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F. pELL’IsoLA AND K. HUTTER

A Free Moving Boundary Problem for the Till Layer Below
Large Ice Sheets

Abstract

We formulate a free moving boundary problem for the till (i.e., soil + water) layer that
may form below glaciers or large ice sheets and is thought to be responsible for their
catastrophic advance when the water content makes such layers slippery against shear
deformations. We indicate how the FMBP is formulated, specialize it to steady plane
flow and deduce an ordinary differential equation which describes the distribution
of the solid’s volume fraction across the layer. This differential equation is second
order and gives rise to a singular perturbation solution procedure. This problem can
be analysed under the assumption that the fluid viscosity is a monotonic function
of the solid’s volume fraction. However, in this paper we prove that by choosing
a constant fluid viscosity and vanishing thermodynamic pressure the emerging solid
volume fraction turns out to be physically meaningless.

1 Introduction

Glaciers and ice sheets which rest on the ground may respond critically to the local
conditions of the materials of which this ground is composed. Typically one differen-
tiates between hard and soft beds. By the latter one means that the ice rests on a
thin layer (till layer) of a mixture of sediment and water which separates the ice from
the rock bed. The horizontal motion of ice, which may slide along the upper interface,
generates a (shear) deformation of this till layer while the ice overburden pressure as
well as the melt water at the ice-till-layer interface in combination with the drainage
of water and abrasion of till at the till-layer-rock-bed interface give rise to a vertical
flow of water and sediment.

The dissipative mechanisms are the frictional heat due to the sliding of the till over
the rock bed and of the ice over the upper interface, plus the dissipation provided by
the stress power and the work done by the sediment-water-interaction force within the
layer. The heat generated by them and the geothermal heat supplied from below are
conducted and convected to the top interface to provide the heat necessary to melt
ice that may become available once transformed into water to be pressed into the till
layer to form the lubricand for its shear deformations.

A binary mixture model for the viscous behaviour of true density preserving con-
stituents, granules and water, has been deduced from first principles of thermodynam-
ics by Svendsen and Hutter (1995), and the general FMBP for the soil-water mixture
bounded by the top and bottom interfaces as described above has been formulated
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by dell’Isola and Hutter (1997, 1998a). Here we simply quote the relevant equations
for the plane flow problem in which the thermal processes are ignored.

_ 1t is obvious from this description that the mechanical problem per se is already
significant and that the water motion from above must play a significant role in
the description of the distribution of the solid’s volume fraction. The water that
is pressed into the layer must loosen the granular matrix and will therefore provide
the mechanism which reduces the resistance of the layer to shear deformations. It
shall be demonstrated in this paper that plane flow is described by a FMBP. By
specializing this problem to steady conditions, a two-point boundary value problem
can be deduced for the solid’s volume fraction with fixed boundaries. Dell'Isola and
Hutter (1998b) have shown that this boundary value problem is stiff, and they have
analysed it for nonvanishing thermodynamic pressure 85 when the fluid viscosity is
constant. In this paper we prove that with vanishing thermodynamic pressure and
constant fluid viscosity the emerging analytical profiles of solid volume fraction are
physically meaningless.

2 Governing equations

Let Ozyz be a Cartesian coordinate system with origin O, horizontal axes (z,y) and
vertical axis z. Consider a layer of a saturated binary mixture of granules and a fluid
bounded by z = f,(z,y,t) and z = h(z,y,t) and let f, < h. Assume the material
within this layer to be subject to plane deformations such that 9 (-) /0y = 0 for any
field variable, and suppose that all fields obey the condition 9 () /8z = 0 except the
saturation pressure p(z,t). Consider the following list of variables and parameters:

v solid volume fraction, v

Us, Uf horizontal velocity components of the solid and
fluid, respectively,

W, Wy vertical velocity components of the solid
and fluid, respectively,

P : saturation pressure,

8s(v) themodynamic pressure, (1)

Psr Ps true fluid and sediment mass densities,

Bfs (apparent) fluid and solid viscosities,

a =: Ej fq / K y

a .= £r E = L2 — VP, = L4

pa 87 p T vpet(1-v)py — vi(1-v)e’
g gravity constant,
K soil permeability.

Dell'Isola and Hutter (1998b) explain that plane deformation of the sediment water
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mixture is described by the following set of partial differenti_al equations:

g—'t’+(uw,)' =0,
~&+ (1 -nwy) =0, |
("Vﬁs —vp+ usw;) + (p +(1-&) Bs) v+
—v(1-v)a(w, —wy) =0,
(— (1—u)p+§p,w}) _(p+(1—€a)ﬁs)Vl+ (2)
+v (1 —-v)a(ws, —wy) =0,
——u-gf + (pauy) — V(l'— v)é(us —uy) =0,
—(1—u)g£+(ufu'f) +v(l-v)a(us —us) =0,
inz € (fy,h),t>0

in which the prime denotes differentiation with respect to 2, and 3, and u; are pre-
scribed functions of v,

{ ﬁs = ﬂO + ﬁs(V)a Bs(o) =0,

by = ﬂ'f(V)a (3)

to be specified below. Physics suggests u; to monotonically increase with v. Moreover,
Bs must satisfy the inequality

dﬁs 1 _ a.
o P 20, b : (4)

v+b= " T 1-a’

Note that equations (2);_4 are uncoupled from (2)56; a similar decoupling also
applies when abrasion is ignored as seen in dell’Isola and Hutter (1998b). We thus
ignore (2); 6, only deal with (2);_4 and quote the following boundary conditions from
the aforementioned paper: ’

e At the top interface z = h(t)

3t = Ws, , 5
—atp; = —v (B, +p) + uw,, - ©
~(1-a)pi=—-(1-v)p+ jusuy;.

in which Vj, is the absolute value of the volume flow per unit area of water from
the top into the layer and o € (0,1), while ! ~ 2/3.

e At the bottom surface z = fu(t)

i) _ M
——o;th = ——wb = —-;:.-, Mb . \
m'
(1 - l/) ('lUf - wb) T Fr = -—-;}LU}, (6)
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with
4 :
of 1= — (1 - l/)p + gl.t'f'wf, (7)

in which M?/p, is the abrasion rate, henceforth set to be zero, while M> 7/0f
is the drainage rate of the water into the rock bed which we assume to be
proportional to the fourth power of o, the fluid pressure normal to the bottom
surface.

Moreover, in dell'Isola and Hutter (1998b) it is shown that the above equations,
complemented by initial conditions for v, f, and h, are likely a well-posed initial
value FMBP for the fields p, v, w, and wy, provided Vg, the incumbent pressure and
the abrasion rate function are a priori known.

3 Steady-state conditions with vanishing abrasion.

Let abrasion be zero and Vjy as well as pp be time independent. Then, as show in
dell'Isola and Hutter (1998b), the above FMBP transforms into the following two-
point boundary-value problem for the solids volume fraction v expressed in the new
variable

Yy = ye [la OO] (8)

1-v’

- (Mf5f) v' + (h(y) — ;) y' +mp =0, Z€(0,1)
—6fﬂfy +Lrﬂ3+y[61] f—_‘o, at2=0,

! 9)
—8siipy + ﬁ,+ (y__ a(u__l) ) [m] =0, atz=1,
in which
( - [vyolier _ _
ny = au[;g—] = O(~10 T-10 ~4),
hy®) = (1= ) (Bsks + £4.) w©
by = %Ul—l’{znﬁ"li’ﬂ 0 (107 - 10-17),
— [ Yyob 1 -1 _ 100
| 7= () gy=oa0t - 10,

and [-] — quantities are scales for the variables in brackets, [H] being the constant
thickness of the layer. Furthermore, 2 = [H] Z and primes now denote differentiations
* with respect to Z : (-)' = d(-) /dZ Note that the differential equation (9), has the
following properties:
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when B, = 0, i.e., when the thermodynamic pressure is neglected, then (9) reduces to
the differential equation

3 SHT i
i

the integration of which, subject to the boundary conditions

(Br()y) = :é (=~ 10%) S (11)

y(0) =0, y(1)=yn, with y» <yo (12)
yields
My ) = o= (2% = ) + Mlyoiwn) (1 - 2) = N(3) (13)
with
M(y; yn) := /ﬁ;(ﬂ)dﬂ. (14)

Yn

Plotting M(Z) in the interval 0 < % < 1 gives the parabola with values zero at
2 =1and M(yo;ys) at Z = 0, and the minimum M(3*) = —L s (3 E]t[(yg,g,/h))2 at

z z[% + e M (yo; yh)] . Whether or not z* lies in [0, 1] depends upon the functional
dependence of ji; on y. For constant iy =1, 2* = [% +e(yo — yh)] and (13) becomes

y(z) = 215 (22 = 2) = (yo — yn)Z + vo. | (15)

The function y(Z) has values yo and y, at 2 = 0 and at Z = 1, respectively, and
decreases into the interval Z € [0,1] to reach the negative minimum yn, = yh -
= (1—¢€(yo — yn))? at zZ = z*. Correspondingly, the function

(2)=1 ! (16)

v(iZ)=1—- —
y(2)

shows in Z € [0, 1] three branches separated by two singularities when y(z,) = 0. The
two roots z!, 22 are in the neighbourhood of Z = 0 and Z = 1, respectively, and define
two boundary layers with thicknesses of order €. The properties of v(Z) are

e For z € [0,2}], v(Z) starts with a positive value at Z = 0 and approaches Foo
as 7 — z!F.

e For z € [22,1], v(Z) is positive at z = 1 and decreases with decreasing z,
approaching Foo as z — 2%,

e For z € (2], 2%, v(Z) is larger than unity and singular, i.e., v(Z) tends to +oo
for 2 — z!* and z — 327 | respectively. :

208



Such behaviour is physically unacceptable not only because v(Z) is larger than 1 in
the middle of the layer but equally so because it also attams twice an infinite modulus
within the layer.

This result proves that jiy cannot be constant, or the thermodynamic pressure
must be assumed to be nonvanishing, or both. This is demonstrated elsewhere.
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