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Abstract

We consider a SIR epidemic model propagating on a random network generated by con-
figuration model, where the degree distribution of the vertices is given and where the edges
are randomly matched. The evolution of the epidemics is summed up into three measure-
valued equations that describe the degrees of the susceptible individuals and the number of
edges from an infectious or removed individual to the set of susceptibles. These three degree
distributions are sufficient to describe the course of the disease. The limit in large population
is investigated. As a corollary, this provides a rigorous proof of the equations obtained by
Volz [27].

Keywords: Configuration model graph, SIR model, measure-valued process, large network
limit.
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1 Introduction and notation

In this work, we investigate an epidemic spreading on a random graph with fixed degree distri-
bution and evolving according to an SIR model as follows. Every individual not yet infected is
assumed to be susceptible. Infected individuals stay infected during random exponential times
with mean 1/β during which they infect each of their susceptible neighbors with rate r. At the
end of the infectious period, the individual becomes removed and is no longer susceptible to the
disease. Contrarily to the classical mixing compartmental SIR epidemic models (e.g. [17, 5] see
also [2] Chapter 2 for a presentation), heterogeneity in the number of contacts makes it difficult
to describe the dynamical behavior of the epidemic. Mean field approximations (e.g. [23, 4, 10])
or large population approximations (e.g. [3], see also Eq. (3) of [1] in discrete time) provide a
set of denumerable equations to describe our system. We are here inspired by the paper of Volz
[27], who proposes a low-dimensional system of five differential equations for the dynamics of an
SIR model on a Configuration Model (CM) graph [7, 19]. We refer to Volz’ article for a bibliog-
raphy about SIR models on graphs (see also Newman [20, 21], Durrett [10] or Barthélemy et al.
[4]). Starting from a random model in finite population, Volz derives deterministic equations by
increasing the size of the network, following in this respect works of Newman for instance ([21]).
The convergence of the continuous-time stochastic SIR model to its deterministic limit for large
graphs was however not proved. In this paper, we prove the convergence that was left open
by Volz. To achieve this, we provide a rigorous individual-based description of the epidemic on
a random graph. Three degree distributions are sufficient to describe the epidemic dynamics.
We describe these distributions by equations in the space of measures on the set of nonnegative
integers, of which Volz’ equations are a by-product. Starting with a node-centered description,
we show that the individual dimension is lost in the large graph limit. Our construction heavily
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relies on the choice of a CM for the graph underlying the epidemic, which was also made in [27].

The size N of the population is fixed. The individuals are related through a random network
and are represented by the vertices of an undirected graph. Between two neighbors, we place
an edge. The graph is non-oriented and an edge between x and y can be seen as two directed
edges, one from x to y and the other from y to x. If we consider an edge as emanating from
the vertex x and directed to the vertex y, we call x the ego of the edge and y the alter. The
number of neighbors of a given individual is the degree of the associated vertex. The degree
of x is denoted dx. It varies from an individual to another one. The CM developed in Section
2.1 is a random graph where individuals’ degrees are independent random variables with same
distribution (pk)k∈N. Edges are paired at random. As a consequence, for a given edge, alter has
the size-biased degree distribution: the probability that her degree is k is kpk/

∑
ℓ∈N ℓpℓ.

The population is partitioned into the classes of susceptible, infectious or removed individuals.
At time t, we denote by st, it and rt the set of susceptible, infectious and removed nodes. We
denote by St, It and Rt the sizes of these classes at time t. With a slight abuse, we will say
that a susceptible individual is of type s (accordingly of type i or r) and that an edge linking an
infectious ego and susceptible alter is of type is (accordingly rs, ii or ir). For x ∈ i (respectively
r), dx(s) represents the number of edges with x as ego and susceptible alter. The numbers of
edges with susceptible ego (resp. of edges of types is and rs) are denoted by N s

t (resp. N is

t and
Nrs

t ).
A possible way to describe rigorously the epidemics’ evolution is given in Section 2.2. We con-
sider the subgraph of infectious and removed individuals with their degrees. Upon infection, the
infectious ego chooses the edge of a susceptible alter at random. Hence the latter individual is
chosen proportionally to her degree. When she is connected, she uncovers the edges to neighbors
that were already in the subgraph.

We denote by N the set of nonnegative integers and by N
∗ = N \ {0}. The space of real

bounded functions on N is denoted by Bb(N). For any f ∈ Bb(N), set ‖f‖∞ the supremum of f
on N. For all such f and y ∈ N, we denote by τyf the function x 7→ f(x − y). For all n ∈ N,
χn is the function x 7→ xn, and in particular, χ ≡ χ1 is the identity function, and 1 ≡ χ0 is the
function constantly equal to 1.

We denote by MF (N) the set of finite measures on N, embedded with the topology of weak
convergence. For all µ ∈ MF (N) and f ∈ Bb(N), we write

〈µ, f〉 =
∑

k∈N

f(k)µ({k}).

With some abuse of notation, for all µ ∈ MF (N) and k ∈ N, we denote µ(k) = µ({k}). For
x ∈ N, we write δx for the Dirac measure at point x. Note, that some additional notation is
provided in Appendix A, together with several topological results, that will be used in the sequel.

The plan of the paper and the main results are described below. In Section 2, we describe
the mechanisms underlying the propagation of the epidemic on the CM graph. To describe the
course of the epidemic, rather than the sizes St, It and Rt, we consider three degree distributions
given as point measures of MF (N), for t ≥ 0:

µs

t =
∑

x∈st

δdx , µis

t =
∑

x∈it

δdx(st), µrs

t =
∑

x∈rt

δdx(st). (1.1)

Notice that the measures µs

t/St, µ
is

t /It and µrs

t /Rt are probability measures that correspond
to the usual (probability) degree distribution. The degree distribution µs

t of susceptible in-
dividuals is needed to describe the degrees of the new infected individuals. The measure µis

t
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provides information on the number of edges from it to st, through which the disease can prop-
agate. Similarly, the measure µrs

t is used to describe the evolution of the set of edges linking
st to rt. We can see that N s

t = 〈µs

t , χ〉 and St = 〈µs

t ,1〉 (and accordingly for N is

t , N
rs, It and Rt).

In Section 3, we study the large graph limit obtained when the number of vertices tends
to infinity, the degree distribution being unchanged. The degree distributions mentioned above
can then be approximated, after proper scaling, by the solution (µ̄s

t , µ̄
is

t , µ̄
rs

t )t≥0 of the system of
deterministic measure-valued Equations (1.3)-(1.5) with initial conditions µ̄s

0, µ̄
is

0 and µ̄rs

0 .
For all t ≥ 0, we denote by N̄ s

t = 〈µ̄s

t , χ〉 (resp. N̄
is

t = 〈µ̄is

t , χ〉 and N̄rs

t = 〈µ̄rs

t , χ〉) the continuous
number of edges with ego in s (resp. is edges, rs edges). Following Volz [27], pertinent quantities
are the proportions p̄it = N̄ is

t /N̄
s

t (resp. p̄rt = N̄rs

t /N̄ s

t and p̄st = (N̄ s

t − N̄ is

t − N̄rs

t )/N̄ s

t ) of edges
with infectious (respectively removed, susceptible) alter among those having susceptible ego.
We also introduce

θt = exp
(
− r

∫ t

0
p̄is ds

)
(1.2)

the probability that a degree one node remains susceptible until time t. For any f ∈ Bb(N),

〈µ̄s

t , f〉 =
∑

k∈N

µ̄s

0(k) θ
k
t f(k), (1.3)

〈µ̄is

t , f〉 = 〈µ̄is

0 , f〉 −

∫ t

0
β〈µ̄is

s , f〉 ds (1.4)

+

∫ t

0

∑

k∈N

rkp̄is
∑

j, ℓ,m∈N
j+ℓ+m=k−1

(
k − 1

j, ℓ,m

)
(p̄is)

j(p̄rs )
ℓ(p̄ss)

mf(m)µ̄s

s(k) ds

+

∫ t

0

∑

k∈N

rkp̄is(1 + (k − 1)p̄is)
∑

k′∈N∗

(
f(k′ − 1)− f(k′)

)k′µ̄is

s (k
′)

N̄ is

s

µ̄s

s(k) ds,

〈µ̄rs

t , f〉 = 〈µ̄rs

0 , f〉+

∫ t

0
β〈µ̄is

s , f〉 ds (1.5)

+

∫ t

0

∑

k∈N

rkp̄is(k − 1)p̄rs
∑

k′∈N∗

(
f(k′ − 1)− f(k′)

)k′µ̄rs

s (k′)

N̄rs

s

µ̄s

s(k) ds.

We denote by S̄t (resp. Īt and R̄t) the mass of the measure µ̄s

t (resp. µ̄is

t and µ̄rs

t ). As for
the finite graph, µ̄s

t/S̄t (resp. µ̄is

t /Īt and µ̄rs

t /R̄t) is the probability degree distribution of the
susceptible individuals (resp. the probability distribution of the degrees of the infectious and
removed individuals towards the susceptible ones).
Let us give an heuristic explanation of Equations (1.3)-(1.5). Remark that the graph in the
limit is infinite. The probability that an individual of degree k has been infected by none of
her k edges is θkt and Equation (1.3) follows. In Equation (1.4), the first integral corresponds to
infectious individuals being removed. In the second integral, rkp̄is is the rate of infection of a
given susceptible individual of degree k. Once she gets infected, the multinomial term determines
the number of edges connected to susceptible, infectious and removed neighbors. Multi-edges
do not occur. Each infectious neighbor has a degree chosen in the size-biased distribution
k′µ̄is(k′)/N̄ is and the number of edges to st is reduced by 1. This explains the third integral.
Similar arguments hold for Equation (1.5).

Choosing f(k) = 1li(k), we obtain the following countable system of ordinary differential
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equations (ODEs).

µ̄s

t(i) = µ̄s

0(i)θ
i
t,

µ̄is

t (i) = µ̄is

0 (i) +

∫ t

0

{
rp̄is

∑

j,ℓ≥0

(i+ j + ℓ+ 1)µ̄s

s(i+ j + ℓ+ 1)

(
i+ j + ℓ

i, j, ℓ

)
(p̄ss)

i(p̄is)
j(p̄rs )

ℓ

+

(
r(p̄is)

2〈µ̄s

s, χ
2 − χ〉+ rp̄is〈µ̄

s

s, χ〉

)
(i+ 1)µ̄is

s (i+ 1)− iµ̄is

s (i)

〈µ̄is

s , χ〉
− βµ̄is

s (i)

}
ds,

µ̄rs

t (i) = µ̄rs

0 (i) +

∫ t

0

{
βµ̄is

s (i) + rp̄is〈µ̄
s

s, χ
2 − χ〉p̄rs

(i+ 1)µ̄rs

s (i+ 1)− iµ̄rs

s (i)

〈µ̄rs

s , χ〉

}
ds, (1.6)

It is noteworthy to say that this system is similar but not identical to that in Ball and Neal [3].
Our equations differ since our mechanism is not the same (compare Section 2.2 with Section 5
in [3]). We emphasize that the number of links of an individual to s decreases as the epidemic
progresses, which modifies her infectivity.
The system (1.3)-(1.5) allows us to recover the equations proposed by Volz [27, Table 3, p.297].
More precisely, the dynamics of the epidemic is obtained by solving the following closed system
of four ODEs, referred to as Volz’ equations in the sequel. The latter are obtained directly from
(1.3)-(1.5) and the definitions of S̄t, Īt, p̄

i

t and p̄st which relate these quantities to the measures
µ̄s

t and µ̄is

t . Let

g(z) =
∑

k∈N

µ̄s

0(k)z
k (1.7)

be the generating function for the initial degree distribution of the susceptible individuals µ̄s

0,
and let θt = exp(−r

∫ t

0 p̄
i

s ds). Then, the epidemic can be approximated by the solution of the
four following ODEs:

S̄t =〈µ̄s

t ,1〉 = g(θt), (1.8)

Īt =〈µ̄is

t ,1〉 = Ī0 +

∫ t

0

(
rp̄isθsg

′(θs)− βĪs

)
ds, (1.9)

p̄it =p̄i0 +

∫ t

0

(
r p̄isp̄

s

sθs
g′′(θs)

g′(θs)
− r p̄is(1− p̄is)− βp̄is

)
ds, (1.10)

p̄st =p̄s0 +

∫ t

0
rp̄isp̄

s

s

(
1− θs

g′′(θs)

g′(θs)

)
ds. (1.11)

Here, the graph structure appears through the generating function g. In (1.9), we see that the
classical contamination terms rS̄tĪt (mass action) or rS̄tĪt/(S̄t + Īt) (frequency dependence) of
mixing SIR models (e.g. [2, 9]) are replaced by rp̄itθtg

′(θt) = rN̄ is

t . The fact that new infectious
individuals are chosen in the size-biased distribution is hidden in the term g′′(θt)/g

′(θt).

The beginning of the epidemic and computation of the reproduction number, when the num-
bers of infected individuals and of contaminating edges are small and when Volz’s deterministic
approximation does not hold, makes the object of another study.

2 SIR model on a Configuration Model graph

In this section, we introduce Configuration Model graphs and describe the propagation of SIR
on such graphs.
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2.1 Configuration Model graph

Graphs at large can be mathematically represented as matrices with integer entries: to each
graph corresponds an adjacency matrix, the (x, y)-th coefficient of which is the number of edges
between the vertices x and y. Defining the distribution of a random graph thus amounts to
choosing a sigma-field and a probability measure on the space NN∗×N∗

, where N∗ = N\{0}. An-
other approach is to construct a random graph by modifying progressively a given graph, as in
Erdös-Renyi model. Several other constructions are possible such as the preferential attachment
model, the threshold graphs, etc.

Here, we are interested in the Configuration Model (CM) proposed by Bollobás [7], Molloy
and Reed [19] (see also [21, 22, 10, 26]) and which models graphs with specified degree distri-
bution and independence between the degrees of neighbors. As shown by statistical tests, these
models might be realistic in describing community networks. See for instance Clémençon et al.
[8] for dealing with the spread of the HIV-AIDS disease among the homosexual community in
Cuba.
We recall its construction (see e.g. [10, 26]). Suppose we are given the number of vertices,
N , and i.i.d. random variables (r.v.) d1, . . . , dN with distribution (pk)k∈N that represent the
degrees of each vertex. To the vertex i are associated di half-edges. To construct an edge, one
chooses two open half-edges uniformly at random and pair them together.
Remark that this linkage procedure does not exclude self-loops or multiple edges. In the fol-
lowing, we are interested in a large number of nodes with a fixed degree distribution, hence
self-loops and multiple edges become less and less apparent in the global picture (see e.g. [10,
Theorem 3.1.2]).
Notice that the condition for the existence with positive probability of a giant component is that
the expectation of the size biased distribution is larger than 1:

∑

k∈N

(k − 1)
kpk∑
ℓ∈N ℓpℓ

> 1.

This is connected with the fact that the Galton-Watson tree with this offspring distribution is
supercritical (see [10, Section 3.2 p. 75] for details).

2.2 SIR epidemic on a CM graph

We now propagate an epidemic on a CM graph of size N (see Figure 1). The disease can be
transmitted from infectious nodes to neighboring susceptible nodes and removed nodes cannot
be reinfected.

Suppose that at initial time, we are given a set of susceptible and infectious nodes together
with their degrees. The graph of relationships between the individuals is in fact irrelevant for
studying the propagation of the disease. The minimal information consists in the sizes of the
classes s, i, r and the number of edges to the class s for every infectious or removed node. Thus,
each node of class s comes with a given number of half-edges of undetermined types ; each node
of class i (resp. r) comes with a number of is (resp. rs) edges. The numbers of ir, ii and rr

edges need not to be retained.

The evolution of the SIR epidemic on a CM graph can be described as follows. To each
is-type half-edge is associated an independent exponential clock with parameter r and to each
i vertex is associated an independent exponential clock with parameter β. The first of all these
clocks that rings determines the next event.
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Case 1 If the clock that rings is associated to an i individual, the latter recovers. Change her
status from i to r and the type of her emanating half-edges accordingly: is half-edges
become rs half-edges.

Case 2 If the clock is associated with a half is-edge, an infection occurs.

Step 1 Match randomly the is-half-edge that has rung to a half-edge belonging to a
susceptible.

Step 2 This susceptible is the newly infected. Let k be her degree. Choose uniformly
k − 1 half-edges among all the available half-edges (they either are of type is, rs, or
emanate from s). Let m (resp. j and ℓ) be the number of ss-type (resp. of is and of
rs-type) half-edges drawn among these k − 1 half-edges;

Step 3 The chosen half-edges of type is and rs determine the infectious or removed
neighbors of the newly infected individual. The remaining m edges of type ss remain
open in the sense that the susceptible neighbor is not fixed. Change the status of the
m (resp. j, ℓ) ss-type (resp. is-type, rs-type) edges created to si-type (resp. ii-type,
ri-type);

Step 4 Change the status of the newly infected from s to i. 2

We then wait for another clock to ring and repeat the procedure.

(a) (b)

(c) (d)

Figure 1: Infection process. Arrows provide the infection tree. Susceptible, infectious and removed

individuals are colored in white, grey and black respectively. (a) The degree of each individual is known,

and for each infectious (resp. removed) individual, we know her number of edges of type is (resp. rs).

(b-c) A contaminating half-edge is chosen, and say that a susceptible of degree k is infected at time t.

The contaminating edge is drawn in bold line. (d) Once the susceptible individual has been infected, we

determine how many of her remaining arrows are linked to the classes i and r. If we denote by j and ℓ

these numbers, then N is

t
= N is

t
−

− 1 + (k − 1)− j − ℓ and Nrs

t
= Nrs

t
−

− ℓ.

We only need three descriptors of the system to obtain a Markovian evolution, namely the
three degree distributions introduced in (1.1).
For a measure µ ∈ MF (N), we denote by Fµ(m) = µ({0, . . . ,m}), m ∈ N, its cumulative
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distribution function. We introduce F−1
µ its right inverse (see Appendix A). Then, for all

0 ≤ i ≤ St (resp. 0 ≤ i ≤ It and 0 ≤ i ≤ Rt),

γi(µ
s

t) = F−1
µs

t
(i),

(
resp. γi(µ

is

t ) = F−1
µis

t
(i), γi(µ

rs

t ) = F−1
µrs

t
(i)
)

represents the degree at t of the ith susceptible individual (resp. the number of edges to s of

the ith infectious individual and of the ith removed individual) when individuals are ranked by
increasing degrees (resp. by number of edges to s).

Example 1. Consider for instance the measure µ = 2δ1 + 3δ5 + δ7. Then, the atoms 1 and 2
are at level 1, the atoms 3, 4 and 5 are at level 5, and the atom 6 is at level 7. We then have
that γ1(µ) = F−1

µ (1) = 1, γ2(µ) = 1, γ3(µ) = γ4(µ) = γ5(µ) = 5, and γ6(µ) = 7. 2

From t, and because of the properties of exponential distributions the next event will take
place in a time exponentially distributed with parameter rN is

t + βIt. Let T denote the time of
this event.

Case 1 The event corresponds to a removal, i.e., a node goes from status i to status r. Choose
uniformly an integer i in IT− , then update the measures µis

T−

and µrs

T−

:

µis

T = µis

T− − δγi(µis

T
−

) and µrs

T = µrs

T− + δγi(µis

T
−

).

The probability that a given integer i is drawn is 1/IT− .

Case 2 The event corresponds to a new infection. We choose uniformly a half-edge with sus-
ceptible ego, and this ego becomes infectious. The global rate of infection is rN is

T−

and
the probability of choosing a susceptible individual of degree k for the new infectious is
kµs

T−

(k)/N s

T−

. We define by

λT−
(k) = rk

N is

s

N s

s

(2.1)

the rate of infection of a given susceptible of degree k at time T−. This notation was also
used in Volz [27].

The newly infective may have several links with infectious or removed individuals. The
probability, given that the degree of the individual is k and that j (resp. ℓ) out of her k−1
other half-edges (all but the contaminating is edge) are chosen to be of type ii (resp. ir),
according to Step 2’, is given by the following multivariate hypergeometric distribution:

pT−
(j, ℓ | k − 1) =

(N is

T
−

−1

j

)(Nrs

T
−

ℓ

)(N s

T
−

−N is

T
−

−Nrs

T
−

k−1−j−ℓ

)

(N s

T
−

−1

k−1

) · (2.2)

Finally, to update the values of µis

T and µrs

T given k, j and ℓ, we have to choose the infectious
and removed individuals to which the newly infectious is linked: some of their edges,
which were is or rs, now become ii or ri. We draw two sequences u = (u1, . . . , uIT

−

) and

v = (v1, . . . , vRT
−

) that will indicate how many links each infectious or removed individual
has to the newly contaminated individual. There exist constraints on u and v: the number
of edges recorded by u and v can not exceed the number of existing edges. Let us define
the set

U =
+∞⋃

m=1

N
m, (2.3)
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and for all finite integer-valued measure µ on N, and all integer n ∈ N, we define the subset

U(n, µ) =
{
u = (u1, ..., u〈µ,1〉) ∈ N

〈µ,1〉 such that

∀i ∈ {1, . . . , 〈µ,1〉}, ui ≤ F−1
µ (i) and

〈µ,1〉∑

i=1

ui = n
}
. (2.4)

Each sequence u ∈ U(n, µ) provides a possible configuration of how the n connections of a
given individual can be shared between neighbors whose degrees are summed up by µ. The
component ui, for 1 ≤ i ≤ 〈µ, 1〉, provides the number of edges that this individual shares
with the ith individual. This number is necessarily smaller than the degree γi(µ) = F−1

µ (i)
of individual i. Moreover, the ui’s sum to n. The probabilities of the draws of u and v
that provide respectively the number of edges is which become ii per infectious individual
and the number of edges rs which become ri per removed individual are given by:

ρ(u|j + 1, µis

T−
) =

∏IT
−

i=1

(γi(µis

T
−

)

ui

)

(N is

T
−

j+1

) 1lu∈U(j+1,µis

T
−

)

ρ(v|ℓ, µrs

T−
) =

∏RT
−

i=1

(γi(µrs

T
−

)
vi

)

(Nrs

T
−

ℓ

) 1lv∈U(ℓ,µrs

T
−

). (2.5)

Then, we then update the measures as follows:

µs

T = µs

T− − δk

µis

T = µis

T− + δk−1−j−ℓ +

iT
−∑

i=1

δγi(µis

T
−

)−ui
− δγi(µis

T
−

)

µrs

T = µrs

T− +

rT
−∑

i′=1

δγi′ (µrs

T
−

)−vi′
− δγi′ (µrs

T
−

). (2.6)

2.3 Stochastic differential equations

Here, we propose stochastic differential equations (SDEs) driven by Poisson point measures
(PPMs) to describe the evolution of the degree distributions (1.1), following the inspiration
of [9, 13]. We consider two PPMs: dQ1(s, k, θ1, j, ℓ, θ2, u, θ3, v, θ4) and dQ2(s, i) on R+ × E1

with E1 := N × R+ × N × N × R+ × U × R+ × U × R+ and R+ × N with intensity measures
dq1(s, k, θ1, j, ℓ, θ2, u, θ3, v, θ4) = ds⊗ dn(k)⊗ dθ1 ⊗ dn(j)⊗ dn(ℓ)⊗ dθ2 ⊗ dn(u)⊗ dθ3 ⊗
dn(v)⊗ dθ4 and dq2(s, i) = β ds ⊗ dn(i), where ds, dθ1, dθ2, dθ3 and dθ4 are Lebesgue
measures on R+, where dn(k), dn(j), dn(ℓ) are counting measures on N, and where dn(u),
dn(v) are counting measures on U .

The point measure Q1 provides possible times at which an infection may occur. Each of its
atoms is associated with a possible infection time s, an integer k which gives the degree of the
susceptible being possibly infected, the number j + 1 and ℓ of edges that this individual has to
the sets is− and rs− . The marks u and v ∈ U are as in the previous section. The marks θ1, θ2
and θ3 are auxiliary variables used for the construction (see (2.8)-(2.9)).
The point measure Q2 gives possible removal times. To each of its atoms is associated a possible
removal time s and the number i of the individual that may be removed.

8



The following SDEs describe the evolution of the epidemic: for all t ≥ 0,

µs

t = µs

0 −

∫ t

0

∫

E1

δk1lθ1≤λs
−
(k)µs

s
−
(k) (2.7)

1lθ2≤ps
−
(j,ℓ|k−1)1lθ3≤ρ(u|j+1,µis

s
−
)1lθ4≤ρ(v|ℓ,µrs

s
−
) dQ

1

µis

t = µis

0 +

∫ t

0

∫

E1

(
δk−(j+1+ℓ) +

Is
−∑

i=1

(
δγi(µis

s
−
)−ui

− δγi(µis

s
−
)

))
(2.8)

× 1lθ1≤λs
−
(k)µs

s
−
(k)1lθ2≤ps

−
(j,ℓ|k−1)1lθ3≤ρ(u|j+1,µis

s
−
)1lθ4≤ρ(v|ℓ,µrs

s
−
) dQ1

−

∫ t

0

∫

N

δγi(µis

s
−
)1li≤Is

−

dQ2

µrs

t = µrs

0 +

∫ t

0

∫

E1

(Rs
−∑

i=1

(
δγi(µrs

s
−
)−vi − δγi(µrs

s
−
)

))
(2.9)

× 1lθ1≤λs
−
(k)µs

s
−
(k)1lθ2≤ps

−
(j,ℓ|k−1)1lθ3≤ρ(u|j+1,µis

s
−
)1lθ4≤ρ(v|ℓ,µrs

s
−
) dQ1

+

∫ t

0

∫

N

δγi(µis

s
−
)1li≤Is

−

dQ2,

where we write dQ1 and dQ2 instead of dQ1(s, k, θ1, j, ℓ, θ2, u, θ3, v, θ4) and dQ2(s, i) to sim-
plify the notation.

Proposition 2.1. For any given initial conditions µs

0, µ
si

0 and µrs

0 that are integer-valued mea-
sures on N and for PPMs Q1 and Q2, there exists a unique strong solution to the SDEs (2.7)-
(2.9) in the space D

(
R+, (MF (N))

3
)
, the Skohorod space of càdlàg functions with values in

(MF (N))
3.

Proof. For the proof, we notice that for every t ∈ R+, the measure µs

t is dominated by µs

0 and
the measures µis

t and µrs

t have a mass bounded by 〈µs

0 + µis

0 + µrs

0 , 1〉 and a support included in
[[0,max{max(supp (µs

0)),max(supp (µis

0 )),max(supp (µrs

0 ))}]]. The result then follows the steps
of [13] and [25] (Proposition 2.2.6). �

The course of the epidemic can be deduced from (2.7), (2.8) and (2.9). For the sizes
(St, It, Rt)t∈R+ of the different classes, for instance, we have with the choice of f ≡ 1 that
for all t ≥ 0, St = 〈µs

t ,1〉, It = 〈µis

t ,1〉 and Rt = 〈µrs

t ,1〉. Writing the semi-martingale decom-
position that results from standard stochastic calculus for jump processes and SDE driven by
PPMs (e.g. [13, 14, 15]), we obtain for example:

It =〈µis

t ,1〉 = I0 +

∫ t

0

(∑

k∈N

µs

s(k)λs(k)− β Is

)
ds+M i

t , (2.10)

where M i is a square-integrable martingale that can be written explicitly with the compensated
PPMs of Q1 and Q2, and with predictable quadratic variation given for all t ≥ 0 by

〈M i〉t =

∫ t

0

∑

k∈N

(
µs

s(k)λs(k) + βIs

)
ds.

Another quantities of interest are the numbers of edges of the different types N s

t , N
is

t , N
rs

t . The
latter appear as the first moments of the measures µs

t , µ
is

t and µrs

t : N s

t = 〈µs

t , χ〉, N
is

t = 〈µis

t , χ〉
and Nrs

t = 〈µrs

t , χ〉.
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3 Large graph limit

Volz [27] proposed a parsimonious deterministic approximation to describe the epidemic dy-
namics when the population is large. However, the stochastic processes are not clearly defined
and the convergence of the SDEs to the 4 ODEs that Volz proposes is stated but not proved.
Using the construction that we developed in Section 2.2, we provide mathematical proofs of
Volz’ equation, starting from a finite graph and taking the limit when the size of the graph
tends to infinity. Moreover, we see that the three distributions µs, µis and µrs are at the core
of the problem and encapsulate the evolution of the process.

3.1 Law of Large Numbers scaling

We consider sequences of measures (µn,s)n∈N, (µ
n,is)n∈N and (µn,rs)n∈N such that for any n ∈ N

∗,
µn,s, µn,is and µn,rs satisfy (2.7)-(2.9) with initial conditions µn,s

0 , µn,is
0 and µn,rs

0 . We denote by
s
n
t , i

n
t and r

n
t the subclasses of susceptible, infectious or removed individuals at time t, and by

Nn,s
t , Nn,is

t and Nn,rs
t , the number of edges with susceptible ego, infectious ego and susceptible

alter, removed ego and susceptible alter. The number of vertices of each class are denoted Int ,
Sn
t and Rn

t . The total size of the population is finite and equal to Sn
0 + In0 +Rn

0 . The size of the
population and the number of edges tend to infinity proportionally to n.

We scale the measures the following way. For any n ≥ 0, we set

µ
(n),is
t =

1

n
µn,is
t

for all t ≥ 0 (and accordingly, µ
(n),s
t and µ

(n),rs
t ). Then, we denote

N
(n),is
t = 〈µ(n),is, χ〉 =

1

n
Nn,is

t , and I
(n)
t = 〈µ

(n),is
t ,1〉 =

1

n
Int

and accordingly, N
(n),s
t , N

(n),rs
t , S

(n)
t and R

(n)
t .

We assume that the initial conditions satisfy:

Assumption 3.1. The sequences (µ
(n),s
0 )n∈N, (µ

(n),is
0 )n∈N and (µ

(n),rs
0 )n∈N converge to measures

µ̄s

0, µ̄
is

0 and µ̄rs

0 in MF (N) embedded with the weak convergence topology.

Remark 1. 1. Assumption 3.1 entails that the initial (susceptible and infectious) population size
is of order n if µ̄s

0 and µ̄is

0 are nontrivial.
2. In case the distributions underlying the measures µn,s

0 , µn,is
0 and µn,rs

0 do not depend on the
total number of vertices (e.g. Poisson, power-laws or geometric distributions), Assumption 3.1
can be viewed as a law of large numbers. When the distributions depend on the total number of
vertices N (as in Erdös-Renyi graphs), there may be scalings under which Assumption 3.1 holds.
For Erdös-Renyi graphs for instance, if the probability ρN of connecting two vertices satisfies
limN→+∞NρN = λ, then we obtain in the limit a Poisson distribution with parameter λ.
3. In Equation (1.4), notice the appearance of the size biased degree distribution kµ̄s

s(k)/N
s

s . The
latter reflects the fact that, in the CM, individuals having large degrees have higher probability
to connect than individuals having small degrees. Thus, there is no reason why the degree
distributions of the susceptible individuals µ̄s

0/S̄0 and the distribution
∑

k∈N pkδk underlying
the CM should coincide. Assumption 3.1 tells us indeed that the initial infectious population
size is of order n. Even if Ī0/S̄0 is very small, the biased distributions that appear imply that the
degree distribution µ̄is

0 /Ī0 should have a larger expectation than the degree distribution µ̄s

0/S̄0.
2
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We obtain rescaled SDEs which are the same as the SDEs (2.7)-(2.9) parameterized by n.
For all t ≥ 0

µ
(n),s
t = µ

(n),s
0 −

1

n

∫ t

0

∫

E1

δk1lθ1≤λn
s
−
(k)nµ

(n),s
s
−

(k)
1lθ2≤pns

−
(j,ℓ|k−1) (3.1)

× 1l
θ3≤ρ(u|j+1,nµ

(n),is
s
−

)
1l
θ4≤ρ(v|ℓ,nµ

(n),rs
s
−

)
dQ1,

µ
(n),is
t = µ

(n),is
0 +

1

n

∫ t

0

∫

E1

(
δk−(j+1+ℓ) +

Ins
−∑

i=1

(
δ
γi(nµ

(n),is
s
−

)−ui
− δ

γi(nµ
(n),is
s
−

)

))
(3.2)

× 1l
θ1≤λn

s
−
(k)nµ

(n),s
s
−

(k)
1lθ2≤pns

−
(j,ℓ|k−1)1lθ3≤ρ(u|j+1,nµ

(n),is
s
−

)
1l
θ4≤ρ(v|ℓ,nµ

(n),rs
s
−

)
dQ1

−
1

n

∫ t

0

∫

N

δ
γi(nµ

(n),is
s
−

)
1li∈ins

−

dQ2,

µ
(n),rs
t = µ

(n),rs
0 +

1

n

∫ t

0

∫

E1

(Rn
s
−∑

i=1

(
δ
γi(nµ

(n),rs
s
−

)−vi
− δ

γi(nµ
(n),rs
s
−

)

))
(3.3)

× 1l
θ1≤λn

s
−
(k)nµ

(n),s
s
−

(k)
1lθ2≤pns

−
(j,ℓ|k−1)1lθ3≤ρ(u|j+1,nµ

(n),is
s
−

)
1l
θ4≤ρ(v|ℓ,nµ

(n),rs
s
−

)
dQ1

+
1

n

∫ t

0

∫

N

δ
γi(nµ

(n),is
s
−

)
1li∈ins

−

dQ2,

where we denote for all s ≥ 0

λn
s (k) = rk

Nn,is
s

Nn,s
s

, and pns (j, ℓ | k − 1) =

(
N

n,is
s −1
j

)(
N

n,rs
s

ℓ

)(
N

n,s
s −N

n,is
s −N

n,rs
s

k−1−j−ℓ

)

(
N

n,s
s −1
k−1

) . (3.4)

Several semi-martingale decompositions will be useful in the sequel. We focus on µ(n),is but
similar decompositions hold for µ(n),s and µ(n),rs, which we do not detail since they can be
deduced by direct adaptation of the following computation.

Proposition 3.2. For all f ∈ Bb(N), for all t ≥ 0,

〈µ
(n),is
t , f〉 =

∑

k∈N

f(k)µ
(n),is
0 (k) +A

(n),is,f
t +M

(n),is,f
t , (3.5)

where the finite variation part A
(n),is,f
t of 〈µ

(n),is
t , f〉 reads

A
(n),is,f
t =

∫ t

0

∑

k∈N

λn
s (k)µ

(n),s
s (k)

∑

j+ℓ+1≤k

pns (j, ℓ|k − 1)
∑

u∈U

ρ(u|j + 1, µn,is
s )

×
(
f(k − (j + 1 + ℓ)) +

Ins∑

i=1

(
f(γi(µ

n,is
s )− ui)− f(γi(µ

n,is
s ))

))
ds

−

∫ t

0
β〈µ(n),is

s , f〉 ds, (3.6)

and where the martingale part M
(n),is,f
t of 〈µ

(n),is
t , f〉 is a square integrable martingale starting
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from 0 with quadratic variation

〈M (n),is,f 〉t =
1

n

∫ t

0
β〈µ(n),is

s , f2〉 ds

+
1

n

∫ t

0

∑

k∈N

λn
s (k)µ

(n),s
s (k)

∑

j+ℓ+1≤k

pns (j, ℓ|k − 1)
∑

u∈U

ρ(u|j + 1, µn,is
s )

×
(
f (k − (j + 1 + ℓ)) +

Ins∑

i=1

(f (γi(µ
n,is
s )− ui)− f (γi(µ

n,is
s )))

)2
ds.

Proof. The proof proceeds from (3.2) and standard stochastic calculus for jump processes (see
e.g. [13]). �

3.2 Convergence of the normalized process

We aim to study the limit of the system when n → +∞. We introduce the associated measure
spaces. For any ε ≥ 0 and A > 0, we define the following closed set of MF (N) as

Mε,A = {ν ∈ MF (N) ; 〈ν,1+ χ5〉 ≤ A and 〈ν, χ〉 ≥ ε} (3.7)

and M0+,A = ∪ε>0Mε,A. Topological properties of these spaces are given in Appendix A.

In the proof, we will see that the epidemic remains large provided the number of edges from
i to s remains of the order of n. Let us thus define, for all ε > 0, ε′ > 0 and n ∈ N

∗,

tε′ := inf{t ≥ 0, 〈µ̄is

t , χ〉 < ε′} (3.8)

and:
τnε = inf{t ≥ 0, 〈µ

(n),is
t , χ〉 < ε}. (3.9)

Our main result is the following Theorem.

Theorem 1. Suppose that Assumption 3.1 holds with

(
µ
(n),s
0 , µ

(n),is
0 , µ

(n),rs
0

)
in (M0,A)

3 for any n, with 〈µ̄is

0 , χ〉 > 0. (3.10)

Then, we have:
1. there exists a unique solution (µ̄s, µ̄is, µ̄rs) to the deterministic system of measure-valued
equations (1.3)-(1.5) in C(R+,M0,A ×M0+,A ×M0,A),
2. when n converges to infinity, the sequence (µ(n),s, µ(n),is, µ(n),rs)n∈N converges in distribution
in D(R+,M

3
0,A) to (µ̄s, µ̄is, µ̄rs).

Proof of Theorem 1. Uniqueness of the solution to (1.3)-(1.5) is proved in Step 2. For the proof
of (2), since limε′→0 tε′ = +∞, it is sufficient to prove the results on D([0, tε′ ],M

3
0,A) for ε

′ small
enough. In the sequel, we choose 0 < ε < ε′ < 〈µ̄is

0 , χ〉.
Step 1 Let us prove that (µ(n),s, µ(n),is, µ(n),rs)n∈N∗ is tight. Let t ∈ R+ and n ∈ N

∗. By
hypothesis, we have that

〈µ
(n),s
t ,1+ χ5〉+ 〈µ

(n),is
t ,1+ χ5〉+ 〈µ

(n),rs
t ,1+ χ5〉

≤ 〈µ
(n),s
0 ,1+ χ5〉+ 〈µ

(n),is
0 ,1+ χ5〉 ≤ 2A. (3.11)

Thus the sequences (µ
(n),s
t )n∈N∗ , (µ

(n),is
t )n∈N∗ and (µ

(n),rs
t )n∈N∗ are tight for each t ∈ R+. Now

by the criterion of Roelly [24], it remains to prove that for each f ∈ Bb(N), the sequence
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(〈µ(n),s
. , f〉, 〈µ(n),is

. , f〉, 〈µ(n),rs
. , f〉)n∈N∗ is tight in D(R+,R

3). Since we have semi-martingale
decompositions of these processes, it is sufficient, by using the Rebolledo criterion, to prove that
the finite variation part and the bracket of the martingale satisfy the Aldous criterion (see e.g.
[16]). We only prove that 〈µ(n),is

. , f〉 is tight. For the other components, the computations are
similar.

The Rebolledo-Aldous criterion is satisfied if for all α > 0 and η > 0 there exists n0 ∈ N and
δ > 0 such that for all n > n0 and for all stopping times Sn and Tn such that Sn < Tn < Sn+ δ,

P
(
|A

(n),is,f
Tn

−A
(n),is,f
Sn

| > η
)
≤ α, and (3.12)

P
(
|〈M (n),is,f 〉Tn − 〈M (n),is,f 〉Sn | > η

)
≤ α.

For the finite variation part,

E

[
|A

(n),is,f
Tn

−A
(n),is,f
Sn

|
]
≤ E

[∫ Tn

Sn

β‖f‖∞〈µ(n),is
s , 1〉 ds

]

+ E



∫ Tn

Sn

∑

k∈N

λn
s (k)µ

(n),s
s (k)

∑

j+ℓ≤k−1

pns (j, ℓ|k − 1)(2j + 3)‖f‖∞ ds




The term
∑

j+ℓ≤k−1 jp
n
s (j, ℓ|k − 1) is the mean number of links to i

n
s−

that the newly infected
individual has, given that this individual is of degree k. It is bounded by k. Then, with (3.4),

E

[
|A

(n),is,f
Tn

−A
(n),is,f
Sn

|
]
≤δE

[
β‖f‖∞(S

(n)
0 + I

(n)
0 ) + r‖f‖∞〈µ

(n),s
0 , 2χ2 + 3χ〉

]
,

by using that the number of infectives is bounded by the size of the population and that

µ
(n),s
s (k) ≤ µ

(n),s
0 (k) for all k and s ≥ 0. From (3.10), the r.h.s. is finite. Using Markov’s

inequality,

P
(
|A

(n),is,f
Tn

−A
(n),is,f
Sn

| > η
)
≤

(5r + 2β)Aδ‖f‖∞
η

,

which is smaller than α for δ small enough.
We use the same arguments for the bracket of the martingale:

E
[
|〈M (n),is,f 〉Tn − 〈M (n),is,f 〉Sn |

]

≤ E

[δβ‖f‖2∞(S
(n)
0 + I

(n)
0 )

n
+

δr‖f‖2∞〈µ
(n),s
0 , χ(2χ+ 3)2〉

n

]

≤
(25r + 2β)Aδ‖f‖2∞

n
,

(3.13)

using Assumption (3.10). The r.h.s. can be made smaller than ηα for a small enough δ, so the
second inequality of (3.12) follows again from Markov’s inequality. By [24], this provides the
tightness in D(R+,M

3
0,A).

By Prohorov theorem (e.g. [11], p.104) and Step 1, the distributions of (µ(n),s, µ(n),is, µ(n),rs),
for n ∈ N

∗, form a relatively compact family of bounded measures on D(R+,M
3
0,A), and so do

the laws of the stopped processes (µ
(n),s
.∧τnε

, µ
(n),is
.∧τnε

, µ
(n),rs
.∧τnε

)n∈N∗ (recall (3.9)). Let µ̄ := (µ̄s, µ̄is, µ̄rs)

be a limiting point in C(R+,M
3
0,A) of the sequence of stopped processes and let us consider a

subsequence again denoted by µ(n) := (µ(n),s, µ(n),is, µ(n),rs)n∈N∗ , with an abuse of notation, and
that converges to µ̄. Because the limiting values are continuous, the convergence of (µ(n))n∈N∗

to µ̄ holds for the uniform convergence on every compact subset of R+ (e.g. [6] p.112).
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Now, let us define for all t ∈ R+ and for all bounded function f on N, the mappings Ψs,f
t ,

Ψis,f
t and Ψrs,f

t from D
(
R+,M

3
0,A

)
into D

(
R+,R

)
such that (1.3)-(1.5) read

(〈µ̄s

t , f〉, 〈µ̄
is

t , f〉, 〈µ̄
rs

t , f〉) =
(
Ψs,f

t (µ̄s, µ̄is, µ̄rs) ,Ψis,f
t (µ̄s, µ̄is, µ̄rs) ,Ψrs,f

t (µ̄s, µ̄is, µ̄rs)
)
. (3.14)

Our purpose is to prove that the limiting values are the unique solution of Equations (1.3)-(1.5).
Before proceeding to the proof, a remark is in order. A natural way of reasoning would be to
prove that Ψs,f , Ψis,f and Ψrs,f are Lipschitz continuous in some spaces of measures. It turns
that this can only be done by considering the set of measures with moments of any order, which
is a set too small for applications. We circumvent this difficulty by first proving that the mass
and the first two moments of any solutions of the system are the same. Then, we prove that
the generating functions of these measures satisfy a partial differential equation known to have
a unique solution.

Step 2 We now prove that the differential system (1.3)-(1.5) has at most one solution in
C(R+, M0,A×M0+,A×M0,A). It is enough to prove the result in C([0, T ], M0,A×Mε,A×M0,A)
for all ε > 0 and T > 0. Let µ̄i = (µ̄s,i, µ̄is,i, µ̄rs,i), i ∈ {1, 2} be two solutions of (1.3)-(1.5),
started with the same initial conditions. Set

Υt =

3∑

j=0

|〈µ̄s,1
t , χj〉 − 〈µ̄s,2

t , χj〉| +

2∑

j=0

(
|〈µ̄is,1

t , χj〉 − 〈µ̄is,2
t , χj〉| + |〈µ̄rs,1

t , χj〉 − 〈µ̄rs,2
t , χj〉|

)
.

Let us first remark that for all 0 ≤ t < T , N̄ s

t ≥ N̄ is

t > ε and then

|p̄i,1t − p̄i,2t | =
∣∣∣
N̄ is,1

t

N̄ s,1
t

−
N̄ is,2

t

N̄ s,2
t

∣∣∣ ≤
A

ε2

∣∣∣N̄ s,1
t − N̄ s,2

t

∣∣∣+
1

ε

∣∣∣N̄ is,1
t − N̄ is,2

t

∣∣∣

=
A

ε2

∣∣∣〈µ̄s,1
t , χ〉 − 〈µ̄s,2

t , χ〉
∣∣∣+

1

ε

∣∣∣〈µ̄is,1
t , χ〉 − 〈µ̄is,2

t , χ〉
∣∣∣ ≤

A

ε2
Υt. (3.15)

The same computations show a similar result for |p̄s,1t − p̄s,2t |.
Using that µ̄i are solutions to (1.3)-(1.4) let us show that Υ satisfies a Gronwall inequality

which implies that it is equal to 0 for all t ≤ T . For the degree distributions of the susceptible
individuals, we have for p ∈ {0, 1, 2, 3} and f = χp in (1.3):

|〈µ̄s,1
t , χp〉 − 〈µ̄s,2

t , χp〉| =
∣∣∣
∑

k∈N

µ̄s

0(k)k
p
(
e−r

∫ t

0
p̄
i,1
s ds − e−r

∫ t

0
p̄
i,2
s ds
)∣∣∣

≤r
∑

k∈N

kpµ̄s

0(k)

∫ t

0

∣∣p̄i,1s − p̄i,2s
∣∣ds ≤ r

A2

ε2

∫ t

0
Υsds,

by using (3.15) and the fact that µ̄s

0 ∈ M0,A.
For µ̄is and µ̄rs, we use (1.4) and (1.5) with the functions f = χ0, f = χ and f = χ2. We
proceed here with only one of the computations, others can be done similarly. From (1.4):

〈µ̄is,1
t , 1〉 − 〈µ̄is,2

t , 1〉 = β

∫ t

0
〈µ̄is,1

s − µ̄is,2
s , 1〉 ds + r

∫ t

0
(p̄i,1s 〈µ̄s,1

s , χ〉 − p̄i,2s 〈µ̄s,2
s , χ〉) ds.

Hence, with (3.15), ∣∣∣〈µ̄is,1
t − µ̄is,2

t , 1〉
∣∣∣ ≤ C(β, r,A, ε)

∫ t

0
Υs ds.
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By analogous computations for the other quantities, we then show that

Υt ≤ C ′(β, r,A, ε)

∫ t

0
Υs ds,

hence Υ ≡ 0. It follows that for all t < T , and for all j ∈ {0, 1, 2},

〈µ̄s,1
t , χj〉 = 〈µ̄s,2

t , χj〉 and 〈µ̄is,1
t , χj〉 = 〈µ̄is,2

t , χj〉, (3.16)

and in particular, N̄ s,1
t = N̄ s,2

t and N̄ is,1
t = N̄ is,2

t . This implies that p̄s,1t = p̄s,2t , p̄i,1t = p̄i,2t and
p̄r,1t = p̄r,2t . From (1.3) and the continuity of the solutions to (1.3)-(1.5), pathwise uniqueness
holds for µ̄s a.s.

Our purpose is now to prove that µ̄is,1 = µ̄is,2. Let us introduce the following generating
functions: for any t ∈ R+, i ∈ {1, 2} and η ∈ [0, 1),

Gi
t(η) =

∑

k≥0

ηkµ̄is,i
t (k).

Since we already know these measures do have the same total mass, it boils down to prove that
G1 ≡ G2. Let us define

H(t, η) =

∫ t

0

∑

k∈N

rkp̄is
∑

j, ℓ,m∈N
j+ℓ+m=k−1

(
k − 1

j, ℓ,m

)
(p̄is)

j(p̄rs )
ℓ(p̄ss)

mηmµ̄s

s(k) ds

Kt =
∑

k∈N

rkp̄it(k − 1)p̄rt
µ̄s

t(k)

N̄ is

t

. (3.17)

The latter quantities are respectively of class C1 and C0 with respect to time t and are well-
defined and bounded on [0, T ]. Moreover, H and K do not depend on the chosen solution
because of (3.16). Applying (1.4) to f(k) = ηk yields

Gi
t(η) =Gi

0(η) +H(t, η) +

∫ t

0

(
Ks

∑

k′∈N∗

(
ηk

′−1 − ηk
′)
k′µ̄is,i

s (k′)− βGi
s(η)

)
ds

=Gi
0(η) +H(t, η) +

∫ t

0

(
Ks(1− η)∂ηG

i
s(η)− βGi

s(η)
)
ds.

Then, the functions t 7→ G̃i
t(η) defined by G̃i

t(η) = eβtGi
t(η), i ∈ {1, 2}, are solutions of the

following transport equation:

∂tg(t, η) − (1− η)Kt ∂ηg(t, η) = ∂tH(t, η)eβt. (3.18)

In view of the regularity of H and K, it is known that this equation admits a unique solution
(see e.g. [12]). Hence G1

t (η) = G2
t (η) for all t ∈ R+ and η ∈ [0, 1). The same method applies to

µ̄rs. Thus there is at most one solution to the differential system (1.3)-(1.5).

Step 3 We now show that µ(n) nearly satisfies (1.3)-(1.5) as n gets large. Recall (3.5) for a
bounded function f on N. To identify the limiting values, we establish that for all n ∈ N

∗ and
all t ≥ 0,

〈µ
(n),is
t∧τnε

, f〉 = Ψis,f
t∧τnε

(µ(n)) + ∆n,f
t∧τnε

+M
(n),is,f
t∧τnε

, (3.19)

where M (n),is,f is defined in (3.5) and where ∆n,f
.∧τnε

converges to 0 when n → +∞, in probability
and uniformly in t on compact time intervals.
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Let us fix t ∈ R+. Computation similar to (3.13) give:

E
(
(M

(n),is,f
t )2

)
= E

(
〈M (n),is,f 〉t

)
≤

(25r + 2β)At‖f‖2∞
n

. (3.20)

Hence the sequence (M
(n),is,f
t )n∈N converges in L2 and in probability to zero (and in L1 by

Cauchy-Schwarz inequality).

We now consider the finite variation part of (3.5), given in (3.6). The sum in (3.6) corresponds
to the links to i that the new infected individual has. We separate this sum into cases where the
new infected individual only has simple edges to other individuals of i, and cases where multiple
edges exist. The latter term is expected to vanish for large populations.

A
(n),is,f
t =B

(n),is,f
t + C

(n),is,f
t , (3.21)

where

B
(n),is,f
t = −

∫ t

0
β〈µ(n),is

s , f〉 ds

+

∫ t

0

∑

k∈N

λn
s (k)µ

(n),s
s (k)

∑

j+ℓ+1≤k

pns (j, ℓ|k − 1)

{
f(k − (j + 1 + ℓ))

+
∑

u∈U(j+1,µn,is
s );

∀i≤Ins
−
, ui≤1

ρ(u|j + 1, µn,is
s )

Ins
−∑

i=0

(
f
(
γi(µ

n,is
s−

)− ui

)
− f

(
γi(µ

n,is
s−

)
))}

ds (3.22)

and

C
(n),is,f
t =

∫ t

0

∑

k∈N

λn
s (k)µ

(n),s
s (k)

∑

j+ℓ+1≤k

pns (j, ℓ|k − 1)

×
∑

u∈U(j+1,µn,is
s );

∃i≤Ins
−
, ui>1

ρ(u|j + 1, µn,is
s )

Ins
−∑

i=1

(
f
(
γi(µ

n,is
s−

)− ui

)
− f

(
γi(µ

n,is
s−

)
))

ds. (3.23)

We first show that C
(n),si,f
t is a negligible term. Let qnj,ℓ,s denote the probability that the newly

infected individual at time s has a double (or of higher order) edge to some alter in i
n
s−
, given j

and ℓ. The probability to have a multiple edge to a given infectious i is less than the number of
couples of edges linking the newly infected to i, times the probability that these two particular
edges linking i to a susceptible alter at s− actually lead to the newly infected. Hence,

qnj,ℓ,s =
∑

u∈U(j+1,µn,is
s );

∃i≤Ins
−
, ui>1

ρ(u|j + 1, µn,is
s )

≤

(
j

2

) ∑

x∈ins
−

dx(s
n
s−
)(dx(s

n
s−
)− 1)

Nn,is
s− (Nn,is

s− − 1)
=

(
j

2

)
1

n

〈µ
(n),is
s− , χ(χ− 1)〉

N
(n),is
s− (N

(n),is
s− − 1/n)

≤

(
j

2

)
1

n

A

ε(ε − 1/n)
if s < τnε and n > 1/ε. (3.24)
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Then, since for all u ∈ U(j + 1, µn,is
s ),

∣∣∣
Ins

−∑

i=1

(
f
(
γi(µ

n,is
s−

)− ui

)
− f

(
γi(µ

n,is
s−

)
)) ∣∣∣ ≤ 2(j + 1)‖f‖∞, (3.25)

we have by (3.24) and (3.25), for n > 1/ε,

|C
(n),is,f
t∧τnε

| (3.26)

≤

∫ t∧τnε

0

∑

k∈N

rkµ(n),s
s (k)

∑

j+ℓ+1≤k

pns (j, ℓ|k − 1)2(j + 1)‖f‖∞
j(j − 1)A

2nε(ε− 1/n)
ds

≤
Art‖f‖∞

n ε(ε− 1/n)
〈µ

(n),s
0 , χ4〉,

which tends to zero in view of (3.10) and thanks to the fact that µ
(n),s
s is dominated by µ

(n),s
0

for all s ≥ 0 and n ∈ N
∗.

We now aim at proving that B
(n),is,f
.∧τnε

is somewhat close to Ψis,f
.∧τnε

(µ(n)). First, notice that

∑

u∈U(j+1,µn,is
s );

∀i≤Ins
−
, ui≤1

ρ(u|j + 1, µn,is
s )

Ins
−∑

i=1

(
f
(
γi
(
µn,is
s−

)
− ui

)
− f

(
γi
(
µn,is
s−

)))

=
∑

u∈(ins
−
)j+1

u0 6=···6=uj

( ∏j
k=0 duk

(sns )

Nn,is
s− . . . (Nn,si

s− − (j + 1))

)

×

j∑

m=0

(
f
(
dum(s

n
s−
)− 1

)
− f

(
dum(s

n
s−
)
))

=

j∑

m=0

∑

u∈(ins
−
)j+1

u0 6=···6=uj

( ∏j
k=0 duk

(sns )

Nn,is
s− . . . (Nn,si

s− − (j + 1))

)

×
(
f
(
dum(s

n
s−
)− 1

)
− f

(
dum(s

n
s−
)
))

=

j∑

m=0



∑

x∈ins
−

dx(s
n
s−
)

Nn,is
s−

(
f
(
dx(s

n
s−
)− 1

)
− f

(
dx(s

n
s−
)
))



×

(
∑

u∈
(

i
n
s
−
\{x}

)j

u0 6=···6=uj−1

∏j−1
k=0 duk

(sns )

(Nn,is
s− − 1) . . . (Nn,is

s− − (j + 1))

)

= (j + 1)
〈µ

(n),is
s− , χ (τ1f − f)〉

N
(n),is
s−

(
1− qnj−1,ℓ,s

)
,

(3.27)

where we recall that τ1f(k) = f(k − 1) for every function f on N and k ∈ N. In the third
equality, we split the term um from the other terms (um′)m′ 6=m. The last sum in the r.h.s. of
this equality is the probability of drawing j different infectious individuals that are not um and
that are all different, hence 1− qnj−1,ℓ,s.
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Denote for t > 0 and n ∈ N,

pn,it =
〈µn,is

t , χ〉 − 1

〈µn,s
t , χ〉 − 1

,

pn,rt =
〈µn,rs

t , χ〉

〈µn,s
t , χ〉 − 1

,

pn,st =
〈µn,s

t , χ〉 − 〈µn,is
t , χ〉 − 〈µn,rs

t , χ〉

〈µn,s
t , χ〉 − 1

,

the proportion of edges with infectious (resp. removed and susceptible) alters and susceptible
egos among all the edges with susceptible egos but the contaminating edge. For all integers j
and ℓ such that j + ℓ ≤ k − 1 and n ∈ N

∗, denote by

p̃nt (j, ℓ | k − 1) =
(k − 1)!

j!(k − 1− j − ℓ)!ℓ!
(pn,it )j(pn,rt )ℓ(pn,st )k−1−j−ℓ,

the probability that the multinomial variable counting the number of edges with infectious,
removed and susceptible alters, among k − 1 given edges, equals (j, ℓ, k − 1 − j − ℓ). We have
that

|Ψis,f
t∧τnε

(µ(n))−B
(n),is,f
t∧τnε

| ≤|D
(n),is,f
t∧τnε

|+ |E
(n),is,f
t∧τnε

|, (3.28)

where

D
(n),is,f
t =

∫ t

0

∑

k∈N

λn
s (k)µ

(n),s
s (k)

∑

j+ℓ+1≤k

(pns (j, ℓ|k − 1)− p̃ns (j, ℓ|k − 1))

×

(
f(k − (j + ℓ+ 1)) + (j + 1)

〈µ
(n),is
s− , χ

(
τ1f − f

)
〉

N
(n),is
s−

)
ds,

E
(n),is,f
t =

∫ t

0

∑

k∈N

λn
s (k)µ

(n),s
s (k)

×
∑

j+ℓ+1≤k

pns (j, ℓ|k − 1)(j + 1)
〈µ

(n),is
s− , χ

(
τ1f − f

)
〉

N
(n),is
s−

qnj−1,ℓ,s ds.

First,

|D
(n),is,f
t∧τnε

| ≤

∫ t∧τnε

0

∑

k∈N

rkαn
s (k)‖f‖∞

(
1 +

2kA

ε

)
µ(n),s
s (k) ds, (3.29)

where for all k ∈ N

αn
t (k) =

∑

j+ℓ+1≤k

∣∣∣∣p
n
t (j, ℓ|k − 1)− p̃nt (j, ℓ|k − 1)

∣∣∣∣.

The multinomial probability p̃ns (j, ℓ|k−1) approximates the hypergeometric one, pns (j, ℓ|k−1, s),
as n increases to infinity, in view of the fact that the total population size, 〈µn,s

0 ,1〉+ 〈µn,is
0 ,1〉,

is of order n. Hence, the r.h.s. of (3.29) vanishes by dominated convergence.
On another hand, using (3.24),

|E
(n),is,f
t∧τnε

| ≤

∫ t∧τnε

0

∑

k∈N

rk2µ(n),s
s (k)

2‖f‖∞A

ε

k2A

2nε(ε − 1/n)
ds

≤
A3 rt‖f‖∞
nε2(ε− 1/n)

, (3.30)
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in view of (3.10). Gathering (3.20), (3.21), (3.26), (3.28), (3.29) and (3.30) concludes the proof
that the rest of (3.19) vanishes in probability uniformly over compact intervals.

Step 4Recall that in this proof, µ̄ = (µ̄s, µ̄is, µ̄rs) is the limit of µ
(n)
.∧τnε

= (µ
(n),s
.∧τnε

, µ
(n),is
.∧τnε

, µ
(n),rs
.∧τnε

)n∈N∗ ,

and recall that these processes take values in the closed set M3
0,A. Our purpose is now to prove

that µ̄ satisfy (1.3)-(1.5). Using Skorokhod representation theorem, there exists, on the same

probability space as µ̄, a sequence, again denoted by (µ
(n)
.∧τnε

)n∈N∗ with an abuse of notation, with
same marginal distributions as the original sequence, and that converges a.s. to µ̄.

The maps ν. := (ν1. , ν
2
. , ν

3
. ) 7→ 〈ν1. ,1〉/(〈ν

1
0 ,1〉+〈ν20 ,1〉+〈ν30 ,1〉) (respectively 〈ν2. ,1〉/(〈ν

1
0 ,1〉+

〈ν20 ,1〉+〈ν30 ,1〉) and 〈ν3. ,1〉/(〈ν
1
0 ,1〉+〈ν20 ,1〉+〈ν30 ,1〉)) are continuous from C(R+,M0,A×Mε,A×

M0,A) into C(R+,R).
Then, Lemma A.5 together with the continuity of (X1

. ,X
2
. ) 7→ X1

. /X
2
. from C (R+,R)×C (R+,R

∗)
into C (R+,R) (see e.g. [28]) implies that the mapping ν. 7→ 〈ν1. , χ〉/〈ν

2
. , χ〉 is continuous

from C (R+,M0,A ×Mε,A ×M0,A) into C (R+,R). The same argument yields the continuity
of ν. 7→ 1l〈ν1. ,χ〉>ε/〈ν

2
. , χ〉 for the same spaces.

Lemma A.5 also provides the continuity of ν. 7→ 〈ν2. , χ (τ1f − f)〉 from C (R+,M0,A ×Mε,A ×M0,A)
into C (R+,R) for bounded function f on N.
Since, as well known, the mapping y ∈ D([0, t],R) 7→

∫ t

0 ys ds is continuous, we have proven the

continuity of the mapping Ψf
t defined in (3.14) on D(R+,M0,A ×Mε,A ×M0,A).

By Lemma A.5 applied to ϕ = χ, the process (N
(n),is
.∧τnε

)n∈N∗ converges in distribution to N̄ is

. =
〈µ̄is

. , χ〉. Since the latter process is continuous, the convergence holds in (D([0, T ],R+), ‖.‖∞)
for any T > 0 (see [6] p. 112). As y ∈ D(R+,R) 7→ inft∈[0,T ] y(t) ∈ R is continuous, we have a.s.
that:

inf
t∈[0,T ]

N̄ is

t = lim
n→+∞

inf
t∈[0,T ]

N
(n),is
t∧τnε

(
≥ ε
)
.

We consider t̄ε′ = inf{t ∈ R+, N̄
is

t ≤ ε′}. A difficulty lies in the fact that we do not know yet
whether this time is deterministic. We have a.s.:

ε′ ≤ inf
t∈[0,T ]

N̄ is

t∧t̄ε′
= lim

n→+∞
inf

t∈[0,T ]
N

(n),is
t∧τnε ∧t̄ε′

. (3.31)

Hence, using Fatou’s lemma:

1 =P

(
inf

t∈[0,t̄ε′ ]
N̄ is

t > ε
)

≤ lim
n→+∞

P

(
inf

t∈[0,T∧t̄ε′ ]
N

(n),is
t∧τnε

> ε
)
= lim

n→+∞
P

(
τnε > T ∧ t̄ε′

)
. (3.32)

We have hence

Ψis,f

.∧τnε ∧t̄ε′∧T
(µ(n)) = Ψis,f

.∧τnε ∧T (µ
(n))1lτnε ≤t̄ε′∧T

+Ψis,f

.∧t̄ε′∧T
(µ

(n)
.∧τnε

)1lτnε >t̄ε′∧T
.

From the estimates of the different terms in (3.19), Ψis,f
.∧τnε ∧T (µ

(n)) is upper bounded by a mo-

ment of µ(n) of order 4. In view of (3.10) and (3.32), the first term in the r.h.s. converges in L1

and hence in probability to zero. Using the continuity of Ψis,f on D (R+,M0,A ×Mε,A ×M0,A),

Ψis,f (µ
(n)
.∧τnε

) converges to Ψis,f (µ̄) and therefore, Ψis,f
.∧t̄ε′∧T

(µ
(n)
.∧τnε

) converges to Ψis,f
.∧t̄ε′∧T

(µ̄). Thanks

to this and (3.32), the second term in the r.h.s. converges to Ψis,f

.∧t̄ε′∧T
(µ̄) in D(R+,R).

Then, (〈µ
(n),is
.∧τnε ∧t̄ε′∧T

, f〉−Ψis,f
.∧τnε ∧t̄ε′∧T

(µ(n)))n∈N∗ converges in probability to 〈µ̄is

.∧t̄ε′∧T
, f〉−Ψis,f

.∧t̄ε′∧T
(µ̄).

From (3.19), this sequence also converges in probability to zero.
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By identification of these limits, µ̄is solves (1.4) on [0, t̄ε′ ∧ T ]. If 〈µ̄rs

0 , χ〉 > 0 then similar

techniques can be used. Else, the result is obvious since for all t ∈ [0, tε′ ∧T ], 〈µ
(n),is
t , χ〉 > ε and

the term pnt (j, ℓ|k − 1) is negligible when ℓ > 0. Thus µ̄ coincides a.s. with the only continuous
deterministic solution of (1.3)-(1.5) on [0, t̄ε′ ∧ T ]. This implies that t̄ε′ ∧ T = tε′ ∧ T and yields

the convergence in probability of (µ
(n)
.∧τnε

)n∈N∗ to µ̄, uniformly on [0, tε′ ∧T ] since µ̄ is continuous.

We finally prove that the non-localized sequence (µ(n))n∈N∗ also converges uniformly and in
probability to µ̄ in D ([0, tε′ ],M0,A ×Mε,A ×M0,A). For a small positive η,

P

(
sup

t∈[0,tε′ ]

∣∣∣〈µ(n),is
t , f〉 −Ψis,f

t (µ̄)
∣∣∣ > η

)

≤ P

(
sup

t∈[0,tε′ ]

∣∣∣Ψis,f
t∧τnε

(µ(n))−Ψis,f
t (µ̄)

∣∣∣ >
η

2
; τnε ≥ tε′

)

+ P

(
sup

t∈[0,tε′ ]

∣∣∣∆n,f
t∧τnε

+M
(n),is,f
t∧τnε

∣∣∣ >
η

2

)
+ P

(
τnε < tε′

)
. (3.33)

Using the continuity of Ψf and the uniform convergence in probability proved above, the first
term in the r.h.s. of (3.33) converges to zero. We can show that the second term converges to
zero by using Doob’s inequality together with the estimates of the bracket of M (n),is,f (similar
to (3.13)) and of ∆n,f (Step 2). Finally, the third term vanishes in view of (3.32).

The convergence of the original sequence (µ(n))n∈N∗ is then entailed by the uniqueness of the
solution to (1.3)-(1.5), implied by Step 2.

Step 5 When n → +∞, by taking the limit in (3.1),
(
µ(n),s

)
n∈N∗

converges in D(R+,M0,A) to
the solution of the following transport equation, that can be solved in function of p̄i. For every
bounded function f : (k, t) 7→ ft(k) ∈ C0,1

b (N×R+,R) of class C
1 with bounded derivative with

respect to t,

〈µ̄s

t , ft〉 =〈µ̄s

0, f0〉 −

∫ t

0
〈µ̄s

s, rχp̄
i

sfs − ∂sfs〉 ds. (3.34)

Choosing f(k, s) = ϕ(k) exp
(
− rk

∫ t−s

0 p̄i(u)du
)
, we obtain that

〈µ̄s

t , ϕ〉 =
∑

k∈N

ϕ(k)θkt µ̄
s

0(k). (3.35)

where θt = exp
(
−r
∫ t

0 p̄
i(u)du

)
is the probability that a given degree 1 node remains susceptible

at time t. This is the announced Equation (1.3). �

We end this section with a lower bound of the time tε′ until which we proved that the
convergence to Volz’ equations holds.

Proposition 3.3. Under the assumptions of Theorem 1,

tε′ > τ̄ε′ :=
log
(
〈µ̄s

0, χ
2〉+ N̄ is

0

)
− log

(
〈µ̄s

0, χ
2〉+ ε′

)

max(β, r)
. (3.36)

Proof. Because of the moment Assumption (3.10), we can prove that (3.19) also holds for f =
χ. This is obtained by replacing in (3.20), (3.26), (3.29) and (3.30) ‖f‖∞ by k and using
the Assumption of boundedness of the moments of order 5 in (3.26) and (3.30). This shows
that (N (n),is)n∈N converges, uniformly on [0, tε′ ] and in probability, to the deterministic and
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continuous solution N̄ is = 〈µ̄is, χ〉. We introduce the event An
ξ = {| Nn,is

0 − nN̄ is

0 |≤ ξ} where
their differences are bounded by ξ > 0. Recall the definition (3.9) and let us introduce the
number of edges Zn

t that were is at time 0 and that have been removed before t. For t ≥ τnε′ ,
we have necessarily that Zn

t ≥ Nn,is
0 − nε′. Thus,

P
(
{τnε′ ≤ t} ∩ An

ξ

)
≤P
({

Zn
t > Nn,is

0 − nε′
}
∩ An

ξ

)

≤P
({

Zn
t > n(N̄ is

0 − ε′)− ξ
}
∩ An

ξ

)
. (3.37)

When susceptible (resp. infectious) individuals of degree k are contaminated (resp. removed), at

most k is-edges are lost. Let Xn,k
t be the number of edges that, at time 0, are is with susceptible

alter of degree k, and that have transmitted the disease before time t. Let Y n,k
t be the number

of initially infectious individuals x with dx(s0) = k and who have been removed before time t.

Xn,k
t and Y n,k

t are bounded by kµn,s
0 (k) and µn,is

0 (k). Thus:

Zn
t ≤

∑

k∈N

k
(
Xn,k

t + Y n,k
t

)
. (3.38)

Let us stochastically upper bound Zn
t . Since each is-edge transmits the disease independently

at rate r, Xn,k
t is stochastically dominated by a binomial r.v. of parameters kµn,s

0 (k) and

1 − e−rt. We proceed similarly for Y n,k
t . Conditionally to the initial condition, Xn,k

t + Y n,k
t is

thus stochastically dominated by a binomial r.v. Z̃n,k
t of parameters (kµn,s

0 (k) + µn,is
0 (k)) and

1− e−max(β,r)t. Then (3.37) and (3.38) give:

P
(
{τnε′ ≤ t} ∩ An

ξ

)
≤P

(
∑

k∈N

kZ̃n,k
t

n
> N̄ is

0 − ε′ −
ξ

n

)
. (3.39)

Thanks to Assumption 3.1 and (3.10), the series
∑

k∈N kZ̃n,k
t /n converges in L1 and hence in

probability to (〈µ̄s

0, χ
2〉+ N̄ is

0 )(1− e−max(β,r)t) when n → +∞. Thus, for sufficiently large n,

P
(
{τnε′ ≤ t} ∩ An

ξ

)
=1 if t > τ̄ε′ and 0 if t < τ̄ε′ .

For all t < τ̄ε′ , it follows from Assumption 3.1, (3.10) and Lemma A.4 that:

lim
n→+∞

P (τnε′ ≤ t) ≤ lim
n→+∞

(
P
(
{τnε′ ≤ t} ∩ An

ξ

)
+ P

(
(An

ξ )
c
))

= 0,

so that by Theorem 1

1 = lim
n→+∞

P (τnε′ ≥ τ̄ε′) = lim
n→+∞

P

(
inf
t≤τ̄ε′

N
(n),is
t ≥ ε′

)
= P

(
inf
t≤τ̄ε′

N̄ is

t ≥ ε′
)
.

This shows that tε′ ≥ τ̄ε′ a.s., which concludes the proof. �

3.3 Proof of Volz’ equations

Proposition 3.4. The system (1.3)-(1.5) implies Volz’ equations (1.8)-(1.11).

Before proving Proposition 3.4, we begin with a corollary of Theorem 1.

Corollary 3.5. For all t ∈ R+

N̄ s

t =θtg
′(θt)

N̄ is

t =N̄ is

0 +

∫ t

0
rp̄isθsg

′(θs)
(
(p̄ss − p̄is)θs

g′′(θs)

g′(θs)
− 1
)
− βN̄ is

s ds

N̄rs

t =

∫ t

0

(
βN̄ is

s − rp̄rs p̄
i

sθ
2
sg

′′(θs)
)
ds. (3.40)
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Proof. In the proof of Proposition 3.3, we have shown that (N (n),is)n∈N converges uniformly on
compact intervals and in probability to the deterministic and continuous solution N̄ is = 〈µ̄is, χ〉.
(1.3) with f = χ reads

N̄ s

t =
∑

k∈N

µ̄s

0(k)kθ
k
t = θt

+∞∑

k=1

µ̄s

0(k)kθ
k−1
t = θtg

′(θt), (3.41)

i.e. the first assertion of (3.40).

Choosing f = χ in (1.4), we obtain

N̄ is

t = N̄ is

0 −

∫ t

0
βN̄ is

s ds+

∫ t

0

∑

k∈N

λs(k)
∑

j+ℓ≤k−1

(
k − 2j − 2− ℓ

)

×
[ (k − 1)!

j!(k − 1− j − ℓ)!ℓ!
(p̄is)

j(p̄rs )
ℓ(p̄ss)

k−1−j−ℓ
]
µ̄s

s(k) ds.

Notice that the term in the square brackets is the probability to obtain (j, ℓ, k − 1− j − ℓ) from
a draw in the multinomial distribution of parameters (k − 1, (p̄is, p̄

r

s , p̄
s

s)). Hence,

∑

j+ℓ≤k−1

j ×
( (k − 1)!

j!(k − 1− j − ℓ)!ℓ!
(p̄is)

j(p̄rs )
ℓ(p̄ss)

k−1−j−ℓ
)
= (k − 1)p̄is

as we recognize the mean number of edges to is of an individual of degree k. Other terms are
treated similarly. Hence, with the definition of λs(k), (2.1),

N̄ is

t = N̄ is

0 +

∫ t

0
r p̄is

(
〈µ̄s

s, χ
2 − 2χ〉 − (2p̄is + p̄rs )〈µ̄

s

s, χ(χ− 1)〉
)
ds

−

∫ t

0
βN̄ is

s ds.

But since

〈µ̄s

t , χ(χ− 1)〉 =
∑

k∈N

µ̄s

0(k)k(k − 1)θkt = θ2t g
′′(θt)

〈µ̄s

t , χ
2 − 2χ〉 = 〈µ̄s

t , χ(χ− 1)〉 − 〈µ̄S
t , χ〉 = θ2t g

′′(θt)− θtg
′(θt),

we obtain by noticing that 1− 2p̄is − p̄rs = p̄ss − p̄is,

N̄ is

t =N̄ is

0 +

∫ t

0
r p̄is

(
(p̄ss − p̄is)θ

2
sg

′′(θs)− θsg
′(θs)

)
ds−

∫ t

0
βN̄ is

s ds (3.42)

which is the second assertion of (3.40). The third equation of (3.40) is obtained similarly. �

We are now ready to prove Volz’ equations:

Proof of Proposition 3.4. We begin with the proof of (1.8) and (1.9). Fix again t ≥ 0. For the
size of the susceptible population, taking ϕ = 1 in (1.3), we are lead to introduce the same
quantity θt = exp(−r

∫ t

0 p̄
i

sds) as Volz and obtain (1.8). For the size of the infective population,
setting f = 1 in (1.4) entails

Īt =Ī0 +

∫ t

0

(∑

k∈N

rkp̄isµ̄
s

s(k) − βĪs

)
ds

=Ī0 +

∫ t

0

(
rp̄is
∑

k∈N

µ̄s

0(k)kθ
k
s − βĪs

)
ds = Ī0 +

∫ t

0

(
rp̄isθsg

′(θs)− βĪs

)
ds
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by using (1.3) with f = χ for the second equality.

Let us now consider the probability that an edge with a susceptible ego has an infectious
alter. Both equations (1.8) and (1.9) depend on p̄it = N̄ is

t /N̄
s

t . It is thus important to obtain an
equation for this quantity. In [27], this equation also leads to introduce the quantity p̄st .
From Corollary 3.5, we see that N̄ s and N̄ is are differentiable and:

dp̄it
dt

=
d

dt

(N̄ is

t

N̄ s

t

)
=

1

N̄ s

t

d

dt
(N̄ is

t )−
N̄ is

t

(N̄ s

t )
2

d

dt
(N̄ s

t )

=
(
rp̄it(p̄

s

t − p̄it)θt
g′′(θt)

g′(θt)
− rp̄it − βp̄it

)

−
( p̄it
θtg′(θt)

(
− rp̄itθtg

′(θt) + θtg
′′(θt)(−rp̄itθt)

))

=rp̄itp̄
s

tθt
g′′(θt)

g′(θt)
− rp̄it(1− p̄it)− βp̄it,

by using the equations 1 and 2 of (3.40) for the derivatives of N̄ s and N̄ is with respect to time
for the second line. This achieves the proof of (1.10).

For (1.11), we notice that p̄st = 1− p̄it − p̄rt and achieve the proof by showing that

p̄rt =

∫ t

0

(
βp̄is − rp̄isp̄

r

s

)
ds (3.43)

by using arguments similar as for p̄it. �

Remark 2. Miller [18] shows that Volz’ equations can be reduced to only three ODEs:

S̄t = g(θt),
dR̄t

dt
= βĪt, Īt = (S̄0 + Ī0)− S̄t − R̄t,

dθt
dt

= −rθt + β
(
1− θt

)
+ β

g′(θt)

g′(1)
.

The last ODE is obtained by considering the probability that an edge with an infectious ego
drawn at random has not transmitted the disease. However, in his simplifications, he uses that
the degree distributions µ̄s

0/S̄0 and
∑

k∈N pkδk are the same, which is not necessarily the case
(see our Remark 1). Moreover, it is more natural to have an ODE on Īt and N̄ is

t is a natural
quantity that is of interest in itself for the dynamics. 2

A Finite measures on N

First, some notation is needed in order to clarify the way the atoms of a given element of MF (N)
are ranked. For all µ ∈ MF (N), let Fµ be its cumulative distribution function and F−1

µ be its
right inverse defined as

∀x ∈ R+, F
−1
µ (x) = inf{i ∈ N, Fµ(i) ≥ x}. (A.1)

Let µ =
∑

n∈N anδn be an integer-valued measure of MF (N), i.e. such that the an’s are integers
themselves. Then, for each atom n ∈ N of µ such that an > 0, we duplicate the atom n with
multiplicity an, and we rank the atoms of µ by increasing values, sorting arbitrarily the atoms
having the same value. Then, we denote for any i ≤ 〈µ,1〉,

γi(µ) = F−1
µ (i), (A.2)
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the level of the ith atom of the measure, when ranked as described above. We refer to Example
1 for a simple illustration.

We now make precise a few topological properties of spaces of measures and measure-valued
processes. For T > 0 and a Polish space (E, dE), we denote by D([0, T ], E) the Skorokhod space
of càdlàg (right-continuous left-limited) functions from R to E (e.g. [6, 16]) equipped with the
Skorokhod topology induced by the metric

dT (f, g) := inf
α∈∆([0,T ])





sup
(s,t)∈[0,T ]2,

s 6=t

∣∣∣∣log
α(s)− α(t)

s− t

∣∣∣∣+ sup
t≤T

dE
(
f(t), g(α(t))

)




, (A.3)

where the infimum is taken over the set ∆([0, T ]) of continuous increasing functions α : [0, T ] →
[0, T ] such that α(0) = 0 and α(T ) = T .

Limit theorems are heavily dependent on the topologies considered. We introduce here
several technical lemmas on the space of measures related to these questions. For any fixed
0 ≤ ε < A, recall the definition of Mε,A in (3.7). Remark that for any ν ∈ Mε,A, and
i ∈ {0, . . . , 5}, 〈ν, χi〉 ≤ A since the support of ν is included in N.

Lemma A.1. Let I a set and a family (ντ , τ ∈ I) of elements of Mε,A. Then, for any real
function f on N such that f(k) = o(k5), we have that

lim
K→∞

sup
τ∈I

|〈ντ , f1[K,∞)〉| = 0.

Proof. By Markov inequality, for any τ ∈ I, for any K, we have

∑

k≥K

|f(k)|ντ (k) ≤ A sup
k≥K

|f(k)|

k5
,

hence

lim
K→∞

sup
τ∈I

|〈ντ , f〉| ≤ A lim sup
k→∞

|f(k)|

k5
= 0.

The proof is thus complete. �

Lemma A.2. For any A > 0, the set Mε,A is a closed subset of MF (N) embedded with the
topology of weak convergence.

Proof. Let (µn)n∈N be a sequence of Mε,A converging to µ ∈ MF (N) for the weak topology,
which implies in particular that limn→+∞ µn(k) = µ(k) for any k ∈ N. Denoting for all n and
k ∈ N, fn(k) = k5µn(k), we have that limn→+∞ fn(k) = f(k) := k5µ(k), µ-a.e., and Fatou’s
lemma implies

〈µ, χ5〉 =
∑

k∈N

f(k) ≤ lim inf
n→∞

∑

k∈N

fn(k) = lim inf
n→∞

〈µn, χ
5〉.

Since 〈µn,1〉 tends to 〈µ,1〉, we have that 〈µ,1+ χ5〉 ≤ A.
Furthermore, by uniform integrability (Lemma A.1), it is also clear that

ε ≤ lim
n→∞

〈µn, χ〉 = 〈µ, χ〉,

which shows that µ ∈ Mε,A. �
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Lemma A.3. The traces on Mε,A of the total variation topology and of the weak topology
coincide.

Proof. It is well known that the total variation topology is coarser than the weak topology. In the
reverse direction, assume that (µn)n∈N is a sequence of weakly converging measures belonging
to Mε,A. Since,

dTV (µn, µ) ≤
∑

k∈N

|µn(k)− µ(k)|.

according to Lemma A.1, it is then easily deduced that the right-hand-side converges to 0 as n
goes to infinity. �

Lemma A.4. If the sequence (µn)n∈N of MN

ε, A converges weakly to the measure µ ∈ Mε,A,

then (〈µn, f〉)n∈N converges to 〈µ, f〉 for all function f such that f(k) = o(k5) for all large k.

Proof. Triangular inequality says that:

|〈µn, f〉 − 〈µ, f〉| ≤ |〈µn, f1l[0,K]〉 − 〈µ, f1l[0,K]〉|

+ |〈µ, f1l(K,+∞)〉|+ |〈µn, f1l(K,+∞)〉|.

We then conclude by uniform integrability and weak convergence. �

Recall that Mε,A can be embedded with the total variation distance topology, hence the
topology on D([0, T ],Mε, A) is induced by the distance

ρT (µ., ν.) = inf
α∈∆([0,T ])

(
sup

(s,t)∈[0,T ]2,
s 6=t

∣∣∣∣log
α(s)− α(t)

s− t

∣∣∣∣+ sup
t≤T

dTV (µt, να(t))

)
.

Lemma A.5. For any p ≤ 5, the following map is continuous:

Φp :

{
D (R+,Mε, A) −→ D (R+,R)
ν. 7−→ 〈ν., χ

p〉.

Proof. It is sufficient to prove the continuity of the above mappings from D([0, T ],Mε, A) to
D ([0, T ],R), for any T ≥ 0, where the latter are equipped with the corresponding Skorokhod
topologies. For µ and ν two elements of Mε,A, for any p ≤ 5, for any positive integer K,
according to Markov inequality,

|〈µ, χp〉 − 〈ν, χp〉| ≤ 2
A

Kp
+ |〈µ − ν, χp1l[0,K]〉| ≤ 2

A

Kp
+KpdTV (µ, ν). (A.4)

Using (A.3) and (A.4) we have for any K > 0:

dT (〈µ., χ
p〉, 〈ν., χ

p〉) ≤ 2
A

Kp
+KpdT (µ., ν.),

and hence the continuity of Φp. �
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