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THE INTERFACE BETWEEN PHASES AS A LAYER,PART I
A H-ORDER MODEL FOR TWO DIMENSIONAL NONMATERIAL CONTINUA
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and
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ABSTRACT

We model the interlayer between phases as a 2D continuum
accounting for its actual "3D" nature. This is done by
defining on a reference surface interfacial quantities in
the form of integrals along the thickness of the layer.
Therefore it 1is possible to deduce the general surface
balance law from the 3D one. The balance laws are derived
for of all the first H moments of mass, linear momentum and
angular momentum. This procedure yields surface angular
momentum balances Galilean invariant. Finally a
Kirchhoff-Love type interface is defined and shortly
discussed by means of a first-order model.

1. INTRODUCTION

Capillarity or Surface Phenomena occur when significant amounts of
physically relevant quantities are localized in a region, henceforth
called a layer £, whose thickness is small.
1.1 Assumptions

We start considering a 3D continuum € occupying at instant t the
region C(t) and moving with the velocity v. We assume that the layer 2
is located in €. We shall model £ as a 2D nonmaterial continuum ¥ whose
balance equations for surface densities of mass, linear and angular
momenta, are formulated taking into account the 3D nature of £ itself.
Here by the term nonmaterial continuum we mean that the motion of the

layer can be different from that determined by the field V.

Following v we assume that:



There exists a regular surface £ < &, which models the spatial

evolution and geometrical properties of £ itself in such a way that

UL
e =
2 EEIZ (1.1)
+
where I = [-g/2,+3/2] (we denote *4/2=y4"), 75 being the thickness of

the layer which in a first approach we assume to be constant, and

22 = { xel€ | A reZ: x=r+28n, n=unit normal to £ at }

Let us notice that the regular surface £ 1is chosen with no
particular reference to thermomechanical quantities defined in € as it
is used to be done when introducing Gibbs’ dividing surfaces.

The remaining material structure of £ is preserved by equipping
the surface Z with a structure of 2D continuum. It is done by defining
surface densities and flux of physical quantities as suitable integrals
of the corresponding volume ones along the thickness of £. The procedure
makes possible an identification of surface quantities which appear in
surface balance laws even when dealing with nonmaterial continua.
Moreover, this allows for a more careful discussion of the Galilean
invariance of the balance laws.

1.2 H-th Order Models For £.

Following b for every volume density ¢ whose flux 1is w and

production 1s p, we can define the corresponding surface density and

production functions as

+

z
£ = J JW rlf(r+dn(r), t)dl = <j > (if f stands for p or y¥) (1.2)
z

and the surface flux as

Wiy )= <yoe (v+lgrad_c ) A_(0)> + <u A_(0)>, (1.3)
where j{{,r) = 1 - 2H(r){ + K(r)f. Here H(r) and K(r) are, respectively,
the mean and Gauss curvatures of Z at r, the tensors go and DS are the
surface curvature and metric tensors of the moving surface Z,
respectively, c its geometrical normal speed and AS(E) = (1—2HZ)US+ £po
is a tensor field which 'depends of course on r and t.

The above definitions give at the same time the only possible
relationships between the surface quantities and their bulk counterparts

(better to say - their primitives), in order the interfacial balance law



localized on the surface I were compatible and derivable from the 3D
law. The latter is postulated for ¥ in the integral form as well as in

the following local one:

S v+ div ey +u ) = p . (1.4)

1,

On the other hand using the model developed in one could not
completely take into account 1 the influence of the thickness of the
layer on the thermomechanical behaviour of phase interfaces.Quoted model
we shall call a O-th order model.

In order to resolve the aforementioned difficulty an H-th order model
is proposed, introducing the k-th moments ( k = H ) of a typical
quantity f by

Ke s (kb)) £ when x e 2. (1.5)
here £ means the k-th power of £. One should mention at this point the
approach used by Dumais 3), who already introduced the concept of the
higher order moments in modelling interface phenomena. The following
local balance equation for Y can be easily derived from (1.4) and

properties of the function £(x,t) (see Lemma 2.9 in H

K k—1w-g) (1.6)

Y+ div (kW®x +ky ) = kg + k( k_lw ® (x~g—cn) +

QJlQ)
pars

Regarding (1.6) as a particular case of (1.4) and recalling the

results in Sec. 2 of 1), we get the following surface balance equation:

dn ks k s . k K _
57 VY- 2ch /A leS(< w®(g+2gradscn) AS(£)>+< W AS(Z)>) =
(1.7)
= [j(kw(z - o)y Jn+ p% + <ok( *lye(v-n-c ) + Kluiny,
n
where é% , gradS and divS denote respectively the surface Thomas
derivative, gradient and divergence operators. This equation is valid for

any k = 1. If k = O the primitive interfacial balance law found in '

is the counterpart of (1.4). In this particular case the last term of

its L.H.S. is given by (1.3) and its last term of the R.H.S. vanishes.

*1*
The authors gratefully acknowledge having this drawn to their
attention by Professor S. RIONERO.



It can however arise a question concerning the mathematical
completeness of this kind of approach. To answer this question one
should first notice that the k-th moment of a typical function f in
(1.5) (regarded as a function of ¢ only) defines the projection of f on
the polynomial Zk belonging to the basis formed by all polynomialsof the
function space LZ([Q_,Q+], du = jd&) . The measure p is positive and
absolutely continuous with respect to the Lebesgue measure as long as J
is positive and H and K are finite; this corresponds to the hypothesis
H3.1 1in v on the thickness of the layer &. Therefore the H-order

theory deals with truncated expansions along the thickness of the layer

of physical quantities to be balanced.

2. MECHANICAL INTERFACIAL BALANCE LAWS

Let p be the mass density function for the continuum €. To make
the presentation more compact and to make evident the Galilean
invariance of surface balance laws we introduce the following denotation

( compare 1.3 )

WS Mo ) = T s s = gpun >+
k kK s |
k o v Y k k _ Uk
5, = < Sk Jo *mier Fspwri= Fua (2.1)

where kEp;=<£kp(§S(£)—jﬂs)x + 2k+1p gradsc AS(£)> can be proved to be
n

Galilean invariant paralleling the proof of Lemma 4.2 in v . Moreover

it is evident that the kgm, m = 1,2, are Galilean invariant, of course,

if w fulfills the same requirement.

2.1. Balance of Moments of Mass and Linear Momentum
With our denotation the balance equation for the moments of mass

will take the following form, where H = k =1,
dn k s k-1
p

k s .. ks .k
37 - 2ch p- o+ leS M~ = [J( p(x-g-cn)] + k<

o) (X'Q—Cn)>. (2.2)

To balance the first H moments of linear momentum with w equal to the

minus Cauchy stress T the following set of equafions must be satisfied



dn [k s k.,s k s k,,s . k
37 [ o) v ] - 2ch p Vo o+ leS( Ve

4 S

M+ €5 (pvr + S5 tov}) = X(pp)

k-1

=

+ []:(kpX@(X'g—cn)—kI g_)j]] + <J K( k—lpx ® (z-g—cn) - ‘n)> (2.3)

where 6% v%i= K(pu)®, K5 (pvr=c(v-v*re*n()>, 85 toui= <1 a_(0>.

Let us notice that for every k = H-2 the term kEP is known in terms of
moments of mass and linear momentum whose evolution is goverﬁéd by the
balance equations (2.2 -2.3) introduced in H-order models. Therefore in
such models constitutive equations for H_nﬂp are required, together with

constitutive equations for kgm{px} where k=1,..,H and n=0, 1.

2.2 Balance of Moments of Angular Momentum

We restrict now ourself only to nonpolar continua. The master
angular momentum balance law is well known in the 3D theory; its
interfacial counterpart requires tovdefine two quantities for each k-th

moment. Namely

kWS c= <j(c + & n) x Ekpx> , k@; 1= <jln x kag> (2.4)

and the corresponding flux and production terms are

w(@) = - (r +&n) x &1, kg2(£)=—2gxﬂkl

k s

p° = <jlr + £ n) x &pb>, koS

B = <j¢ n x ka9> - <j£kE> (2.5)
where (cf.) ) JE: = (jl+3(§0— KEUS)XI> - joxI-n - m(@)x(v-nln + jpxxcng.

Making use of the balance law (1.7) substituting kws with those defined
in (2.4) together with the corresponding terms from (2.5) we arrive at a
pair of equations ( for any H = k = 1) which generalize (4.17) and
(4.22) in v . Subtracting the second from the first and using the cross

preduct of r with the law (2.3) we end up with

<jax Ty > =0 (2.6)

which is automatically satisfied if T

is symmetric. On the other hand
the H + 1 equations (2.6) with k = 0,1,...H represent the H-th order

condition of non-polarity of the layer.



3. SHELL-LIKE INTERFACE OF KIRCHHOFF-LOVE TYPE

Let us consider the particular case of interfaces in which the
layer £ is defined by the kinematics of the continuum €. We assume that
a surface £ can be found such that the velocity field has the particular

form, namely
v(i&r,t) = v (o, t) - &(grad w_ + b v ), where v_-n = 0 (3.1)
0 s n 0T -t

This velocity field describes the motion in which particles
appearing in the layer on a line tangent to a normal n move with equal
normal speeds. However i1f w_ is equal to c¢_ and v_ equal to v [ and the

n n - 0's
both are independent of { then the aforementioned particles remain on a
common line. In this case it turns out that the following relations

_ -1 s s _ . _ -
XO(L,t)US = j (dZ)AS(dz)( A dZ grad cn), (v vi)n =0, (3.2)

- +

hold, where dg defined by 1pS = dg pS belongs to [ , 5 1.

Formula (3.2) shows that the first order model 1is required for
describing the Kirchhoff-Love type interface. More precisely if we
consider all together
1) the interfacial linear momentum and mass balance laws
2) the boundary values for p_ and p+ (they play the role of constitutive
quantities) consistent with the sign of v,
we obtain a well posed problem for bulk mechanical balance laws.
Kirchhoff-Love type interface is a first instance in which the higher

order models show their applicability in modelling surface phenomena.
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