), we get :

P (S e λ ≤ x) = 1 -E exp(-λT [x,+∞[ ) .
On the other hand, the scaling property yields :

E exp(-λT [x,+∞[ ) = E exp(-λx α T [1,+∞[ ) .
The result follows.

Lemma 5 (Scaling). For all λ, µ > 0 and x ≥ 0 :

(i) P (S e λ ≤ x) = P S e ≤ xλ 1/α = +∞ 0 e -v P S 1 ≤ xλ 1/α v 1/α
dv.

(ii) E e -µSe λ = E e Proof.

(i) We have for any λ, µ > 0 and x ≥ 0. :

P (S e λ ≤ x) = +∞ 0 λe -λu P (S u ≤ x)du (change of variables λu = v) = +∞ 0 e -v P (S v/λ ≤ x)dv (scaling) = +∞ 0 e -v P S 1 ≤ xλ 1/α v 1/α dv,
which proves (i).

(ii) From ( 10 

(iii) E e -µSe λ ∼ k * Γ(1 + αρ) µ -αρ λ ρ when λ → 0+. (iv) E e -µSe λ 1 {Se λ ≥ x} ∼ k * αρ +∞ µx
e -y y αρ-1 dy µ -αρ λ ρ when λ → 0+.

Proof.

(i) Thanks to Proposition 2 and Lemma 5 (i), the dominated convergence theorem yields :

P (S e λ ≤ x) λ ρ = +∞ 0 e -v P S 1 ≤ xλ 1/α v 1/α λ ρ dv -→ λ→0+ k Γ(1 -ρ) x αρ .
It suffices to choose k * = k Γ(1 -ρ) to finish the proof of (i).

(ii) Applying the dominated convergence theorem, we deduce from (i) :

+∞ x µe -µv P (S e λ ≤ v)dv λ ρ -→ λ→0+ k * +∞ x µe -µv v αρ dv.
we obtain (ii) by the change of variables y = µv.

(iii) It suffices to consider x = 0 in assertion (ii).

(iv) Using formulae ( 13) and ( 15), (iv) is a consequence of (i) and (ii).

In [START_REF] Ray | Stable process with an absorbing barrier[END_REF], Ray gives an expression for the density of the law of X T [x,+∞[ in the symmetric case. In [START_REF] Bingham | Maxima of sums of random variables and suprema of stable processes[END_REF], Bingham generalizes this result to the case when X is not spectrally negative. Now, we recover this result as a corollary of Theorem 3 and Proposition 6 (see also Lemma 4.1 in [10]).

Corollary 7 ([8], [START_REF] Bingham | Maxima of sums of random variables and suprema of stable processes[END_REF]). If αρ < 1, then :

X T [x,+∞[ (loi) = x β αρ,1-αρ . ( 18 
)
Consequently :

P (X T [x,+∞[ ∈ dy) = ρ(x, y)dy, when ρ(x, y) = sin(παρ) π 1 y x y -x αρ 1 ]x,∞[ (y).
Proof. If we let λ tend to 0+ in (16), we get with the help of Proposition 6,

E[exp(-µX T [x,+∞[ )] = 1 Γ(αρ)
+∞ µx e -y y αρ-1 dy, and by using the identity y αρ-1 = 1 Γ(1-αρ) +∞ 0 e -yv v -αρ dv, we obtain :

E[exp(-µX T [x,+∞[ )] = sin(παρ) π +∞ µx dy +∞ 0 e -y(v+1) v -αρ dv = sin(παρ) π +∞ 0 e -µx(v+1) v + 1 v -αρ dv (Fubini's theorem) = sin(παρ) π 1 0 e -µx/z z αρ-1 (1 -z) -αρ dz (change of variables z = 1/(v + 1)),
which proves Corollary 7.

Remark 3. Similarly, the law of K x is absolutely continuous. Its density is given by :

ρ K (x, y) = ρ(x, x + y) = sin(παρ) π 1 (y + x) x y αρ 1 ]0,∞[ (y).
Remark 4. This result has been generalized in the papers [START_REF] Doney | Overshoots and undershoots of Lévy processes[END_REF] and [START_REF] Kyprianou | Exact and asymptotic n-tuple laws at first and last passage[END_REF].

An asymptotic law

Note first that a standard application of the Markov property permits to show that :

P (S t ∈ ] x, x+h ]) = [0,t[×]x,x+h] P (T [x+h-y,+∞[ ≥ t-s) P (T [x,+∞[ ∈ ds, X T [x,+∞[ ∈ dy).
Taking the limit in this equality when h tends to 0, we may expect to find links between the absolute continuity of the law of S t and the asymptotic behavior of the random variable

T [x,+∞[ conditioned to {K x ≤ h}.
With this motivation, we introduce for each x, h > 0 the random variable T h x whose law is given by :

P (T h x ∈ • ) = P (T [x,+∞[ ∈ • | K x ≤ h).
Thus the aim in this section is to study the asymptotic behavior of the variables T h

x when h goes to 0+. For this, we start by computing the asymptotic probability of the events {K x ≤ h}. Lemma 8. For all x > 0 :

P (K x ≤ h) h 1-αρ -→ h→0+ sin(παρ) π(1 -αρ) x αρ-1 . (19) 
Proof. By Corollary 7, we have :

P (X T [x,+∞[ ≤ x + h) = sin(παρ) π x+h x 1 y x y -x αρ dy = sin(παρ) π x αρ h 1-αρ 1 0 1 (uh + x)u αρ du (change of variables u = (y -x)/h).
The result follows by dividing both sides by h 1-αρ and applying the dominated convergence theorem. Now, we define the probability measure P (x) λ by :

P (x) λ (A) = E 1 A exp(-λT [x,+∞[ ) E exp(-λT [x,+∞[ ) , A ∈ F ∞ .
The following lemma is the analogue of Lemma 8 for the probability measure P

λ . Lemma 9. For all λ, x > 0, we have :

P (x) λ (X T [x,+∞[ -x ≤ h) h 1-αρ -→ h→0+ sin(παρ) k * παρ(1 -αρ) λ -ρ f λ (x) P (S e λ ≥ x) , ( 20 
)
where k * is the constant appearing in Proposition 6.

Proof. We consider the fonction U : [0, +∞[→ [0, +∞[ defined by :

U (h) = P (x) λ (K x ≤ h) .
By Tauberian theorem (see p.10 in [START_REF] Bertoin | Lévy Processes[END_REF]), the behavior of U around 0+ is related to the behavior of its Laplace transform at infinity.

We remark that :

+∞ 0 e -µy U (dy) = E (x) λ [exp(-µK x )] = E exp(-λT [x,+∞[ -µK x ) E exp(-λT [x,+∞[ ) . ( 21 
)
On the other hand, thanks to (13), ( 14) and an obvious change of variables, we obtain :

E exp(-λT [x,+∞[ -µK x ) =
+∞ 0 e -y P S e λ ≤ y µ + x -P (S e λ ≤ x) dy E e -µSe λ .

(22) Using Lemma 4 and applying the dominated convergence theorem, we show that :

µ +∞ 0 e -y P S e λ ≤ y µ + x -P (S e λ ≤ x) dy -→ µ→+∞ f λ (x). (23) 
We know from part (ii) of Lemma 5 that :

E e -µSe λ = E e -1 λ 1/α Se µ -α
, and therefore, from part (iii) of Proposition 6, we obtain that :

µ αρ E e -µSe λ -→ µ→+∞ k * Γ(1 + αρ)λ ρ . (24) 
Thus, from (21), ( 22), ( 23) and (24), we get :

µ 1-αρ +∞ 0 e -µy U (dy) -→ µ→+∞ 1 k * Γ(1 + αρ) λ -ρ f λ (x) P (S e λ ≥ x) , (25) 
and then, thanks to the Tauberian theorem (see p.10 in [START_REF] Bertoin | Lévy Processes[END_REF]), we obtain :

1 h 1-αρ U (h) -→ h→0+ 1 k * Γ(1 + αρ)Γ(2 -αρ) λ -ρ f λ (x) P (S e λ ≥ x) , (26) 
which completes the proof.

Proposition 10. For every λ, x > 0, we have :

E exp(-λT [x,+∞[ ) | K x ≤ h -→ h→0+ 1 k * αρ x 1-αρ λ -ρ f λ (x). (27) 
Proof. We remark that :

E exp(-λT [x,+∞[ ) | K x ≤ h = P (x) λ (K x ≤ h) P (K x ≤ h) E exp(-λT [x,+∞[ ) .
Now, the result is a consequence of Lemmas 8 and 9.

Lemma 11. For all x > 0 :

lim λ→0+ 1 k * αρ x 1-αρ λ -ρ f λ (x) = 1. ( 28 
)
Proof. The scaling property entails :

E[T [x,+∞[ exp(-λT [x,+∞[ )] = +∞ 0 e -v (1 -v)P S 1 ≤ xλ 1/α v 1/α dv,
and then, by definition of f λ we obtain from Proposition 2 and the dominated convergence theorem that :

λ -ρ f λ (x) -→ λ→0+ k α x αρ-1 +∞ 0 e -v (1 -v) v -ρ dv = k α ρ Γ(1 -ρ) x αρ-1 .
The result follows.

Theorem 12. For each x > 0, the family of random variables {T h x } h>0 converges in law as h tends to 0+. The limit is denoted by T 0

x and its law is given by :

P T 0 x ≤ t = sin(πρ) k πρ x -αρ E T [x,+∞[ 1 {T [x,+∞[ ≤ t} t -T [x,+∞[ 1-ρ .
Proof. For x, h > 0, we denote by L x h the Laplace transform of the random variable T h x and by L x the fonction defined by :

L x (λ) = 1 k * αρ x 1-αρ λ -ρ f λ (x).
According to Proposition 10, the Laplace transform L x h converges pointwise to the fonction L x . Since we have already shown in Lemma 11 that :

lim λ→0+ L x (λ) = 1,
it appears that the fonction L x is the Laplace transform to some probability measure with support in R + (see [START_REF] Chung | A course in probability theory[END_REF], Theorem 6.6.3, p.190). We denote this limit measure by ν x .

We remark that : 

L x (λ) λ = 1 λ [0,+∞]
In other words, for all s ∈ [(2/(2 + h 0 )) α t 0 , t 0 ] :

P (T [1,+∞[ = s) > η,
which can not be true. We have therefore, for any h > 0 :

P (T [1,+∞[ = t 0 , K 1 > h) = 0.
Thus, for every h > 0 :

0 < δ = P (T [1,+∞[ = t 0 ) = P (T [1,+∞[ = t 0 , K 1 ≤ h) ≤ P (K 1 ≤ h),
which is a contradiction, because the right-hand side converges to 0 when h tends to 0.

The result for T 0 x can be obtained from the result for T [x,+∞[ , since thanks to Theorem 12 we have :

P (t -h < T 0 x ≤ t) ≤ sin(πρ) k πρ x -αρ E T [x,+∞[ 1 {t-h<T [x,+∞[ ≤ t} t -T [x,+∞[ 1-ρ .
Comment. In a forthcoming publication, I would like to establish more precise links between the absolute continuity of the law of S t and the asymptotic random variable T 0 x .

e

  -v P S e ≤ vλ 1/α µ dv.

Proposition 6 .

 6 ), (i) and the change of variables µz = v : E e -µSe λ = +∞ 0 µe -µz P S e ≤ zλ 1/α dz = There exists a constant k * > 0 such that :(i) P (S e λ ≤ x) ∼ k * x αρ λ ρ when λ → 0+. (ii) +∞ x µe -µv P (S e λ ≤ v)dv ∼ k * +∞ µxe -y y αρ dy µ -αρ λ ρ when λ → 0+.

e

  -λy ν x (dy) = +∞ 0 e -λy ν x ([0, y]) dy.

On the other hand, we have :

By using the identity λ -ρ = 1 Γ(ρ) +∞ 0 e -λz z ρ-1 dz, we get :

The result is obtained by comparing (29) and (30).

3.2.3

The laws of T [x,+∞[ and T 0 x have no point masses In [START_REF] Pecherskii | On joint distributions of random variables associated with fluctuations of a process with independent increments[END_REF] (Lemma 1), it has been demonstrated in a more general framework that the law of S t admits no point masses, i.e., for any x ≥ 0, P (S t = x) = 0. Since we have

So, by using the scaling property, we obtain in particular :

Thus we see that T [1,+∞[ admits no point masses either (the same for T [x,+∞[ , by scaling). In the following proposition, we find this result directly from the scaling property.

Proposition 13. For every x, t > 0 :

Proof. We first show the result for T [x,+∞[ . By scaling property, with no loss of generality, we may suppose that x = 1.

Suppose, by contradiction, that there is t 0 > 0 such that :

Suppose now that there is h 0 > 0 satisfying :

In this case, we have :

and therefore, for every u ∈ [1, 1 + h 0 /2], we have P (T [u,+∞[ = t 0 ) > η. Thus, the scaling property yields that for each u ∈ [1, 1 + h 0 /2] :