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Large graph limit for an SIR process in random network with
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July 22, 2010

Abstract

We consider an SIR epidemic model propagating on a Configuration Model network,
where the degree distribution of the vertices is given and where the edges are randomly
matched. The evolution of the epidemic is summed up into three measure-valued equations
that describe the degrees of the susceptible individuals and the number of edges from an in-
fectious or removed individual to the set of susceptibles. These three degree distributions are
sufficient to describe the course of the disease. The limit in large population is investigated.
As a corollary, this provides a rigorous proof of the equations obtained by Volz (2008).

Keywords: Configuration Model graph, SIR model, mathematical model for epidemiology,
measure-valued process, large network limit.
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1 Introduction and notation

In this work, we investigate an epidemic spreading on a random graph with fixed degree distri-
bution and evolving according to a SIR model as follows. Every individual not yet infected is
assumed to be susceptible. Infected individuals stay infected during random exponential times
with mean 1/β during which they infect each of their susceptible neighbors with rate r. At the
end of the infectious period, the individual becomes removed and is no longer susceptible to the
disease. Contrarily to the classical mixing compartmental SIR epidemic models (e.g. [17, 5] see
also [2] Chapter 2 for a presentation), heterogeneity in the number of contacts makes it difficult
to describe the dynamical behavior of the epidemic. Mean field approximations (e.g. [23, 4, 10])
or large population approximations (e.g. [3], see also Eq. (3) of [1] in discrete time) provide a
set of denumerable equations to describe our system. We are here inspired by the paper of Volz
[26], who proposes a low-dimensional system of five differential equations for the dynamics of an
SIR model on a Configuration Model (CM) graph [19]. We refer to Volz’ article for a bibliogra-
phy about SIR models on graphs (see also Newman [20, 21], Durrett [10] or Barthélemy et al.
[4]). Starting from a random model in finite population, Volz derives deterministic equations by
increasing the size of the network, following in this respect works of Newman for instance ([21]).
The convergence of the continuous-time stochastic SIR model to its deterministic limit for large
graphs was however not proved. In this paper, we prove the convergence that was left open by
Volz. To achieve this, we provide a rigorous individual-based description of the epidemic on a
random graph. Three degree distributions are sufficient to describe the epidemic dynamics. We
describe these distributions by equations in the space of measures on N, of which Volz’ equa-
tions are a by-product. Starting with a node-centered description, we show that the individual
dimension is lost in the large graph limit. Our construction heavily relies on the choice of a CM
for the graph underlying the epidemic, which was also made in [26].
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The beginning of the epidemic and computation of the reproduction number, when the num-
bers of infected individuals and of contaminating edges are small and when Volz’s deterministic
approximation does not hold, makes the object of another study [9].

The size N of the population is fixed. The individuals are related through a random network
and are represented by the vertices of an undirected graph. Between two neighbors, we place
an edge. The graph is non-oriented and an edge between x and y can be seen as two directed
edges, one from x to y and the other from y to x. If we consider an edge as emanating from
the vertex x and directed to the vertex y, we call x the ego of the edge and y the alter. The
number of neighbors of a given individual is the degree of the associated vertex. The degree of
x is denoted dx. It varies from an individual to another one.
The population is partitionned into the classes of susceptible, infectious or removed individuals.
At time t, we denote by st, it and rt the set of susceptible, infectious and removed nodes. With
a slight abuse, we will say that a susceptible individual is of type s (accordingly of type i or r)
and that an edge linking an infectious ego and susceptible alter is of type is (accordingly rs, ii
or ir). For x ∈ i (respectively r), dx(s) represents the number of half-edges with x as ego and
susceptible alter. We denote by St, It and Rt the sizes of these classes at time t. The numbers
of edges with susceptible ego (resp. of edges of types is and rs) will be denoted by N s

t (resp.
N is

t and Nrs

t ).

The space of real bounded functions on N is denoted by Bb(N). For any f ∈ Bb(N), set ‖f‖∞
the supremum of f on N. For all such f and y ∈ N, we denote by τyf the function x 7→ f(x−y).
For all n ∈ N, χn is the function x 7→ xn, and in particular, χ ≡ χ1 is the identity function, and
1 ≡ χ0 is the function constantly equal to 1.

We denote by MF (N) the set of finite measure on the set of non-negative integers, which is
embedded with the topology of weak convergence. For all µ ∈ MF (N) and f ∈ Bb(N), we write

〈µ, f〉 =
∑

k∈N

f(k)µ({k}).

With some abuse of notation, for all µ ∈ MF (N) and k ∈ N, we denote µ(k) = µ({k}). For
x ∈ N, we write δx for the Dirac measure at point x. Note, that some additional notation is
provided in Appendix A, together with several topological results, that will be used in the sequel.

The plan of the paper and the main results are described below. In Section 2, we describe
the mechanisms underlying the propagation of the epidemic on the CM graph. We explain how
the course of the epidemic can be entirely described by the following three elements of MF (N),
for t ≥ 0:

µs

t =
∑

x∈st

δdx , µis

t =
∑

x∈it

δdx(s), µrs

t =
∑

x∈rt

δdx(s). (1.1)

The degree distribution µs

t of susceptible individuals is needed to describe the degrees of the
new infected individuals. The measure µis

t provides information on the number of edges from it

to st, through which the disease can propagate. Similarly, the measure µrs

t is used to describe
the evolution of the set of edges linking st to rt.
We can see that N s

t = 〈µs

t , χ〉 and St = 〈µs

t ,1〉 (and accordingly for N is

t , N
rs, It and Rt).

In Section 3, we study the large graph limit obtained when the number of vertices tends to
infinity, the degree distribution being unchanged. The degree distributions mentioned above can
then be approximated by the solution (µ̄s

t , µ̄
is

t , µ̄
rs

t )t≥0 of the following system of deterministic
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measure-valued equations, that is addressed in the sequel: for any f ∈ Bb(N),

〈µ̄s

t , f〉 =
∑

k∈N

µ̄s

0(k) θ
k
t f(k) where θt = exp

(
− r

∫ t

0
p̄is ds

)
, (1.2)

〈µ̄is

t , f〉 =〈µ̄is

0 , f〉 −

∫ t

0
β〈µ̄is

s , f〉 ds

+

∫ t

0

∑

k∈N

rkp̄is
∑

j, ℓ,m∈N
j+ℓ+m=k−1

(
k − 1
j, ℓ, m

)
(p̄is)

j(p̄rs )
ℓ(p̄ss)

mf(m)µ̄s

s(k) ds

+

∫ t

0

∑

k∈N

rkp̄is(1 + (k − 1)p̄is)
∑

k′∈N∗

(
f(k′ − 1)− f(k′)

)k′µ̄is

s (k
′)

N̄ is

s

µ̄s

s(k) ds, (1.3)

〈µ̄rs

t , f〉 =

∫ t

0
β〈µ̄is

s , f〉 ds

+

∫ t

0

∑

k∈N

rkp̄is(k − 1)p̄rs
∑

k∈N∗

(
f(k′ − 1)− f(k′)

)k′µ̄rs

s (k′)

N̄rs

s

µ̄s

s(k) ds, (1.4)

where the initial conditions µ̄s

0 and µ̄is

0 on degrees are finite measures on N, where for all t ≥ 0,
N̄ s

t = 〈µ̄s

t , χ〉 (resp. N̄ is

t = 〈µ̄is

t , χ〉 and N̄rs

t = 〈µ̄rs

t , χ〉) are the continuous number of edges
with ego in s (resp. in is edges, in rs edges), and p̄it = N̄ is

t /N̄
s

t (resp. p̄rt = N̄rs

t /N̄ s

t and
p̄st = (N̄ s

t − N̄ is

t − N̄rs

t )/N̄ s

t ) are the proportions of edges with infectious (respectively removed,
susceptible) alter among those having susceptible ego. Remark that θt defined in (1.2) is also
considered in [26] and is the probability that a degree one node remains susceptible until time
t. Choosing f(k) = 1li(k), we obtain the following countable system of ordinary differential
equations (ODEs).

µ̄s

t(i) =µ̄s

0(i)θ
i
t,

µ̄is

t (i) =µ̄is

0 (i) +

∫ t

0

{
rp̄is

∑

j,ℓ≥0

(i+ j + ℓ+ 1)µ̄s

s(i+ j + ℓ+ 1)

(
i+ j + ℓ

i, j, ℓ

)
(p̄ss)

i(p̄is)
j(p̄rs )

ℓ

+

(
r(p̄is)

2〈µ̄s

s, χ
2 − χ〉+ rp̄is〈µ̄

s

s, χ〉

)
(i+ 1)µ̄is

s (i+ 1)− iµ̄is

s (i)

〈µ̄is

s , χ〉
− βµ̄is

s (i)

}
ds,

µ̄rs

t (i) =

∫ t

0

{
βµ̄is

s (i) + rp̄is〈µ̄
s

s, χ
2 − χ〉p̄rs

(i+ 1)µ̄rs

s (i+ 1)− iµ̄rs

s (i)

〈µ̄rs

s , χ〉

}
ds, (1.5)

It is noteworthy to say that this system is similar but not identical to that in Ball and Neal [3].
Our equations differ since our mechanism is not the same (compare Section 2.2 with Section 5
in [3]). We emphasize that the number of links of an individual to s decreases as the epidemic
progresses, which modifies its infectivity.
The system (1.2)-(1.4) allows us to recover the equations proposed by Volz [26]. More precisely,
the dynamics of the epidemic is obtained by solving the following four ODEs, refered to as Volz’
equations in the sequel:

Proposition 1.1 (Volz [26]). Let

g(z) =
∑

k∈N

µ̄s

0(k)z
k (1.6)

be the generating function for the initial degree distribution of the susceptible individual µ̄s

0, and
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let θt = exp(−r
∫ t
0 p̄

i

s ds). Then, the epidemic can be described by the four following ODEs:

S̄t :=〈µ̄s

t ,1〉 = g(θt), (1.7)

Īt :=〈µ̄is

t ,1〉 = Ī0 +

∫ t

0

(
rp̄isθsg

′(θs)− βĪs

)
ds, (1.8)

p̄it =p̄i0 +

∫ t

0

(∫

N

r p̄isp̄
s

sθs
g′′(θs)

g′(θs)
− r p̄is(1− p̄is)− βp̄is

)
ds, (1.9)

p̄st =p̄s0 +

∫ t

0
rp̄isp̄

s

s

(
1− θs

g′′(θs)

g′(θs)

)
ds. (1.10)

In (1.8), we see that the classical contamination terms rS̄tĪt (mass action) or rS̄tĪt/(S̄t + Īt)
(frequency dependence) of mixing SIR models (e.g. [2, 8]) are replaced by rp̄itθtg

′(θt) where the
graph structure appears through the generating function g. Notice that θtg

′(θt) = N̄ s

t (see (3.48)
below) is the number of edges with susceptible ego.

2 SIR model on a CM graph

In this section, we introduce CM graphs and describe the propagation of SIR on such graphs.

2.1 Configuration Model graph

Graphs at large can be mathematically represented as matrices with integer entries: to each
graph corresponds an adjacency matrix, the (x, y)-th coefficient of which is the number of edges
between the vertices x and y. Defining the distribution of a random graph thus amounts to
choosing a sigma-field and a probability measure on the space NN∗×N∗

, where N∗ = N\{0}. An-
other approach is to construct a random graph by modifying progressively a given graph, as in
Erdös-Renyi model. Several other constructions are possible such as the preferential attachment
model, the threshold graphs, etc.

Here, we are interested in the Configuration Model (CM) proposed by Molloy and Reed [19]
(see also [22, 22, 10]) and which models graphs with specified degree distribution and indepen-
dence between the degree of neighbors. As shown by statistical tests, these models might be
realistic in describing community networks. See for instance Clémençon et al. [7] for dealing
with the spread of the HIV-AIDS disease among the homosexual community in Cuba.
We recall its construction (see e.g. [10]). Suppose we are given the number of vertices, N , and
i.i.d. random variables d1, . . . , dN representing the degrees of each vertex. To the vertex i are
associated di half-edges. To construct an edge, one chooses two open half-edges at random and
pair them together uniformly at random.
Remark that this linkage procedure does not exclude self-loops or multiple edges. In the fol-
lowing, we are interested in a large number of nodes with a fixed degree distribution, hence
self-loops and multiple edges become less and less apparent in the global picture (see e.g. [10,
Theorem 3.1.2]).
Notice that the condition for the existence of a giant component is that the expectation of the
size biaised distribution is larger than 1:

∑

k∈N

(k − 1)
kP(d1 = k)∑
k∈N kP(d1 = k)

> 1.

Intuitively, the chosen neighbours will in this case always have further half-edges to keep con-
structing the connected component (see [10, Section 3.2 p. 75] for details).
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2.2 SIR epidemic on a CM graph

We now propagate an epidemic on a CM graph of size N . The disease can be transmitted from
infectious nodes to neighboring susceptible nodes and removed nodes cannot be reinfected.

Suppose that at initial time, we are given a set of susceptible and infectious nodes together
with their degrees. The graph of relationships between the individuals is in fact irrelevant for
studying the propagation of the disease. The minimal information consists in the sizes of the
classes s, i, r and the number of edges to the class s for every infectious or removed node. Thus,
each node of class s comes with a given number of half-edges of undertermined types ; each node
of class i (resp. r) comes with a number of is (resp. rs) edges. The number of ir, ii and rr

edges needs not to be retained.

The evolution of the SIR epidemic on a CM graph can be described as follows. To each
is-type half-edge is associated an independent exponential clock with parameter r and to each
i vertex is associated an independent exponential clock with parameter β. The first of all these
clocks that rings determines the next event.

Case 1 If the clock that rings is associated to an i individual, the latter recovers. Change
its status from i to r and the type of its emanating half-edges accordingly: is half-edges
become rs half-edges.

Case 2 If the clock that rings is associated with a half is-edge, an infection occurs.

Step 1’ Match randomly the is-half-edge that has rung to a half-edge belonging to a
susceptible.

Step 2’ This susceptible is the newly infected. Let k, its degree. Choose uniformly k− 1
half-edges among all the available half-edges (they either are of type is, rs, or emanate
from s). Let m (resp. j and ℓ) be the number of ss-type (resp. of is and of rs-type)
half-edges drawn among these k − 1 half-edges;

Step 3’ Match those k− 1 half-edges with the k− 1 free half-edges of the newly infected.
This fixes his/her k−1 other neighbors (additional to the i-vertex which contaminated
him/her). Change the status of the m (resp. j, ℓ) ss-type (resp. is-type, rs-type)
edges created to si-type (resp. ii-type, ri-type);

Step 4’ Change the status of the newly infected from s to i. 2

We then wait for another clock to ring and repeat the procedure.
We only need three descriptors of the system to obtain a Markovian evolution, namely the

three degree distributions introduced in (1.1).

For a measure µ ∈ MF (N), we denote by Fµ(m) = µ({0, . . . ,m}), m ∈ N, its cumulative
distribution function. We introduce F−1

µ its right inverse (see Appendix A). Then, for all
0 ≤ i ≤ St (resp. 0 ≤ i ≤ It and 0 ≤ i ≤ Rt),

γi(µ
s

t) = F−1
µs

t
(i),

(
resp. γi(µ

is

t ) = F−1
µis

t
(i), γi(µ

rs

t ) = F−1
µrs

t
(i)
)

represents the degree at t of the ith susceptible individual (resp. the number of edges to s of

the ith infectious individual and of the ith removed individual) when individuals are ranked by
increasing degrees (resp. by number of edges to s and to r).

5



(a) (b) (c)

I

I

I

R

S

I

I

I

R

S

I

I

I

R

I

Figure 1: Infection process. Arrows provide the infection tree. Susceptible, infectious and removed

individuals are colored in white, grey and dark grey respectively. (a) The degree of each individual is

known, and for each infectious (resp. removed) individual, we know his/her number of edges of type is

(resp. rs). (b) A contaminating half-edge is chosen, and say that a susceptible of degree k is infected

at time t. The contaminating edge is drawn in bold line. (c) Once the susceptible individual has been

infected, we determine how many of its remaining arrows are linked to the classes i and r. If we denote

by j and ℓ these numbers, then N is

t
= N is

t
−

− 1 + (k − 1)− j − ℓ and Nrs

t
= Nrs

t
−

− ℓ.

Example 1. Consider for instance the measure

µ = 2δ1 + 3δ5 + δ7.

Then, the atoms 1 and 2 are at level 1, the atoms 3, 4 and 5 are at level 5, and the atom 6 is at
level 7. We then have that

γ1(µ) = F−1
µ (1) = 1, γ2(µ) = 1, γ3(µ) = γ4(µ) = γ5(µ) = 5, and γ6(µ) = 7.

2

From t, and because of the properties of exponential distributions the next event will take
place in a time exponentially distributed with parameter rN is

t + βIt. Let T denote the time of
this event.

Case 1 The event corresponds to a removal, i.e., a node goes from status i to status r. Choose
uniformly an integer i in N is

T− , then update the measures µis

T−
and µrs

T−
:

µis

T = µis

T− − δ
γi

(
µis

T−

) and µrs

T = µrs

T− + δ
γi

(
µis

T−

).

The probability that a given integer i is drawn is 1/IT− .

Case 2 The event corresponds to a new infection. We choose uniformly a half-edge with sus-
ceptible ego, and this ego becomes infectious. The global rate of infection is rN is

T−
and

the probability of chosing a susceptible individual of degree k for the new infectious is
kµs

T−
/N s

T−
. The newly infective may have several links with infectious or removed indi-

viduals. The probability, given that the degree of the individual is k, that j (resp. ℓ) out
of its k − 1 other half-edges (all but the contaminating is edge) are chosen to be of type
ii (resp. ir), according to Step 2’, is given by the following multivariate hypergeometric
distribution:

pT−(j, ℓ | k − 1) =

(N is

T−
−1

j

)(Nrs

T−

ℓ

)(N s

T−
−N is

T−
−Nrs

T−

k−1−j−ℓ

)

(N s

T−
−1

k−1

) · (2.1)
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Finally, to update the values of µis

T and µrs

T given k, j and ℓ, we have to choose the infectious
and removed individuals to which the newly infectious is linked: some of their edges,
which were is or rs, now become ii or ri. We draw two sequences u = (u1, . . . , uIT− ) and

v = (v1, . . . , vRT−
) that will indicate how many links each infectious or removed individual

has to the new contaminated individual. The probability of the draw us given by

ρ(u|j + 1, µis

T−
) =

∏IT−
i=1

(γi(µis

T−
)

ui

)

(N is

T−
j+1

) 1lu∈U(j+1,µis

T−
)

ρ(v|ℓ, µrs

T−
) =

∏RT−

i=1

(γi(µrs

T−
)

vi

)

(Nrs

T−

ℓ

) 1lv∈U(ℓ,µrs

T−
). (2.2)

Thus, u and v provide respectively the number of edges is which become ii per infectious
individual and the number of edges rs which become ri per removed individual. We then
update the measures as follows.

µs

T = µs

T− − δk

µis

T = µis

T− + δk−1−j−ℓ +

iT−∑

i=1

δ
γi
(

µis

T−

)

−ui
− δ

γi

(
µis

T−

)

µrs

T = µrs

T− +

rT−∑

i′=1

δ
γi′

(

µrs

T−

)

−vi′
− δ

γi′
(
µrs

T−

). (2.3)

Notice that in (2.3), there exists constraints on u and v: for all i, the number of edges that
should be removed can not exceed the number of existing edges. Let us define the set

U =

+∞⋃

m=1

N
m, (2.4)

and for all finite integer-valued measure µ on N, and all integer n ∈ N, we define the subset

U(n, µ) =
{
u = (u1, ..., u〈µ,1〉) ∈ U such that

∀i ∈ {1, . . . , 〈µ,1〉}, ui ≤ F−1
µ (i) and

〈µ,1〉∑

i=1

ui = n
}
. (2.5)

A sequence u ∈ U(n, µ) describes the connections of a degree n individual in a population
where the degree distribution of the other individuals is given by µ. The component ui, for
1 ≤ i ≤ 〈µ, 1〉, provides the number of edges that this individual shares with the ith individual.
This number is necessarily smaller than the degree γi(µ) = F−1

µ (i) of individual i. Moreover,
the ui’s sum to n, which is the degree of the considered individual. Then in (2.3), u should
belong to U(j + 1, µis

T−
) and v to U(ℓ, µrs

T−
). The probability of a given draw is given in (2.2).

2.3 Stochastic differential equations

Here, we propose SDEs driven by PPMs to describe the evolution of the degree distribu-
tions (1.1), following the inspiration of [13, 8]. Let us consider the two following PPMs:
dQ1(s, k, θ1, j, ℓ, θ2, u, θ3, v, θ4) and dQ2(s, i) on R+ × E1 with E1 := N× R+ × N× N× R+ ×
U × R+ × U × R+ and R+ × N with intensity measures dq1(s, k, θ1, j, ℓ, θ2, u, θ3, v, θ4) = ds ⊗
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dn(k)⊗ dθ1⊗ dn(j)⊗ dn(ℓ)⊗ dθ2⊗ dn(u)⊗ dθ3⊗ dn(v)⊗ dθ4 and dq2(s, i) = β ds⊗ dn(i),
where ds, dθ1, dθ2, dθ3 and dθ4 are Lebesgue measures on R+, where dn(k), dn(j), dn(ℓ)
are counting measures on N, and where dn(u), dn(v) are counting measures on U .

The point measure Q1 provides the possible times at which an infection may occur. Each
atom of this measure is associated with a possible infection time s, an integer k which gives
the degree of the susceptible being possibly infected, the number j + 1 and ℓ of edges that this
individual has to the sets is− and rs− . The marks u and v ∈ U are as in the previous section.
The marks θ1, θ2 and θ3 are auxiliary variables used for the construction (see (2.7)-(2.8)).
The point measure Q2 gives possible removal times. To each of its atoms is associated a possible
removal time s and the number i of the individual that may be removed.

The following SDEs describe the evolution of the epidemic: for all t ≥ 0,

µs

t =µs

0 −

∫ t

0

∫

E1

δk1lθ1≤λs−(k)µs

s−
(k)1lθ2≤ps−(j,ℓ|k−1)1lθ3≤ρ(u|j+1,µis

s−
)1lθ4≤ρ(v|ℓ,µrs

s−
) dQ

1 (2.6)

µis

t =µis

0 +

∫ t

0

∫

E1

(
δk−(j+1+ℓ) +

Is−∑

i=1

(
δγi(µis

s−
)−ui

− δγi(µis

s−
)

))
(2.7)

× 1lθ1≤λs−(k)µs

s−
(k)1lθ2≤ps−(j,ℓ|k−1)1lθ3≤ρ(u|j+1,µis

s−
)1lθ4≤ρ(v|ℓ,µrs

s−
) dQ1

−

∫ t

0

∫

N

δγi(µis

s−
)1li≤Is−

dQ2

µrs

t =

∫ t

0

∫

E1

(Rs−∑

i=1

(
δγi(µrs

s−
)−vi − δγi(µrs

s−
)

))

× 1lθ1≤λs−(k)µs

s−
(k)1lθ2≤ps−(j,ℓ|k−1)1lθ3≤ρ(u|j+1,µis

s−
)1lθ4≤ρ(v|ℓ,µrs

s−
) dQ1

+

∫ t

0

∫

N

δγi(µis

s−
)1li≤Is−

dQ2, (2.8)

where we have written dQ1 and dQ2 instead of dQ1(s, k, θ1, j, ℓ, θ2, u, θ3, v, θ3) and dQ2(s, i)
to simplify the notation, and where we denote for all s ≥ 0

λs(k) = rk
N is

s

N s

s

, and ps(j, ℓ | k − 1) =

(N is

s −1
j

)(Nrs

s
ℓ

)(N s

s−N is

s −Nrs

s
k−1−j−ℓ

)
(N s

s−1
k−1

) , (2.9)

Notice that λs(k) is the rate of infection of a given susceptible of degree k at time s. This
notation was also used in Volz [26].

Proposition 2.1. For any given initial conditions µs

0, µ
si

0 that are integer-valued measures on
N and for PPMs Q1 and Q2, there exists a unique strong solution to the SDEs (2.6)-(2.8) in
the space D

(
R+, (MF (N))

3
)
, the Skohorod space of càdlàg functions with values in (MF (N))

3.

Proof. For the proof, we notice that for every t ∈ R+, the measure µs

t is dominated by µs

0

and the measures µis

t and µrs

t have a mass bounded by 〈µs

0 + µis

0 , 1〉 and a support included in
[[0,max{max(supp (µs

0)),max(supp (µis

0 ))}]]. The result then follows the steps of [13] and [25]
(Proposition 2.2.6). �

2.4 Description of the epidemic

The course of the epidemic can be described by (St, It, Rt, N
s

t , N
is

t , N
rs

t )t∈R+ , which can be
deduced from (2.7), (2.6) and (2.8). The following semi-martingale decompositions result from
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standard stochastic calculus for jump processes and SDE driven by PPMs (e.g. [13, 14, 15]).
For the sizes of the class s, i and r, choosing f ≡ 1, we have for all t ≥ 0,

St =〈µs

t ,1〉 = S0 −

∫ t

0

∑

k∈N

µs

s(k)λs(k) ds+M s

t ,

It =〈µis

t ,1〉 = I0 +

∫ t

0

(∑

k∈N

µs

s(k)λs(k)− β Is

)
ds+M i

t , (2.10)

Rt =〈µrs

t ,1〉 =

∫ t

0
β Is ds+Mr

t ,

where M s, M i and Mr are square-integrable martingales that can be written explicitly with the
compensated PPMs of Q1 and Q2, and with respective quadratic variation given for all t ≥ 0 by

〈M s〉t =

∫ t

0

∑

k∈N

(
µs

s(k)λs(k)
)
ds,

〈M i〉t =

∫ t

0

∑

k∈N

(
µs

s(k)λs(k) + βIs

)
ds,

〈Mr〉t =

∫ t

0
βIs ds.

For any t ≥ 0, the numbers of edges of the different types satisfy

N s

t =〈µs

t , χ〉 =
∑

i∈st

kµs

t(k) = N s

0 −

∫ t

0

∑

k∈N

(
kµs

s(k)λs(k)
)
ds+MN s

t ,

N is

t =N is

0 +

∫ t

0

(∑

k∈N

λs(k)µ
s

s(k)
∑

j,ℓ∈N

(k − 2(j + 1)− ℓ)ps(j, ℓ|k − 1)
)
ds−

∫ t

0
βN is

s ds+MN is

t ,

(2.11)

Nrs

t =−

∫ t

0

(∑

k∈N

λs(k)µ
s

s(k)
∑

j,ℓ∈N

ℓps(j, ℓ|k − 1)
)
ds+

∫ t

0
βN is

s ds+MNrs

t ,

where MN s

, MN is

and MNrs

are square integrable martingales that can be written explicitly
with the PPMs Q1 and Q2, and having quadratic variations given for all t by

〈MN s

〉t =

∫ t

0

∑

k∈N

(
k2µs

s(k)λs(k)
)
ds,

〈MN is

〉t =

∫ t

0

(∑

k∈N

λs(k)µ
s

s(k)
∑

j,ℓ∈N

(k − 2(j + 1)− ℓ)2ps(j, ℓ|k − 1) + β
∑

k∈N

k2µis

s (k)
)
ds,

〈MNrs

〉t =

∫ t

0

(∑

k∈N

λs(k)µ
s

s(k)
∑

j,ℓ∈N

ℓ2ps(j, ℓ|k − 1) + β
∑

k∈N

k2µis

s (k)
)
ds.

We finally address the following proportion, studied in Volz [26] and representing the proportion

9



of edges with susceptible ego and infectious alter among all edges started at a susceptible ego.

pit =
N is

t

N s

t

=
N is

0

N s

0

−

∫ t

0

∫

E2

γi(µ
is

s−)

N s

s−

1li≤Is−
dQ2 (2.12)

+

∫ t

0

∫

E1

(N is

s− + k − 2(j + 1)− ℓ

N s

s− − k
−

N is

s−

N s

s−

)

× 1lθ1≤λs−(k)µs

s−
(k)1lθ2≤ps−(j,ℓ|k−1)1lθ3≤ρ(u|j+1,µis

s−
)1lθ4≤ρ(v|ℓ,µrs

s−
) dQ

1

=pi0 +

∫ t

0

(∑

k∈N

∑

j+ℓ+1≤k

[N is

s + k − 2(j + 1)− ℓ

N s

s − k
− pis

]
λs(k)µ

s

s(k)ps−(j, ℓ|k − 1)− βpis

)
ds

+Mpi

t ,

where Mpi is a square integrable martingale with quadratic variation given by

〈Mpi〉t =

∫ t

0

(
β
〈µis

s , χ
2〉

(N s

s )
2

+
∑

k∈N

∑

j+ℓ+1≤k

(N is

s + k − 2(j + 1)− ℓ

N s

s − k
− pis

)2
λs(k)µ

s

s(k)ps(j, ℓ|k − 1)

)
ds.

3 Large graph limit

Following Volz [26], we aim at developing a parcimonious deterministic approximation to describe
the epidemic dynamics when the population is large. Notice that in [26], the stochastic processes
are not clearly written and the convergence of the SDEs to the 4 ODEs that Volz proposes is
stated but not proved. We provide here mathematical proofs, which underline that µs, µis and
µrs are the three distributions at the core of the problem.

3.1 Law of Large Numbers scaling

We consider sequences of measures (µn,s)n∈N, (µ
n,is)n∈N and (µn,rs)n∈N such that for any n ∈ N

∗,
µn,s, µn,is and µn,rs satisfy (2.6)-(2.8) with initial conditions µn,s

0 , µn,is
0 and µn,rs

0 . We denote by
s
n
t , i

n
t and r

n
t the subclasses of susceptible, infectious or removed individuals at time t, and by

Nn,s
t , Nn,is

t and Nn,rs
t , the number of edges with susceptible ego, infectious ego and susceptible

alter, removed ego and susceptible alter. The number of vertices of each class are denoted Int ,
Sn
t and Rn

t . Without loss of generality we assume that µn,rs
0 = 0 (see Remark 1 below). As a

consequence, the total size of the population is finite and equal to Sn
0 + In0 . Remark that the

size of the population and the number of edges tend to infinity with n.
We scale the measures the following way. For any n ≥ 0, we set

µ
(n),is
t =

1

n
µn,is
t

for all t ≥ 0 (and accordingly, µ
(n),s
t and µ

(n),rs
t ). Then, we denote

N
(n),is
t = 〈µ(n),is, χ〉 =

1

n
Nn,is

t , and I
(n)
t = 〈µ

(n),is
t ,1〉 =

1

n
Int

and accordingly, N
(n),s
t , N

(n),rs
t , S

(n)
t and R

(n)
t .

We assume that the initial conditions satisfy

10



Assumption 3.1. The sequences (µ
(n),s
0 )n∈N and (µ

(n),is
0 )n∈N converge to µ̄s

0 and µ̄is

0 in MF (N)
embedded with the weak convergence topology, where µ̄is

0 is not the null measure 0.

Remark 1. • Assumption 3.1 entails that the initial (susceptible and infectious) population
size is of order n. In [9], we study the beginning of the epidemic and consider when the
Assumption 3.1 occurs, in which case the deterministic approximation of Volz becomes
valid.

• We acknowledge that by the time the population of infective individuals reaches a size of
order 〈µ̄is

0 ,1〉n, positive removals have taken place with positive probability. We however
start from the initial condition µ̄rs

0 = 0. This means that we do not consider initial
removed individuals. Indeed, the latter have no influence in the dynamics for t ≥ 0. One
could nonetheless add initially removed individuals in the network, without changing its
dynamics, only by changing µ̄s

0.

• In case the distributions underlying the measures µn,s
0 and µn,is

0 do not depend on the
total number of vertices (e.g. Poisson, power-laws or discrete exponential distributions),
Assumption 3.1 can be viewed as a law of large numbers. When the distributions depend
on the total number of vertices N (as in Erdös-Renyi graphs), there may be scalings under
which Assumption 3.1 holds. For Erdös-Renyi graphs for instance, if the probability pN of
connecting two vertices satisfies limN→+∞NpN = λ, then we obtain in the limit a Poisson
distribution with parameter λ.

• We denote by S̄0 (resp. Ī0) the mass of the measure µ̄s

0 (resp. µ̄is

0 ). Notice that µ̄s

0/S̄0

(resp. µ̄is

0 /Ī0) is the probability degree distribution of the susceptible individuals at time
zero (resp. of the degree of the infectious individuals towards the susceptible ones).

• In Equation (1.3), notice the appearance of the degree biased probability measure kµ̄s

s(k)/N
s

s .
The latter reflects the fact that, in the CM, individuals having large degrees have higher
probability to connect than individuals having small degrees. Thus, there is no reason
why the degree distributions of the susceptible individuals µ̄s

0/〈µ̄
s

0,1〉 and the distribution∑
k∈N pkδk underlying the CM should coincide. Assumption 3.1 tells us indeed that the

initial infectious population size is of order n. Even if 〈µ̄is

0 ,1〉/〈µ̄
s

0,1〉 is very small, the
biased distributions that appear imply that the degree distribution µ̄is

0 /〈µ̄
is

0 ,1〉 should have
a larger expectation than the degree distribution µ̄s

0/〈µ̄
s

0,1〉. 2
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The rescaled SDEs corresponding to (2.6)-(2.8) then read for all t ≥ 0

µ
(n),s
t =µ

(n),s
0 −

1

n

∫ t

0

∫

E1

δk1lθ1≤λn
s−

(k)nµ
(n),s
s−

(k)
1lθ2≤pns−(j,ℓ|k−1)

× 1l
θ3≤ρ(u|j+1,nµ

(n),is
s−

)
1l
θ4≤ρ(v|ℓ,nµ

(n),rs
s−

)
dQ1, (3.1)

µ
(n),is
t =µ

(n),is
0 +

1

n

∫ t

0

∫

E1

(
δk−(j+1+ℓ) +

Ins−∑

i=1

(
δ
γi(nµ

(n),is
s−

)−ui
− δ

γi(nµ
(n),is
s−

)

))
(3.2)

× 1l
θ1≤λn

s−
(k)nµ

(n),s
s−

(k)
1lθ2≤pns−(j,ℓ|k−1)1lθ3≤ρ(u|j+1,nµ

(n),is
s−

)
1l
θ4≤ρ(v|ℓ,nµ

(n),rs
s−

)
dQ1

−
1

n

∫ t

0

∫

N

δ
γi(nµ

(n),is
s−

)
1li∈ins−

dQ2,

µ
(n),rs
t =

1

n

∫ t

0

∫

E1

(Rn
s−∑

i=1

(
δ
γi(nµ

(n),rs
s−

)−vi
− δ

γi(nµ
(n),rs
s−

)

))
(3.3)

× 1l
θ1≤λn

s−
(k)nµ

(n),s
s−

(k)
1lθ2≤pns−(j,ℓ|k−1)1lθ3≤ρ(u|j+1,nµ

(n),is
s−

)
1l
θ4≤ρ(v|ℓ,nµ

(n),rs
s−

)
dQ1

+
1

n

∫ t

0

∫

N

δ
γi(nµ

(n),is
s−

)
1li∈ins− dQ2,

where we denote for all s ≥ 0

λn
s (k) = rk

Nn,is
s

Nn,s
s

, and pns (j, ℓ | k − 1) =

(Nn,is
s −1
j

)(Nn,rs
s

ℓ

)(Nn,s
s −Nn,is

s −Nn,rs
s

k−1−j−ℓ

)

(Nn,s
s −1
k−1

) . (3.4)

Several semi-martingale decompositions will be useful in the sequel. We focus on µ(n),is but
similar decompositions hold for µ(n),s and µ(n),rs, which we do not detail since they can be
deduced by direct adaptation of the following computation.

Proposition 3.2. For all f ∈ Bb(N), for all t ≥ 0,

〈µ
(n),is
t , f〉 =

∑

k∈N

f(k)µ
(n),is
0 (k) +A

(n),is,f
t +M

(n),is,f
t , (3.5)

where the finite variation part A
(n),is,f
t of 〈µ

(n),is
t , f〉 reads

A
(n),is,f
t =

∫ t

0

∑

k∈N

λn
s (k)µ

(n),s
s (k)

∑

j+ℓ+1≤k

pns (j, ℓ|k − 1)

×
(
f(k − (j + 1 + ℓ)) +

∑

u∈U

ρ(u|j + 1, µn,is
s )

Ins∑

i=1

(
f(γi(µ

n,is
s )− ui)− f(γi(µ

n,is
s ))

))
ds, (3.6)

and where the martingale part M
(n),is,f
t of 〈µ

(n),is
t , f〉 is a square integrable martingale starting

from 0 with quadratic variation

〈M (n),is,f 〉t =
1

n

∫ t

0

∑

k∈N

λn
s (k)µ

(n),s
s (k)

∑

j+ℓ+1≤k

pns (j, ℓ|k − 1)
∑

u∈U

ρ(u|j + 1, µn,is
s )

×
(
f (k − (j + 1 + ℓ)) +

Ins∑

i=1

(
f
(
γi(µ

n,is
s− )− ui

)
− f

(
γi(µ

n,is
s− )

)))2
ds.

Proof. The proof proceeds from (3.2) and standard stochastic calculus for jump processes (see
e.g. [13]). �
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3.2 Convergence of the normalized process

We aim to study the limit of the system when n → +∞. For any ε > 0 and any A > 0, we
define the following closed set of MF (N) as

Mε,A = {ν ∈ MF (N) ; 〈ν,1+ χ5〉 ≤ A and 〈ν, χ〉 ≥ ε}. (3.7)

Topological properties of these spaces are given in Appendix A.
Our main result is the following Theorem.

Theorem 1. Assume that there exists 0 < ε < A such that
(
µ̄
s,(n)
0 , µ̄

is,(n)
0 , µ̄

rs,(n)
0

)
belongs to M0, A ×M2ε,A ×M0,A for any n. (3.8)

Assume also that Assumption 3.1 holds. Then,

1. there exists Tε > 0 and a solution (µ̄s, µ̄is, µ̄rs) to the deterministic system of measure-
valued equations (1.2)-(1.4) for t ∈ [0, Tε].

2. this solution is unique,

3. the sequence (µ(n),s, µ(n),is, µ(n),rs)n∈N converges in distribution in D([0, Tε],M
3
0,A) to the

solution (µ̄s, µ̄is, µ̄rs) of (1.2)-(1.4) when n tends to infinity.

Let us define, for all δ > 0,
tδ := inf{t ≥ 0, 〈µ̄is

t , χ〉 < δ} (3.9)

and the following stopping times for n ∈ N
∗:

τnδ = inf{t ≥ 0, 〈µ
(n),is
t , χ〉 < δ}. (3.10)

We start by providing a lower bound for the horizon Tε of convergence in Theorem 1.

Proposition 3.3. Under the Assumptions of Theorem 1,

Tε ≥ τ̄ε :=
log
(
〈µ̄s

0, χ
2〉+ N̄ is

0

)
− log

(
〈µ̄s

0, χ
2〉+ 2ε

)

max(β, r)
. (3.11)

Proof of Proposition 3.3. In the course of Step 4 of the proof of Theorem 1, we show in fact that
the convergence holds at least on [0, t2ε]. So it suffices to show that t2ε ≥ τ̄ε. In that purpose,
fix ξ > 0 and n ∈ N. Define the following event.

An
ξ :=

{
+∞⋂

α=1

{
| µn,s

0 (α) − nµ̄s

0(α) |≤ ξ
}
∩
{
| µn,is

0 (α) − nµ̄is

0 (α) |≤ ξ
}
}

∩
{
| Nn,is

0 − n〈µ̄is

0 , χ〉 |≤ ξ
}
∩ {| In0 − n〈µ̄is

0 ,1〉 |≤ ξ} .

When a susceptible individual of degree α is contaminated, at most α is-edges are removed from
the graph (the maximal number of infectious neighbors of the newly infected individual). When
an infectious individual of degree α is removed, at most α is-edges are removed from the graph
(the maximal number of susceptible neighbors of the newly removed individual). Consequently,
denoting by Zn

t the number of is-edges removed from the graph up to t, we have that

Zn
t ≤

∑

α∈N

α (Xn,α
t + Y n,α

t ) , (3.12)
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where Xn,α
t denotes the number of edges with alter of initial degree α having transmitted the

disease up to t and Y n,α
t denotes the number of i-vertices initially of degree α having recovered

up to t. Denote Nn,is,α
0 , the number of edges initially starting from an infectious ego and leading

to a susceptible alter having degree α. Notice, that Nn,is,α
0 is less than the number of edges

initially leading to susceptible individuals of degree α, thus for all t ≥ 0,

Xn,α
t ≤ Nn,is,α

0 ≤ αµn,s
0 (α). (3.13)

On another hand,
Y n,α
t ≤ µn,is

0 (α), (3.14)

so that

sup
n∈N

Zn
t ≤ sup

n∈N

{
∑

α∈N

α
(
αµn,s

0 (α) + µn,is
0 (α)

)
}

≤ sup
n∈N

{
〈µn,s

0 , χ2〉+ 〈µn,is
0 , χ〉

}
< +∞, (3.15)

in view of (3.8).
Now, a given is-edge transmits the disease before t provided its exponential clock rings (this

happens with probability 1− e−rt). Consequently, for all α, Xn,α
t is stochastically dominated by

the sum of Nn,is,α
0 independent r.v.’s, independent of Nn,is,α

0 , having Bernoulli distribution of
probability 1− e−rt. On An

ξ , in view of (3.13), the latter is in turn stochastically dominated by

a Binomial r.v. X̃n
t with parameters α⌊nµ̄s

0(α)+ ξ⌋ and 1− e−rt. With an abuse of terminology,
we say that a real r.v. Y stochastically dominates another r.v. X on an event A whenever for
all x ∈ R,

P ({Y ≤ x} ∩ A) ≤ P ({X ≤ x} ∩ A) .

All the same, from (3.14), on An
ξ , Y

n
t is stochastically upper bounded by a Binomial r.v. Ỹ n

t

with parameters ⌊nµ̄is

0 (α) + ξ⌋ and 1− e−βt, and independant of X̃n
t .

Therefore, recalling the definition (3.10), we have for all t ≥ 0

P
(
{τn2ε ≤ t} ∩ An

ξ

)
=P
({

Zn
t > Nn,is

0 − 2nε
}
∩ An

ξ

)

≤P
({

Zn
t > nN̄ is

0 − ξ − 2nε
}
∩An

ξ

)

≤P

({
∑

α∈N

α
(
X̃n,α

t + Ỹ n,α
t

)
> nN̄ is

0 − ξ − 2nε

}
∩ An

ξ

)

≤P

(
∑

α∈N

α
(
X̃n,α

t + Ỹ n,α
t

)
≥ n

(
N̄ is

0 − 2ε
)
− ξ

)

≤P

(
∑

α∈N

αZ̃n,α
t ≥ n

(
N̄ is

0 − 2ε
)
− ξ

)
, (3.16)

where the fourth inequality is true for a large enough n, and Z̃n,α
t is a Binomial r.v. with

parameters α⌊nµ̄s

0(α) + ξ⌋+ ⌊nµ̄is

0 (α) + ξ⌋ and 1− e−(max(β,r))t. The bound (3.15), and the Law
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of Large Numbers applied to the r.h.s. of (3.16) yield the following.

P

(∑

α∈N

αZ̃n,α
t ≥ n

(
N̄ is

0 − 2ε
)
− ξ
)

∼
n→∞

1l{∑

α∈N

α
(

(1−e−(max(β,r))t)
(
α⌊nµ̄s

0(α)+ξ⌋+⌊nµ̄is

0 (α)+ξ⌋
))

≥n(N̄ is

0 −2ε)−ξ
}

≤ 1l{
(1−e−(max(β,r))t)

∑

α∈N

α(nαµ̄s

0(α)+αξ+nµ̄is

0 (α)+ξ)≥n(N̄ is

0 −2ε)−ξ
}

∼
n→∞

1l{
(1−e−(max(β,r))t)

∑

α∈N

α(αµ̄s

0(α)+µ̄is

0 (α))≥(N̄ is

0 −2ε)
}

= 1l{
1−e−(max(β,r))t≥

(N̄ is

0
−2ε)

〈µ̄s0,χ
2〉+N̄ is

0

}

= 1l{t≥τ̄ε}, (3.17)

where τ̄ε is defined by (3.11). For all t < τ̄ε, it thus follows from Assumption 3.1, together with
(3.16) and (3.17) that

lim
n→+∞

P (τn2ε ≤ t) ≤ lim
n→+∞

(
P
(
{τnε ≤ t} ∩ An

ξ

)
+ P

(
An

ξ

))
= 0,

so that
lim

n→+∞
P (τn2ε < τ̄ε) = 0. (3.18)

Finally, assuming that t2ε < τ̄ε would imply that for some η > 0,

inf
t∈[0,τ̄ε−η]

N̄ is

t < 2ε.

But it is easily seen given (3.18) that Theorem 1 holds on [0, τ̄ε] . Therefore, from (ii) of Theorem
1, and applying the same argument as that leading to (3.42) below, we would have that

1 = 1l{inft∈[0,τ̄ε−η] N̄
is

t <2ε} ≤ lim
n→∞

P

(
inf

t∈[0,τ̄ε−η]
N

(n),is
t < 2ε

)

≤ lim
n→∞

P

({
inf

t∈[0,τ̄ε−η]
N

(n),is
t < 2ε

}
∩ {τn2ε ≥ τ̄ε}

)
+ P (τn2ε < τ̄ε) −→

n→∞
0,

from (3.18). This absurdity shows that t2ε ≥ τ̄ε, which concludes the proof. �

Proof of Theorem 1. The scheme of the proof is as follows. We will prove the tightness of the

sequence
(
µ(n),s, µ(n),is, µ(n),rs

)
n∈N∗ in D

(
R+,M

3
0,A

)
. This implies the tightness of the sequence

of stopped processes (µ
(n),s
.∧τnε

, µ
(n),is
.∧τnε

, µ
(n),rs
.∧τnε

)n∈N∗ . We prove that the accumulation point of the
latter sequence satisfy an evolution equation for which the solution is unique.

Step 1 Let us prove that (µ(n),s, µ(n),is, µ(n),rs)n∈N∗ is tight. Let t ∈ R+ and n ∈ N
∗. By

hypothesis, we have that

〈µ
(n),s
t ,1+χ5〉+〈µ

(n),is
t ,1+χ5〉+〈µ

(n),rs
t ,1+χ5〉 ≤ 〈µ

(n),s
0 ,1+χ5〉+〈µ

(n),is
0 ,1+χ5〉 ≤ A. (3.19)

Thus the sequences (µ
(n),s
t )n∈N∗ , (µ

(n),is
t )n∈N∗ and (µ

(n),rs
t )n∈N∗ are tight for each t ∈ R+. Now

by the criterion of Roelly [24], it remains to prove that for each f ∈ Bb(N), the sequence
(〈µ(n),s

. , f〉, 〈µ(n),is
. , f〉, 〈µ(n),rs

. , f〉)n∈N∗ is tight in D(R+,R
3). Since we have semi-martingale

decompositions of these processes, it is sufficient, by using the Rebolledo criterion, to prove
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that the finite variation part and the bracket of the martingale part satisfy the Aldous criterion
(see e.g. [16]). For the sake of simplicity, we only prove that 〈µ(n),is

. , f〉 is tight. For the other
components, the computations are similar to what follows.

The Rebolledo-Aldous criterion is satisfied if for all α > 0 and η > 0 there exists n0 ∈ N and
δ > 0 such that for all n > n0 and for all stopping times Sn and Tn such that Sn < Tn < Sn+ δ,

P
(
|A

(n),is,f
Tn

−A
(n),is,f
Sn

| > η
)
≤ α, and P

(
|〈M (n),is,f 〉Tn − 〈M (n),is,f 〉Sn | > η

)
≤ α. (3.20)

For the finite variation part,

E

[
|A

(n),is,f
Tn

−A
(n),is,f
Sn

|
]
≤E



∫ Tn

Sn

∑

k∈N

λn
s (k)µ

(n),s
s (k)

∑

j+ℓ≤k−1

pns (j, ℓ|k − 1)(2j + 1)‖f‖∞ ds


 .

The term
∑

j+ℓ≤k−1 jp
n
s (j, ℓ|k − 1) is the mean number of links to i

n
s− that the newly infected

individual has, given that this individual is of degree k. It is bounded by k. Then, with (3.4),

E

[
|A

(n),is,f
Tn

−A
(n),is,f
Sn

|
]
≤ E

[∫ Tn

Sn

∑

k∈N

r(2k2 + k)‖f‖∞µ(n),s
s (k) ds

]
≤ δr‖f‖∞〈µ

(n),s
0 , 2χ2 + χ〉,

by using the fact that µ
(n),s
s (k) ≤ µ

(n),s
0 (k) for all k and s ≥ 0. From (3.8), the r.h.s. is finite.

Using Markov’s inequality,

P
(
|A

(n),is,f
Tn

−A
(n),is,f
Sn

| > η
)
≤

δr‖f‖∞〈µ
(n),s
0 , 2χ2 + χ〉

η
≤

3Aδr‖f‖∞
η

,

which is smaller than α for δ small enough.
We use the same arguments for the bracket of the martingale:

E
[
|〈M (n),is,f 〉Tn − 〈M (n),is,f 〉Sn |

]

≤
1

n
E



∫ Tn

Sn

∑

k∈N

λn
s (k)

∑

j+ℓ≤k−1

(
2j + 3

)2
pns (j, ℓ|k − 1)‖f‖2∞ µ(n),s

s (k) ds




≤
1

n
E

(∫ Tn

Sn

∑

k∈N

rk
(
2k + 3

)2
‖f‖2∞ µ(n),s

s (k) ds

)

≤
δr‖f‖2∞〈µ

(n),s
0 , χ(2χ+ 3)2〉

n

≤
25Aδr‖f‖2∞

n
,

(3.21)

using Assumption (3.8). The r.h.s. can be made smaller than ηα for a small enough of δ, so the
second inequality of (3.20) follows again from Markov’s inequality. By [24], this provides the
tightness in D(R+,M

3
0,A).

By Prohorov theorem (e.g. [11], p.104) and Step 1, the distributions of (µ(n),s, µ(n),is, µ(n),rs),

for n ∈ N
∗, form a relatively compact family of bounded measures on D

(
R+,M

3
0,A

)
, and so do

the laws of the stopped processes (µ
(n),s
.∧τnε

, µ
(n),is
.∧τnε

, µ
(n),rs
.∧τnε

)n∈N∗ (recall (3.10). Let µ̄ := (µ̄s, µ̄is, µ̄rs)

be an accumulation point in C
(
R+,M

3
0,A

)
and let us consider a subsequence again denoted by

µ(n) := (µ(n),s, µ(n),is, µ(n),rs)n∈N∗ , with an abuse of notation, and that converges to µ̄. Because
the limiting values are continuous, the convergence of (µ(n))n∈N∗ to µ̄ holds for the uniform
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convergence on every compact subset of R+, in particular on [0, tε − η] for every small η > 0
(e.g. [6] p.112).

Now, let us define for all t ∈ R+ and for all bounded function f on N, the mappings Ψs,f
t ,

Ψis,f
t and Ψrs,f

t from D
(
R+,M

3
0,A

)
into D

(
R+,R

)
such that (1.2)-(1.4) read

(〈µ̄s

t , f〉, 〈µ̄
is

t , f〉, 〈µ̄
rs

t , f〉) =
(
Ψs,f

t (µ̄s, µ̄is, µ̄rs) ,Ψis,f
t (µ̄s, µ̄is, µ̄rs) ,Ψrs,f

t (µ̄s, µ̄is, µ̄rs)
)
. (3.22)

Our purpose is to prove that the limiting values are the unique solution of Equations (1.2)-(1.4).

Remark 2. Before proceeding to the proof, a remark is in order. A natural way of reasoning
would be to prove that Ψs,f , Ψis,f and Ψrs,f are Lipschitz continuous in some spaces of measures.
It turns that this only can be done by considering the set of measures with moments of any
order, which is too small a set for applications. We circumvent this difficulty by first proving
that the mass and the first two moments of any solution of the system are the same. Once this
is done, we prove that the generating functions of these measures satisfy a partial differential
equation known to have a unique solution.

Step 2 We now prove that for any T , the differential system (1.2)-(1.4) has at most one solution
in C([0, T ], M3

ε,A). Let µ̄i = (µ̄s,i, µ̄is,i, µ̄rs,i), i ∈ {1, 2} be two solutions of (1.2)-(1.4), started
with the same initial conditions and driven by the same PPMs. Set

Υt =

2∑

j=0

(
|〈µ̄s,1

t , χj〉 − 〈µ̄s,2
t , χj〉|+ |〈µ̄is,1

t , χj〉 − 〈µ̄is,2
t , χj〉|+ |〈µ̄rs,1

t , χj〉 − 〈µ̄rs,2
t , χj〉|

)
.

Let us first remark that for all 0 ≤ t < T ,

|p̄i,1t − p̄i,2t | =
∣∣∣
N̄ is,1

t

N̄ s,1
t

−
N̄ is,2

t

N̄ s,2
t

∣∣∣ ≤
A

ε2

∣∣∣N̄ s,1
t − N̄ s,2

t

∣∣∣+
1

ε

∣∣∣N̄ is,1
t − N̄ is,2

t

∣∣∣

=
A

ε2

∣∣∣〈µ̄s,1
t , χ〉 − 〈µ̄s,2

t , χ〉
∣∣∣+

1

ε

∣∣∣〈µ̄is,1
t , χ〉 − 〈µ̄is,2

t , χ〉
∣∣∣ ≤

A

ε2
Mt. (3.23)

The same computations show a similar result for |p̄s,1t − p̄s,2t | and |p̄r,1t − p̄r,2t |.
Using that µ̄i are solutions to (1.2)-(1.3) with the functions f ≡ χ0, f ≡ χ and f ≡ χ2 we

obtain after some computations that M satisfies a Gronwall inequality which implies that it is
equal 0 for all t ≤ T . We proceed here with only one of the computations, others can be done
similarly. According to (1.3), we have

〈µ̄is,1
t , χ0〉 − 〈µ̄is,

t , χ0〉 = β

∫ t

0
〈µ̄si,1

s − µ̄is,1
s , 1〉 ds+ r

∫ t

0
(p̄i,1s − p̄i,2s )〈µ̄s

s, χ〉 ds.

Hence, with (3.23),

∣∣∣〈µ̄is,1
t − µ̄is,2

t , 1〉
∣∣∣ ≤ β

∫ t

0

∣∣〈µ̄is,1
s − µ̄is,2

s , 1〉
∣∣ ds+

rA

ε

∫ t

0

∣∣〈µ̄is,1
s − µ̄is,2

s , χ〉
∣∣ ds,

and thus ∣∣∣〈µ̄is,1
t − µ̄is,2

t , 1〉
∣∣∣ ≤ β

∫ t

0

∣∣〈µ̄is,1
s − µ̄is,2

s , χ0〉
∣∣ ds+

rA

ε

∫ t

0
Υs ds.

By analogous computations for other quantities, we then show that

Υt ≤ c

∫ t

0
Υs ds,
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hence Υ ≡ 0. It follows that for all t < T , and for all j ∈ {0, 1, 2},

〈µ̄s,1
t , χj〉 = 〈µ̄s,2

t , χj〉 and 〈µ̄is,1
t , χj〉 = 〈µ̄is,2

t , χj〉, (3.24)

and in particular, N̄ s,1
t = N̄ s,2

t and N̄ is,1
t = N̄ is,2

t . This implies that p̄s,1t = p̄s,2t , p̄i,1t = p̄i,2t and
p̄r,1t = p̄r,2t . From (1.2) and the continuity of the solutions to (1.2)-(1.4), pathwise uniqueness
for µ̄s a.s.

Our purpose is now to prove that µ̄is,1 = µ̄is,2. Let us introduce the following generating
functions: for any t ∈ R+, i ∈ {1, 2} and η ∈ [0, 1),

Gi
t(η) =

∑

k≥0

ηkµ̄is,i
t (k).

Since we already know these measures do have the same total mass, it boils down to prove that
G1 ≡ G2. Let us define

H(t, η) =

∫ t

0

∑

k∈N

rkp̄is
∑

j, ℓ,m∈N
j+ℓ+m=k−1

(
k − 1

j, ℓ,m

)
(p̄is)

j(p̄rs )
ℓ(p̄ss)

mηkµ̄s

s(k) ds

Kt =
∑

k∈N

rkp̄it(k − 1)p̄rt
µ̄s

t(k)

N̄ is

t

. (3.25)

The latter quantities are respectively of class C1 and C0 with respect to time t and are well-
defined and bounded on [0, T ] since the three processes are supposed to have values in Mε,A.
Moreover, H and K do not depend on the chosen solution because of (3.24). Apply (1.3) to
f(k) = ηk to obtain that

Gi
t(η) =Gi

0(η) +H(t, η) +

∫ t

0

(
Ks

∑

k′∈N∗

(
ηk

′−1 − ηk
′)
k′µ̄is

s (k
′)− βGi

s(η)
)
ds

=Gi
0(η) +H(t, η) +

∫ t

0

(
Ks(1− η)∂ηG

i
s(η)− βGi

s(η)
)
ds. (3.26)

Then, the functions t 7→ G̃i
t(η) defined by G̃i

t(η) = eβtGi
t(η), i ∈ {1, 2}, are solutions of the

following transport equation:

∂tg(t, η) − (1− η)Kt ∂ηg(t, η) = ∂tH(t, η)eβt. (3.27)

In view of the regularity of H and K, it is known that this equation admits a unique solution
(see e.g. [12]). Hence G1

t (η) = G2
t (η) for all t ∈ R+ and η ∈ [0, 1). The same method applies to

µ̄rs. Thus there is at most one solution to the differential system (1.2)-(1.4).

Step 3 We now show that µ(n) nearly satisfies (1.2)-(1.4) as n gets large. Recall (3.5) for a
bounded function f on N. To identify the limiting values, we establish that for all n ∈ N

∗ and
all t ≥ 0,

〈µ
(n),is
t∧τnε

, f〉 = Ψis,f
t∧τnε

(µ(n)) + ∆n,f
t∧τnε

+M
(n),is,f
t∧τnε

, (3.28)

where M (n),is,f is defined in (3.5) and where ∆n,f
.∧τnε

converges to 0 when n → +∞, in probability
and uniformly in t on compact time intervals.
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Let us fix t ∈ R+. Computation similar to (3.21) give:

E
(
(M

(n),is,f
t )2

)
= E

(
〈M (n),is,f 〉t

)
≤

25Art‖f‖2∞
n

. (3.29)

Hence the sequence (M
(n),is,f
t )n∈N converges in L2 and in probability to zero (and in L1 by

Cauchy-Schwarz inequality).

We now consider the finite variation part of (3.5), given in (3.6). The sum in (3.6) corresponds
to the links to i that the new infected individual has. We separate this sum into cases where the
new infected individual only has simple edges to other individuals of i, and cases where multiple
edges exist. The latter term is expected to vanish for large populations.

A
(n),is,f
t =B

(n),is,f
t + C

(n),is,f
t , (3.30)

where

B
(n),is,f
t =

∫ t

0

∑

k∈N

λn
s (k)µ

(n),s
s (k)

∑

j+ℓ+1≤k

pns (j, ℓ|k − 1)

×

{
(f(k − (j + 1 + ℓ))

+
∑

u∈U(j+1,µn,is
s );

∀i≤Ins− , ui≤1

ρ(u|j + 1, µn,is
s )

Ins−∑

i=0

(
f
(
γi(µ

n,is
s− )− ui

)
− f

(
γi(µ

n,is
s− )

))}
ds (3.31)

and

C
(n),is,f
t =

∫ t

0

∑

k∈N

λn
s (k)µ

(n),s
s (k)

∑

j+ℓ+1≤k

pns (j, ℓ|k − 1)

×
∑

u∈U(j+1,µn,is
s );

∃i≤Ins− , ui>1

ρ(u|j + 1, µn,is
s )

Ins−∑

i=1

(
f
(
γi(µ

n,is
s− )− ui

)
− f

(
γi

(
µn,is
s−

)))
ds. (3.32)

We first show that C
(n),si,f
t is a negligible term. Let qnj,ℓ,s denote the probability that the newly

infected individual at time s has a double (or of higher order) edge to some alter in i
n
s− , given j

and ℓ. The probability to have a multiple edge to a given infectious i is less than the number of
couples of edges linking the newly infected to i, times the probability that these two particular
edges linking i to a susceptible alter at s− actually lead to the newly infected. Hence,

qnj,ℓ,s =
∑

u∈U(j+1,µn,is
s );

∃i≤Ins− , ui>1

ρ(u|j + 1, µn,is
s )

≤

(
j

2

) ∑

x∈ins−

dx(s
n
s−)(dx(s

n
s−)− 1)

Nn,is
s− (Nn,is

s− − 1)
=

(
j

2

)
1

n

〈µ
(n),is
s− , χ(χ− 1)〉

N
(n),is
s− (N

(n),is
s− − 1/n)

≤

(
j

2

)
1

n

A

ε(ε − 1/n)
if s < τnε and n > 1/ε. (3.33)
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Then, since for all u ∈ U(j + 1, µn,is
s ),

∣∣∣
Ins−∑

i=1

(
f
(
γi(µ

n,is
s− )− ui

)
− f

(
γi(µ

n,is
s− )

)) ∣∣∣ ≤ 2(j + 1)‖f‖∞, (3.34)

we have by (3.33) and (3.34), for n > 1/ε,

|C
(n),is,f
t∧τnε

| ≤

∫ t∧τnε

0

∑

k∈N

rkµ(n),s
s (k)

∑

j+ℓ+1≤k

pns (j, ℓ|k − 1)2(j + 1)‖f‖∞
j(j − 1)A

2nε(ε− 1/n)
ds

≤
Art‖f‖∞

n ε(ε− 1/n)
〈µ

(n),s
0 , χ4〉, (3.35)

which tends to zero in view of (3.8) and to the fact that µ
(n),s
s is dominated by µ

(n),s
0 for all

s ≥ 0 and n ∈ N
∗.

We now aim at proving that B
(n),is,f
.∧τnε

is somewhat close to Ψis,f
.∧τnε

(µ(n)). First, notice that

∑

u∈U(j+1,µn,is
s );

∀i≤Ins− , ui≤1

ρ(u|j + 1, µn,is
s )

Ins−∑

i=1

(
f
(
γi
(
µn,is
s−

)
− ui

)
− f

(
γi
(
µn,is
s−

)))

=
∑

u∈(ins−)j+1

u0 6=···6=uj

( ∏j
k=0 duk

(sns )

Nn,is
s− . . . (Nn,si

s− − (j + 1))

)
.

j∑

m=0

(
f
(
dum(s

n
s−)− 1

)
− f

(
dum(s

n
s−)
))

=

j∑

m=0

∑

u∈(ins− )j+1

u0 6=···6=uj

( ∏j
k=0 duk

(sns )

Nn,is
s− . . . (Nn,si

s− − (j + 1))

)
.
(
f
(
dum(s

n
s−)− 1

)
− f

(
dum(ss−)

))

=

j∑

m=0



∑

x∈ins−

dx(s
n
s−)

Nn,is
s−

(
f
(
dx(s

n
s−)− 1

)
− f

(
dx(s

n
s−)
))



×

(
∑

u∈
(

i
n
s−

\{i}
)j

u0 6=···6=uj−1

∏j−1
k=0 duk

(sns )

(Nn,is
s− − 1) . . . (Nn,is

s− − (j + 1))

)

= (j + 1)
〈µ

(n),is
s− , χ (τ1f − f)〉

N
(n),is
s−

(
1− qnj−1,ℓ,s

)
,

(3.36)

where we recall that τ1f(k) = f(k − 1) for every function f on N and k ∈ N. In the third
equality, we split the term um from the other terms (um′)m′ 6=m. The last sum in the r.h.s. of
this equality is the probability of drawing j different infectious individuals that are not um and
that are all different, hence 1− qnj−1,ℓ,s.
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Denote for t > 0 and n ∈ N,

pn,it =
〈µn,is

t , χ〉 − 1

〈µn,s
t , χ〉 − 1

,

pn,rt =
〈µn,rs

t , χ〉

〈µn,s
t , χ〉 − 1

,

pn,st =
〈µn,s

t , χ〉 − 〈µn,is
t , χ〉 − 〈µn,rs

t , χ〉

〈µn,s
t , χ〉 − 1

,

the proportion of edges with infectious (resp. removed and susceptible) alters and susceptible
egos among all the edges with susceptible egos but the contaminating edge. For all integers j
and ℓ such that j + ℓ ≤ k − 1 and n ∈ N

∗, denote by

p̃nt (j, ℓ | k − 1) =
(k − 1)!

j!(k − 1− j − ℓ)!ℓ!
(pn,it )j(pn,rt )ℓ(pn,st )k−1−j−ℓ,

the probability that the multinomial variable counting the number of edges with infectious,
removed and susceptible alters, among the edges with susceptible egos but the contaminating
edge, equals (j, ℓ, k − 1− j − ℓ). We have that

|Ψis,f
t∧τnε

(µ(n))−B
(n),is,f
t∧τnε

| ≤D
(n),is,f
t∧τnε

+E
(n),is,f
t∧τnε

, (3.37)

where

D
(n),is,f
t =

∫ t

0

∑

k∈N

λn
s (k)µ

(n),s
s (k)

∑

j+ℓ+1≤k

(pns (j, ℓ|k − 1)− p̃ns (j, ℓ|k − 1))

×

(
f(k − (j + ℓ+ 1)) + (j + 1)

〈µ
(n),is
s− , χ

(
τ1f − f

)
〉

N
(n),is
s−

)
ds,

E
(n),is,f
t =

∫ t

0

∑

k∈N

λn
s (k)µ

(n),s
s (k)

∑

j+ℓ+1≤k

pns (j, ℓ|k − 1)(j + 1)
〈µ

(n),is
s− , χ

(
τ1f − f

)
〉

N
(n),is
s−

qnj−1,ℓ,s ds.

First,

|D
(n),is,f
t∧τnε

| ≤

∫ t∧τnε

0

∑

k∈N

rkαn
s (k)‖f‖∞

(
1 +

2kA

ε

)
µ(n),s
s (k) ds, (3.38)

where for all k ∈ N

αn
t (k) =

∑

j+ℓ+1≤k

∣∣∣∣p
n
t (j, ℓ|k − 1)− p̃nt (j, ℓ|k − 1)

∣∣∣∣.

The multinomial probability p̃ns (j, ℓ|k−1) approximates the hypergeometric one, pns (j, ℓ|k−1, s),
as n increases to infinity, in view of the fact that the total population size, 〈µn,s

0 ,1〉+ 〈µn,is
0 ,1〉,

is of order n. Hence, the r.h.s. of (3.38) vanishes by dominated convergence.
On another hand, using (3.33),

|E
(n),is,f
t∧τnε

| ≤

∫ t∧τnε

0

∑

k∈N

rk2µ(n),s
s (k)

2‖f‖∞A

ε

k2A

2nε(ε − 1/n)
ds

≤
A3 rt‖f‖∞
nε2(ε− 1/n)

, (3.39)
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in view of (3.8). Gathering (3.29), (3.30), (3.35), (3.37), (3.38) and (3.39) concludes the proof
that the rest of (3.28) vanishes in probability uniformly over compact intervals.

Step 4Recall that in this proof, µ̄ = (µ̄s, µ̄is, µ̄rs) is the limit of µ
(n)
.∧τnε

=
(
µ
(n),s
.∧τnε

, µ
(n),is
.∧τnε

, µ
(n),rs
.∧τnε

)
n∈N∗

,

and recall that these processes take values in the closed set M3
0,A. Our purpose is now to prove

that µ̄ satisfy (1.2)-(1.4).

The maps ν. := (ν1. , ν
2
. , ν

3
. ) 7→ 〈ν1. ,1〉/(〈ν

1
0 ,1〉+ 〈ν20 ,1〉) (resp. 〈ν

2
. ,1〉/(〈ν

1
0 ,1〉+ 〈ν20 ,1〉) and

〈ν3. ,1〉/(〈ν
1
0 ,1〉+ 〈ν20 ,1〉)) are clearly continuous for the Skorokhod topology from C(R+,M0,A×

Mε,A ×M0,A) into C(R+,R).
Then, it is a consequence of Lemma A.5 together with the continuity of (X1

. ,X
2
. ) 7→ X1

. /X
2
.

from C (R+,R)×C (R+,R
∗) into C (R+,R) (see e.g. [27]), that the mapping ν. 7→ 〈ν1. , χ〉/〈ν

2
. , χ〉

is continuous from C (R+,M0,A ×Mε,A ×M0,A) into C (R+,R). The same argument yields the
continuity of ν. 7→ 1l〈ν1. ,χ〉>ε/〈ν

2
. , χ〉 for the same spaces.

Lemma A.5 also implies the continuity of ν. 7→ 〈ν2. , χ (τ1f − f)〉 from C (R+,M0,A ×Mε,A ×M0,A)
into C (R+,R) for all bounded function f on N.
Since, as well known, the mapping y ∈ D([0, t],R) 7→

∫ t
0 ys ds is continuous, we have proven the

continuity of the mapping Ψf
t defined in (3.22) on D(R+,M0,A ×Mε,A ×M0,A).

By Lemma A.5 applied to ϕ ≡ 1, the process (N
(n),is
.∧τnε

)n∈N∗ converges in distribution to N̄ is

. =
〈µ̄is

. , χ〉. Since the latter process is continuous, the convergence holds in (C([0, T ],R+), ‖.‖∞) for
any T > 0 (see [6] p. 112). As y ∈ D(R+,R) 7→ inft∈[0,T ] y(t) ∈ R is continuous, the following
convergence in distribution holds:

inf
t∈[0,T ]

N̄ is

t = lim
n→+∞

inf
t∈[0,T ]

N
(n),is
t∧τnε

(
≥ ε
)
. (3.40)

We consider t2ε = inf{t ∈ R+, N̄
is

t < 2ε}. A difficulty lies in the fact that we do not know
yet whether this time is deterministic or integrable. We have the following convergence in
distribution.

2ε ≤ inf
t∈[0,T ]

N̄ is

t∧t2ε = lim
n→+∞

inf
t∈[0,T ]

N
(n),is
t∧τnε ∧t2ε . (3.41)

Thus, using (3.41) and P(inft∈[0,t2ε] N̄
is

t = ε) = 0, since {U ∈ D([0, T ],R), inf t≤t2ε U(t) > ε} is
an open set, we have

1 = P

(
inf

t∈[0,t2ε]
N̄ is

t > ε
)
≤ lim

n→+∞
P

(
inf

t∈[0,T∧t2ε]
N

(n),is
t∧τnε

> ε
)
= lim

n→+∞
P

(
τnε > T ∧ t2ε

)
. (3.42)

We have hence

Ψis,f
.∧τnε ∧t2ε∧T

(µ(n)) = Ψis,f
.∧τnε ∧T (µ

(n))1lτnε ≤t2ε +Ψis,f
.∧t2ε∧T

(µ
(n)
.∧τnε

)1lτnε >t2ε . (3.43)

Using the estimates of the different terms in (3.28), we know that Ψis,f
.∧τnε ∧T (µ

(n)) is upper

bounded by a moment of µ(n) of order 5. In view of (3.8) and (3.42), the first term in the
r.h.s. converges in L1 and hence in probability to zero. Using the continuity of Ψis,f on

D (R+,M0,A ×Mε,A ×M0,A), Ψ
is,f (µ

(n)
.∧τnε

) converges to Ψis,f (µ̄) and therefore, Ψis,f
.∧t2ε∧T

(µ
(n)
.∧τnε

)

converges in distribution to Ψis,f
.∧t2ε∧T

(µ̄). Thanks to this and (3.42), the second term in the r.h.s.

converges in distribution to Ψis,f
.∧t2ε∧T

(µ̄) in D(R+,R).

Since the accumulation point µ̄ is continuous, (〈µ
(n),is
.∧τnε ∧t2ε∧T

, f〉 − Ψis,f
.∧τnε ∧t2ε∧T

(µ(n)))n∈N∗ con-

verges in distribution to 〈µ̄.∧t2ε∧T , f〉 − Ψis,f
.∧t2ε∧T

(µ̄). From (3.28), this sequence also converges
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in probability to zero. By identification of these limits, µ̄ solves (1.2)-(1.4) on [0, t2ε ∧ T ] and
thus coincides a.s. with the only continuous deterministic solution of these equations on this
time interval. This implies that t2ε is deterministic and yields the convergence in probability of

(µ
(n)
.∧τnε

)n∈N∗ to µ̄, uniformly on [0, t2ε].

We finally prove that the non-localized sequence (µ(n))n∈N∗ also converges uniformly and in
probability to µ̄ in D ([0, t2ε],M0,A ×Mε,A ×M0,A). For a small positive η,

P

(
sup

t∈[0,t2ε]

∣∣∣〈µ(n),is
t , f〉 −Ψis,f

t (µ̄)
∣∣∣ > η

)

≤ P

(
sup

t∈[0,t2ε]

∣∣∣Ψis,f
t∧τnε

(µ(n))−Ψis,f
t∧τnε

(µ̄)
∣∣∣ >

η

2
; τnε ≥ t2ε

)

+ P

(
sup

t∈[0,t2ε]

∣∣∣εn,ft∧τnε
+M

(n),is,f
t∧τnε

∣∣∣ >
η

2

)
+ P

(
τnε < t2ε

)
. (3.44)

Using the continuity of Ψf and the uniform convergence in probability proved above, the first
term in the r.h.s. of (3.44) converges to zero. We can show that the second term converges to
zero by using Doob’s inequality together with the estimates of the bracket of M (n),is,f (similar
to (3.21)) and of ∆n,f (Step 2). Finally, the third term vanishes in view of (3.42).

The convergence of the original sequence (µ(n))n∈N∗ is then entailed by the uniqueness of the
solution to (1.2)-(1.4), implied by Step 2.

Step 5 When n → +∞, by taking the limit in (3.1),
(
µ(n),s

)
n∈N∗ converges in D(R+,M0,A) to

the solution of the following transport equation, that can be solved in function of pi. For every
bounded function f : (k, t) 7→ ft(k) ∈ C0,1

b (N×R+,R) of class C
1 with bounded derivative with

respect to t,

〈µ̄s

t , ft〉 =〈µ̄s

0, f0〉+

∫ t

0
〈µ̄s

s, rkp̄
i

sfs − ∂sfs〉 ds. (3.45)

Choosing f(k, s) = ϕ(k) exp
(
− rk

∫ t−s
0 p̄i(u)du

)
, we obtain that

〈µ̄s

t , ϕ〉 =
∑

k∈N

ϕ(k)θkt µ̄
s

0(k). (3.46)

where θt = exp
(
−r
∫ t
0 p̄

i(u)du
)
is the probability that a given degree 1 node remains susceptible

at time t. This is the announced Equation (1.2). �

Corollary 3.4. For all 0 ≤ t ≤ t2ε

N̄ s

t =θtg
′(θt)

N̄ is

t =N̄ is

0 +

∫ t

0
rp̄isθsg

′(θs)
(
(p̄ss − p̄is)θs

g′′(θs)

g′(θs)
− 1
)
− βN̄ is

s ds

N̄rs

t =

∫ t

0

(
βN̄ is

s − rp̄rs p̄
i

sθ
2
sg

′′(θs)
)
ds. (3.47)

Proof. Because of the moment Assumption (3.8), we can prove that (3.28) also holds for f(k) =
k, k ∈ N. This is obtained by replacing in (3.29), (3.35), (3.38) and (3.39) ‖f‖∞ by k and using
the Assumption of boundedness of the moments of order 5 in (3.35) and (3.39). This shows that
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(N
(n),is
.∧τnε

)n∈N converges uniformly in probability to the deterministic and continuous solution N̄ is

of the second equality in (3.47). Fix t ≥ 0. (1.2) with f(k) = k reads

N̄ s

t =
∑

k∈N

µ̄s

0(k)kθ
k
t = θt

+∞∑

k=1

µ̄s

0(k)kθ
k−1
t = θtg

′(θt), (3.48)

i.e. the first assertion of (3.47).

Choosing f(k) = k in (1.3), we obtain

N̄ is

t =N̄ is

0 −

∫ t

0
βN̄ is

s ds (3.49)

+

∫ t

0

∑

k∈N

λs(k)
∑

j+ℓ≤k−1

[ (k − 1)!

j!(k − 1− j − ℓ)!ℓ!
(p̄is)

j(p̄rs )
ℓ(p̄ss)

k−1−j−ℓ
](
k − 2j − 2− ℓ

)
µ̄s

s(k) ds.

Notice that the term in the square brackets is the probability to obtain (j, ℓ, k − 1− j − ℓ) from
a draw in the multinomial distribution of parameters (k − 1, (p̄is, p̄

r

s , p̄
s

s)). Hence,

∑

j+ℓ≤k−1

j ×
( (k − 1)!

j!(k − 1− j − ℓ)!ℓ!
(p̄is)

j(p̄rs )
ℓ(p̄ss)

k−1−j−ℓ
)
= (k − 1)p̄is

as we recognize the mean number of edges to is of an individual of degree k. This is similar for
the other terms. Hence, using the definition of λs(k) in (2.9),

N̄ is

t =N̄ is

0 +

∫ t

0
r p̄is

(
〈µ̄s

s, χ
2 − 2χ〉 − (2p̄is + p̄rs )〈µ̄

s

s, χ(χ− 1)〉
)
ds−

∫ t

0
βN̄ is

s ds. (3.50)

But since

〈µ̄s

t , χ(χ− 1)〉 =
∑

k∈N

µ̄s

0(k)k(k − 1)θkt = θ2t g
′′(θt)

〈µ̄s

t , χ
2 − 2χ〉 = 〈µ̄s

t , k(k − 1)〉 − 〈µ̄S
t , k〉 = θ2t g

′′(θt)− θtg
′(θt),

we obtain by noticing that 1− 2p̄is − p̄rs = p̄ss − p̄is,

N̄ is

t =N̄ is

0 +

∫ t

0
r p̄is

(
(p̄ss − p̄is)θ

2
sg

′′(θs)− θsg
′(θs)

)
ds−

∫ t

0
βN̄ is

s ds (3.51)

which is the second assertion of (3.47). The third equation of (3.47) is obtained similarly. �

3.3 Proof of Proposition 1.1 (Volz’ equations)

Proof of Proposition 1.1. We begin with the proof of (1.7) and (1.8). Fix again t ≥ 0. For the
size of the susceptible population, taking ϕ = 1 in (1.2), we are lead to introduce the same
quantity θt = exp(−r

∫ t
0 p̄

i

sds) as Volz and obtain (1.7). For the size of the infective population,
setting f = 1 in (1.3) entails

Īt =Ī0 +

∫ t

0

(∑

k∈N

rkp̄isµ̄
s

s(k)− βĪs

)
ds

=Ī0 +

∫ t

0

(
rp̄is
∑

k∈N

µ̄s

0(k)kθ
k
s − βĪs

)
ds = Ī0 +

∫ t

0

(
rp̄isθsg

′(θs)− βĪs

)
, ds (3.52)
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by using (1.2) with f(k) = k for the second equality.

Let us now consider the probability that an edge with a susceptible ego has an infectious
alter. Both equations (1.7) and (1.8) depend on p̄it. It is thus important to obtain an equation
for this quantity. In [26], this equation also leads to introduce the quantity p̄st . From the scaling
in Section 3.1, we obtain similarly to (2.12),

pn,it = pn,i0 +

∫ t

0

(∑

k∈N

∑

j+ℓ≤k−1

[(k − 2(j + 1)− ℓ) + k pn,is

N
(n),s
s − k/n

]

× λn
s (k)µ

(n),s
s (k)pns (j, ℓ|k − 1)− βpn,is

)
ds+Mn,pn,i

t ,

where Mn,pn,i
is a square integrable martingale. Notice that

∣∣∣
(k − 2(j + 1)− ℓ) + k pn,is−

Nn,s
s− − k

∣∣∣pns (j, ℓ|k − 1)

=
∣∣∣
Nn,is

s− + k − 2(j + 1)− ℓ

Nn,s
s− − k

−
Nn,is

s−

Nn,s
s−

∣∣∣pns (j, ℓ|k − 1) ≤ 1 + 1

since for admissible j and ℓ, each of the fraction corresponds to the proportion of edges is

among the edges with susceptible ego (after and before) the infection. Using additionnally that
(k − 2(j + 1)− ℓ) + kpn,is ≤ 2K, we can upper bound the bracket of Mn,pn,i

for all t:

〈Mn,pn,i

〉t =

∫ t

0

(
∑

k∈N

∑

j+ℓ≤k−1

[(k − 2(j + 1)− ℓ) + k pn,is

Nn,s
s − k

]2

× λn
s (k)µ

n,s
s (k)pns (j, ℓ|k − 1) + β

〈µn,is
s , χ2〉
(
Nn,s

s

)2

)
ds

≤

∫ t

0

(
∑

k≤Nn,s
s /2

[ 2k

Nn,s
s − k

]2
rkµn,s

s (k) +
∑

k>Nn,s
s /2

rkµn,s
s (k) + β

〈µn,is
s , χ2〉
(
Nn,s

s

)2

)
ds

≤

∫ t

0

(
16r

〈µn,s
s , χ3〉

(Nn,s
s )2

+
〈µn,s

s , χ3〉

(Nn,s
s /2)2

+ β
〈µn,is

s , χ2〉
(
Nn,s

s

)2
)
ds

≤
1

n

∫ t

0

(
16r

〈µ
(n),s
s , χ3〉

(N
(n),s
s )2

+
〈µ

(n),s
s , χ3〉

(N
(n),s
s /2)2

+ β
〈µ

(n),is
s , χ2〉
(
N

(n),s
s

)2
)
ds, (3.53)

which vanishes when n → +∞ by (3.8). To the limit,

p̄it =p̄i0 +

∫ t

0

(∑

k∈N

∑

j+ℓ≤k−1

( (k − 1)!

j!(k − 1− j − ℓ)!ℓ!
(p̄is)

j(p̄rs )
ℓ(p̄ss)

k−1−j−ℓ
)

×
(k − 2(j + 1)− ℓ) + k p̄is

N̄ s

s

λs(k)µ̄
s

s(k)− βp̄is

)
ds

=p̄i0 +

∫ t

0

(
r p̄is

〈µ̄s

s, χ
2 − 2χ− 2χ(χ− 1)p̄is − χ(χ− 1)p̄rs + χ2 p̄is〉

N̄ s

s

− βp̄is

)
ds

=p̄i0 +

∫ t

0

(
r p̄is

(1− p̄is − p̄rs )θ
2
sg

′′(θs)− θsg
′(θs) + p̄isθsg

′(θs)

θsg′(θs)
− βp̄is

)
ds

=p̄i0 +

∫ t

0

(
r p̄isp̄

s

sθs
g′′(θs)

g′(θs)
− r p̄is(1− p̄is)− βp̄is

)
ds. (3.54)
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This achieves the proof of (1.9).

Let us finally establish (1.10). For this, we notice that

p̄st = 1− p̄it − p̄rt . (3.55)

Proceeding as above, we can establish the equation satisfied by p̄rt . Since for all t ≥ 0 and n,

pn,rt =

∫ t

0


βpn,is −

∑

k∈N

∑

j+ℓ≤k−1

pns (j, ℓ|k − 1)
k pn,rs − ℓ

N (n),s − k/n
λn
s (k)µ

(n),s
s (k)


 ds+Mn,pr

t , (3.56)

where the bracket of the martingale Mn,pr is of order 1/n as in (3.53), we obtain to the limit,

p̄rt =

∫ t

0

(
βp̄is − rp̄isp̄

r

s

)
ds (3.57)

by using arguments similar as for p̄it. The proof is then achieved by (3.55). �

Notice that the system of Equations (1.7, 1.9, 1.10) is closed. Miller [18] shows that this
system can be reduced to only two equations by considering the variables θt and φt := p̄itθt,
and proves that the equation for θt in (1.2) together with (1.9, 1.10) are equivalent to the two
following ones:

dθt
dt

= −rφt,
dφt

dt
=
(
− r − β + r

g′′(θt)

g′(1)

)
φt.

A Finite measures on N

First, some notation is needed in order to clarify the way the atoms of a given element of MF (N)
are ranked. For all µ ∈ MF (N), let Fµ be its cumulative distribution function and F−1

µ be its
right inverse defined as

∀x ∈ R+, F
−1
µ (x) = inf{i ∈ N, Fµ(i) ≥ x}. (A.1)

Let µ =
∑

n∈N anδn be an integer-valued measure of MF (N), i.e. such that the an’s are integers
themselves. Then, for each atom n ∈ N of µ such that an > 0, we duplicate the atom n with
multiplicity an, and we rank the atoms of µ by increasing values, sorting arbitrarily the atoms
having the same value. Then, we denote for any i ≤ 〈µ,1〉,

γi(µ) = F−1
µ (i), (A.2)

the level of the ith atom of the measure, when ranked as described above. We refer to Example
1 for a simple illustration.

We now make precise a few topological properties of spaces of measures and measure-valued
processes. For T > 0 and a Polish space (E, dE), we denote by D([0, T ], E) the Skorokhod space
of càdlàg (right-continuous left-limited) functions from R to E (e.g. [6, 16]) equipped with the
Skorokhod topology induced by the metric

dT (f, g) := inf
α∈∆([0,T ])





sup
(s,t)∈[0,T ]2,

s 6=t

∣∣∣∣log
α(s)− α(t)

s− t

∣∣∣∣+ sup
t≤T

dE
(
f(t), g(α(t))

)




, (A.3)
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where the infimum is taken over the set ∆([0, T ]) of continuous increasing functions α : [0, T ] →
[0, T ] such that α(0) = 0 and α(T ) = T .

Limit theorems are heavily dependent on the topologies considered. We introduce here
several technical lemmas on the space of measures related to these questions. For any fixed
0 ≤ ε < A, we define the set

Mε, A :=
{
ν ∈ MF (N); 〈ν,1+ χ5〉 ≤ A and 〈ν, χ〉 ≥ ε

}
. (A.4)

Remark that for any ν ∈ Mε, A, and i ∈ {0, . . . , 5}, 〈ν, χi〉 ≤ A since the support of ν is included
in N.

Lemma A.1. Let I a set and a family (ντ , τ ∈ I) of elements of Mε,A. Then, for any real
function f on N such that f(k) = o(k5), we have that

lim
K→∞

sup
τ∈I

|〈ντ , f1[K,∞)〉| = 0.

Proof. By Markov inequality, for any τ ∈ I, for any K, we have

∑

k≥K

|f(k)|ντ (k) ≤ A sup
k≥K

|f(k)|

k5
,

hence

lim
K→∞

sup
τ∈I

|〈ντ , f〉| ≤ A lim sup
k→∞

|f(k)|

k5
= 0.

The proof is thus complete. �

Lemma A.2. For any A > 0, the set Mε,A is a closed subset of MF (N) embedded with the
topology of weak convergence.

Proof. Let (µn)n∈N be a sequence of Mε,A converging to µ ∈ MF (N) for the weak topology,
which implies in particular that limn→+∞ µn(k) = µ(k) for any k ∈ N. Denoting for all n and
k ∈ N, fn(k) = k5µn(k), we have that limn→+∞ fn(k) = f(k) := k5µ(k), µ-a.e., and Fatou’s
lemma implies

〈µ, χ5〉 =
∑

k∈N

f(k) ≤ lim inf
n→∞

∑

k∈N

fn(k) = lim inf
n→∞

〈µn, χ
5〉.

Since 〈µn,1〉 tends to 〈µ,1〉, we have that 〈µ,1+ χ5〉 ≤ A.
Furthermore, by uniform integrability (Lemma A.1) , it is also clear that

ε ≤ lim
n→∞

〈µn, χ〉 = 〈µ, χ〉,

which shows that µ ∈ Mε,A. �

Lemma A.3. The traces on Mε,A of the total variation topology and of the weak topology
coincide.

Proof. It is well known that the total variation topology is coarser than the weak topology. In the
reverse direction, assume that (µn)n∈N is a sequence of weakly converging measures belonging
to Mε,A. Since,

dTV (µn, µ) ≤
∑

k∈N

|µn(k)− µ(k)|.

according to Lemma A.1, it is then easily deduced that the right-hand-side converges to 0 as n
goes to infinity. �
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Lemma A.4. If the sequence (µn)n∈N of MN

ε, A converges weakly to the measure µ ∈ Mε,A,

then (〈µn, f〉)n∈N converges to 〈µ, f〉 for all function f such that f(k) = o(k5) for all large k.

Proof. Triangular inequality says that:

|〈µn, f〉 − 〈µ, f〉| ≤ |〈µn, f1l[0,K]〉 − 〈µ, f1l[0,K]〉|+ |〈µ, f1l(K,+∞)〉|+ |〈µn, f1l(K,+∞)〉|.

We then conclude by uniform integrability and weak convergence. �

Recall that Mε,A can be embedded with the total variation distance topology, hence the
topology on D([0, T ],Mε, A) is induced by the distance

ρT (µ., ν.) = inf
α∈∆([0,T ])

(
sup

(s,t)∈[0,T ]2,
s 6=t

∣∣∣∣log
α(s)− α(t)

s− t

∣∣∣∣+ sup
t≤T

dTV (µt, να(t))

)
.

Lemma A.5. For any p ≤ 5, the following map is continuous:

Φp :

{
D (R+,Mε, A) −→ D (R+,R)
ν. 7−→ 〈ν., χ

p〉.

Proof. It is sufficient to prove the continuity of the above mappings from D([0, T ],Mε, A) to
D ([0, T ],R), for any T ≥ 0, where the latter are equipped with the corresponding Skorokhod
topologies. For µ and ν two elements of Mε,A, for any p ≤ 5, for any positive integer K,
according to Markov inequality,

|〈µ, χp〉 − 〈ν, χp〉| ≤ 2
A

Kp
+ |〈µ − ν, χp1l[0,K]〉| ≤ 2

A

Kp
+KpdTV (µ, ν). (A.5)

Using (A.3) and (A.5) we have for any K > 0:

dT (〈µ., χ
p〉, 〈ν., χ

p〉) ≤ 2
A

Kp
+KpdT (µ., ν.),

and hence the continuity of Φp. �
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