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SOME GENERALIZED EUCLIDEAN AND 2-STAGE EUCLIDEAN

NUMBER FIELDS THAT ARE NOT NORM-EUCLIDEAN

JEAN-PAUL CERRI

Abstract. We give examples of Generalized Euclidean but not norm-Euclidean
number fields of degree greater than 2. In the same way we give examples of
2-stage Euclidean but not norm-Euclidean number fields of degree greater than
2. In both cases, no such examples were known.

1. Introduction

In 1985, Johnson, Queen and Sevilla [9] introduced a generalization of the clas-
sical notion of Euclidean number field.

Definition 1.1. A number field K is said to be Generalized Euclidean or simply
G.E. if for every (α, β) ∈ ZK ×ZK\{0} such that the ideal (α, β) is principal, there
exists Υ ∈ ZK such that

|NK/Q(α − Υβ)| < |NK/Q(β)|.

If (α, β) is principal, we thus have at our disposal the Euclidian algorithm to
compute a gcd of α and β because it is easy to see that (β, α − Υβ) is principal
again, and so on. Note that if K is norm-Euclidean then K is G.E. and that if K is
principal, i.e. has class number 1, then K is G.E. if and only if K is norm-Euclidean.
If we want to illustrate the difference between “G.E.” and “norm-Euclidean”, the
interesting case is when K is G.E. but not principal (so not norm-Euclidean). The
following result was established by Johnson, Queen and Sevilla in [9].

Theorem 1.1. The quadratic number field Q(
√

d) is G.E. but not norm-Euclidean

for d = 10 and d = 65. The quadratic number field Q(
√

d) is not G.E. for d =
15, 26, 30, 35, 39, 51, 78, 87, 102, 115, 195 and 230.

Furthermore, Johnson, Queen and Sevilla conjectured that K = Q(
√

d) (with
d > 1 squarefree) is G.E. if and only if K is norm-Euclidean or d = 10 or 65.

Another variation on norm-Euclidean number fields has been introduced by
Cooke [7].

Definition 1.2. Let m be a rational integer ≥ 1. The number field K is m-stage
Euclidean if and only if for every α ∈ ZK and every β ∈ ZK\{0} there exists a
positive rational integer k ≤ m and k pairs (qi, ri) (1 ≤ i ≤ k) of elements of ZK
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such that

α = βq1 + r1,

β = r1q2 + r2,

...

rk−2 = rk−1qk + rk,

and |NK/Q(rk)| < |NK/Q(β)|.
When it is well defined, let us put

[q1, q2, . . . , qk] = q1 +
1

q2 +
1

q3 + · · · + 1

qk

=
ak

bk
,

where ak and bk are given by

a1 = q1, b1 = 1,

a2 = a1q2 + 1, b2 = q2,

and recursively for k ≥ 3 by

ak = ak−1qk + ak−2, bk = qkbk−1 + bk−2.

Since
α

β
=

ak

bk
+ (−1)k+1 rk

bkβ
,

this definition is equivalent to the following.

Definition 1.3. The number field K is m-stage Euclidean if and only if for every
ξ ∈ K, there exists a positive rational integer k ≤ m, and k elements q1, q2, . . . , qk ∈
ZK such that

∣

∣

∣
NK/Q

(

ξ − [q1, q2, . . . , qk]
)

∣

∣

∣
<

1

|NK/Q(bk)| .

As in the previous case, norm-Euclidean implies m-stage Euclidean, but contrary
to what happens with the G.E. condition, we have the following result [7].

Theorem 1.2. A number field K with unit rank r ≥ 1 (i.e. r = rank (Z∗
K) ≥ 1) is

principal if and only if K is m-stage Euclidean for some m.

As a consequence, if we want to study the difference between m-stage Euclidean
and norm-Euclidean, we have to look at number fields with class number 1 and find
some example where K is principal, m-stage Euclidean but not norm-Euclidean.
The following result was established by Cooke [7].

Theorem 1.3. For d = 14, 22, 23, 31, 38, 43, 46, 53, 61, 69, 89, 93, 97, Q(
√

d) is
2-stage euclidean but not norm-Euclidean.

Furthermore, Cooke and Weinberger [8] proved that, under GRH, every princi-
pal number field K with unit rank r ≥ 1 is 4-stage Euclidean, and even 2-stage
Euclidean if K has at least one real place.
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For both notions (G.E. and m-stage Euclidean), no examples of number fields of
degree greater than 2 were known. Our main results are the following.

Theorem 1.4. None of he totally real number fields enumerated in Table 1 are
principal. They all are G.E. except for the second cubic number field of discriminant
3969, defined by x3 − 21x − 35, which is is neither principal nor G.E.

n DK P (x) h M(K)
3 1957 x3 − x2 − 9x + 10 2 2
3 2597 x3 − x2 − 9x + 8 3 5/2
3 2777 x3 − x2 − 14x + 23 2 5/3
3 39691 x3 − 21x − 28 3 4/3
3 3969 x3 − 21x − 35 3 7/3
3 3981 x3 − x2 − 11x + 12 2 3/2
3 4212 x3 − 12x − 10 3 7/2
3 4312 x3 − x2 − 16x + 8 3 11/4
3 5684 x3 − 14x − 14 3 9/2
4 21025 x4 − 17x2 + 36 2 1
4 32625 x4 − x3 − 19x2 + 4x + 76 2 1
4 46400 x4 − 22x2 + 116 2 5/4
4 51200 x4 − 20x2 + 50 2 7/2

Table 1. Here, n is the degree of the field K, DK its discriminant,
P (x) its equation, h its class number and M(K) its Euclidean
minimum.

Theorem 1.5. The totally real number fields of degree 3 and of discriminants
< 15000 which are principal but not norm-Euclidean (82 cases) are 2-stage norm-
Euclidean. The same is true for degree 4 and discriminants 18432, 34816, 35152
and for degree 5 and discriminant 390625. In all these cases, the number field is
principal, not norm-Euclidean, but 2-stage norm-Euclidean.

Details on the number fields appearing in Theorem 1.5 are available from [6] and
are given in the online version of the paper. In Section 2, we recall other definitions
and general results. In Section 3 and 4, we study the case of Generalized Euclidean
number fields and the case of 2-stage Euclidean number fields, respectively.

2. The algorithm, generalities

Let K be a number field of degree n. We have designed an algorithm which
allows us to compute the Euclidean minimum of K, in particular when K is totally
real [5], but also in the general case [3]. According to theoretical results [4], this
algorithm can also give the upper part of the Euclidean spectrum of K and this
yields new examples of number fields with interesting properties.

1In [2] and [10] the Euclidean minimum of the number field with discriminant 3969, defined
by x3

− 21x − 28 was erroneously announced to be 1.
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From now on, we suppose that K is totally real and that n > 2. We denote by
ZK the ring of its integers and by NK/Q its absolute norm. The Euclidean minimum
of an element ξ ∈ K is

mK(ξ) = inf
Υ∈ZK

|NK/Q(ξ − Υ)|

and the Euclidean minimum of K is

M(K) = sup
ξ∈K

mK(ξ).

The set of values taken by mK is called the Euclidean spectrum of K. We know
the following important result [4].

Theorem 2.1. The Euclidean spectrum of K is the union of {0} and of a strictly
decreasing sequence of rationals (ri)i≥0 with limit 0. For each i, the set of ξ ∈ K
such that mK(ξ) = ri is finite modulo ZK .

In fact, we have a stronger result, which can be formulated in terms of the
inhomogeneous spectrum. However, we shall not need this in what follows.

Corollary 2.2. The set of ξ ∈ K such that mK(ξ) ≥ 1 is finite modulo ZK .

Recall now that we have at our disposal an algorithm which can give us all the
ξ ∈ K such that mK(ξ) ≥ 1. Without going into details – these can be found in [5]
– let us give nevertheless the theorem which justifies the algorithm and the main
ideas that are behind it. Let us choose a constant k > 0 and a let us embed K
into K ⊗Q R =: K, which we can identify with Rn, in which ZK is a lattice. Under
this identification an element ξ of K is viewed as (σi(ξ))1≤i≤n, where the σi are
the embeddings of K into R. The map mK extends to a map mK from Rn to R+

in a natural way:

mK(x) = inf
Υ∈ZK

∣

∣

∣

n
∏

i=1

(xi − σi(Υ))
∣

∣

∣
.

Moreover, the product of two elements of K is extended to the product coordinate
by coordinate in Rn. This new product of two elements x, y ∈ Rn will be denoted
by x · y. Let finally ε be a non-torsion unit of Z∗

K .
The main idea is to find in a fundamental domain F associated to ZK in Rn, s

distinct bounded sets Ti (1 ≤ i ≤ s) with the property that for each such Ti there
exists an Xi ∈ ZK and si integers ni,1, . . . , ni,si

(si > 0) such that

(1) (ε · Ti − Xi)\H ⊂
⋃

1≤l≤si

Tni,l
(i = 1, . . . , s),

where

H = {x ∈ Rn such that mK(x) ≤ k}.
We consider the Ti as the vertices of a directed graph G and represent (1) by si

directed edges whose tail is Ti and whose respective heads are the Tni,l
(1 ≤ l ≤ si).

To describe such an edge of G we shall use the notation Ti → Tni,l
(Xi). The set

C of simple cycles of G is nonempty and finite. Each element c of C of length j is
in the form of the circular path, T ′

0 → T ′
1 (X ′

0) . . . → T ′
j−1(X

′
j−2) → T ′

0 (X ′
j−1), for

some subset {T ′
1 , . . . T ′

j−1} ⊆ {T1 . . . , Ts}, where X ′
i denotes the element X ∈ ZK



GENRALIZED EUCLIDEAN AND 2-STAGE EUCLIDEAN NUMBER FIELDS 5

associated to T ′
i . This defines, in a unique way, j elements of K, ξ0, . . . , ξj−1 by

the formula:

ξr =
εj−1X ′

r + εj−2X ′
r+1 + . . . + X ′

j−1+r

εj − 1
(r = 0, . . . , j − 1),

the indices being read modulo j. In this context, we say that ξ0, . . . , ξj−1 are
associated to the cycle c.

We denote by E the finite set of all elements of K associated to the elements of
C. The ξi associated to a cycle c are in the same orbit modulo ZK under the action
of Z∗

K (in fact ξr+1 = ε · ξr − X ′
r) and satisfy

mK(ξ0) = . . . = mK(ξj−1) =: m(c),

which is a rational number. Finally, define

m(G) = max
c∈C

m(c) = max
ξ∈E

mK(ξ).

Let us say that G is convenient if every infinite path of G is ultimately periodic.
The essential result is the following.

Theorem 2.3. Assume that G is convenient and that there exists T ∈ {T1 . . . , Ts}
and x ∈ Rn such that mK(x) > k. Then

i) mK(x) ≤ m(G).
ii) If x ∈ K, there exists ξ ∈ E such that x ≡ ξ mod ZK .

In this situation we know all the potential ξ ∈ K such that mK(ξ) > k, and
since computing mK(ξ) is possible (again see [5] for more details), we know in fact
all the ξ ∈ K such that mK(ξ) > k. To identify the elements ξ ∈ K such that
mK(ξ) ≥ 1, it is sufficient to run the algorithm with k = 0.999, for instance.

3. Generalized Euclidean number fields

3.1. Generalities. From the definition of a G.E. number field and the definition
of the map mK , we have the following result.

Proposition 3.1. The field K is G.E. if and only if for every (α, β) ∈ ZK×ZK\{0}
such that mK(α/β) ≥ 1, the ideal (α, β) is not principal.

Remark 1. Suppose that we have at our disposal the finite set S of all ξ ∈ K (mod-
ulo ZK) such that mK(ξ) ≥ 1, and that for each such ξ we have a representative u/v
where (u, v) ∈ ZK × ZK\{0}. Let (α, β) ∈ ZK × ZK\{0} such that mK(α/β) ≥ 1.
Then there exists ξ ≡ u/v in S such that α/β = u/v + γ with γ ∈ ZK . Since

(α, β) = (βu/v + γβ, β) = (βu/v, β) = β/v(u, v),

it is sufficient, for proving that K is G.E., to check that for every ξ ≡ u/v ∈ S,
(u, v) is not principal.

3.2. A first example. The purpose of this subsection is to study in detail a par-
ticular case. Other results, obtained in another way, will be given in the next
subsection. Let K be the normal quartic field generated by any one of the roots of

P (X) = X4 − 20X2 + 50.

The field K is totally real, its discriminant is 51200, its class number is 2, and a
Z-basis of ZK is (e1, e2, e3, e4) with

e1 = 1, e2 =
√

2, e3 =

√

10 + 5
√

2, e4 =

√

10 − 5
√

2.
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Our algorithm shows that

M(K) =
7

2
,

and that there is a unique ξ ∈ K (modulo ZK) such that mK(ξ) ≥ 1. More precisely

ξ ≡ 1

2
(e3 + e4).

According to Remark 1, if we want to establish that K is G.E., we have just to
prove that the ideal (2, e3 + e4) is not principal.

Theorem 3.2. The field K is not norm-Euclidean but it is G.E.

Proof. First of all, we note that e3 + e4 = e2 · e3, so that we are reduced to proving
that the ideal (e2, e3) is not principal. Suppose on the contrary that it is principal
so that we have

e2 ZK + e3 ZK = ν ZK ,

with ν ∈ ZK . Since NK/Q(e2) = 4 and NK/Q(e3) = 50, we have

NK/Q(ν) | 2 = gcd(4, 50),

so that we have two possibilities : either ν ∈ Z∗
K or NK/Q(ν) = ±2.

First case : ν is a unit and we have in fact e2 ZK + e3 ZK = ZK .

In this case, there exist u, v ∈ ZK such that

(2) 1 = e2 · u + e3 · v.

Let us write

(3)

{

u = a + be2 + ce3 + de4

v = a′ + b′e2 + c′e3 + d′e4,

where a, b, c, d, a′, b′, c′, d′ ∈ Z.

Since e2 · e3 = e3 + e4, e2 · e4 = e3 − e4 and e3 · e4 = 5e2, if we substitute (3) into
(2) we obtain, by identification of the coefficients in our Z-basis, that 2b+10c′ = 1,
which is clearly impossible.

Second case : ν has norm ±2.

If ν = a + be2 + ce3 + de4 where a, b, c, d ∈ Z, an easy computation leads to

±2 = NK/Q(ν)

= a4 + 4b4 + 50c4 + 50d4 − 4a2b2 − 20a2c2 − 20a2d2 − 40b2c2

−40b2d2 + 100c2d2 + 40abc2 − 40abd2 + 200cd3 − 200dc3 + 80abcd.

This implies that

±2 ≡ (a2 − 2b2)2 (mod5),

which is impossible as neither of ±2 are quadratic residues (mod5). �
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3.3. The Dedekind-Hasse criterion. In this subsection, we study the link be-
tween G.E. and a Euclidean-type map that we shall deduce from the Dedekind-
Hasse criterion. This will lead us to define an easy test which allows to find new
examples, without requiring detailed calculations as above. First of all, recall the
Dedekind-Hasse criterion (see for instance [11]).

Theorem 3.3. A number field K has class number 1 if and only if for every
α, β ∈ ZK\{0} such that β ∤ α, there exist γ, δ ∈ ZK such that

(4) 0 < |NK/Q(αγ − βδ)| < |NK/Q(β)|.
This leads to the following natural definition.

Definition 3.1. For every ξ ∈ K\ZK we shall denote by hK(ξ) the real number
defined by

hK(ξ) = inf{mK(Υξ; Υ ∈ ZK and Υξ 6∈ ZK}.
This map has the following elementary properties, which we give here without

proof.

Proposition 3.4. For every ξ ∈ K\ZK we have

(1) 0 < hK(ξ) ≤ mK(ξ);
(2) For every α ∈ ZK , hK(ξ + α) = hK(ξ);
(3) For every ε ∈ Z∗

K , hK(εξ) = hK(ξ).

We can now reformulate Dedekind-Hasse criterion as follows.

Theorem 3.5. A number field K has class number 1 if and only if for every
ξ ∈ K\ZK we have hK(ξ) < 1.

Proof. The norm being multiplicative, (4) can be reformulated as follows: for every
ξ ∈ K\ZK there exist γ, δ ∈ ZK such that

(5) 0 < |NK/Q(γξ − δ)| < 1,

which leads to mK(ξ) < 1. Since (5) cannot be true if γξ ∈ ZK , we have hK(ξ) < 1.
Conversely, since |NK/Q(γξ − δ)| = 0 implies γξ ∈ ZK , which is excluded in the
definition of hK , we see that if hK(ξ) < 1 then (5) is true. �

Now consider a number field K and put

S = {ξ ∈ K; mK(ξ) ≥ 1}.
Suppose that K is not norm-euclidean so that S 6= ∅. We have the following result.

Theorem 3.6. One of the following three possibilities holds:

(1) For every ξ ∈ S, hK(ξ) < 1. Then K has class number 1 and is not G.E.
(2) For every ξ ∈ S, hK(ξ) ≥ 1. Then K is G.E. (and not principal).
(3) There exist ξ, µ ∈ S such that hK(ξ) < 1 and hK(µ) ≥ 1. Then K is not

principal. If in addition, there exists ξ = α/β ∈ S (with α, β ∈ ZK) with
hK(ξ) < 1 and such that (α, β) is principal, then K is not G.E. Otherwise
it is G.E.

Proof. Clearly we have the three cases.

Case 1. The result is a consequence of Theorem 3.5 and of the fact that when the
field is principal norm-Euclidean and G.E. are synonymous.
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Case 2. Theorem 3.5 indicates that K is not principal. By Proposition 3.1 it is
sufficient to prove that for every ξ = α/β ∈ S where α, β ∈ ZK , the ideal (α, β)
is not principal. Otherwise, we have (α, β) = ν ZK with ν ∈ ZK . By hypothesis
hK(ξ) ≥ 1 so that for every X, Y ∈ ZK with Xξ 6∈ ZK we have

|NK/Q(Xα − Y β)| ≥ |NK/Q(β)|.
Now ν can be written ν = Xα − Y β with X, Y ∈ ZK and Xξ 6∈ ZK . Otherwise
ν ∈ β ZK so that β | ν. But this implies that ν and β are associates and we
have (α, β) = β ZK which implies β | α and ξ ∈ ZK , which is impossible. We
deduce from this that |NK/Q(ν)| ≥ |NK/Q(β)|. Since NK/Q(ν) | NK/Q(β) we have
|NK/Q(ν)| = |NK/Q(β)|, and since ν | β, ν and β are associates, which is impossible
by the previous argument.

Case 3. Theorem 3.5 indicates that K is not principal. The second assertion is a
consequence of Proposition 3.1. Indeed, as previously, if hK(ξ) ≥ 1 and ξ = α/β
then (α, β) is not principal and this case is not an obstruction for K to be G.E.
Finally, the only possibilities for contradicting G.E. come from the ξ = α/β ∈ S
such that hK(ξ) < 1 and (α, β) is principal. �

Corollary 3.7. Suppose that K is not norm-Euclidean and that, with the above
notation, S modulo ZK is composed of a single orbit under the (multiplicative)
action of Z∗

K modulo ZK , i.e. that if ξ, µ ∈ S there exists an ε ∈ Z∗
K and an

α ∈ ZK such that µ = εξ +α. Then either K is principal and not G.E. or K is not
principal but is G.E.

Proof. If K is principal, we are in case 1. Otherwise, since all the elements of S,
which are in the same orbit, have the same image by hK (Proposition 3.4), we
cannot be in case 3 of Theorem 3.6. Finally, we are in case 2 and K is G.E. �

Remark 2. To simplify notation and vocabulary, we shall often, by abuse of lan-
guage, speak of ξ ∈ K to mean ξ ∈ K mod ZK . For instance we shall speak of
orbits in S under the action of Z∗

K ; in this context S and these orbits should be
understood modulo ZK .

Corollary 3.8. The totally real number fields of degree 3 and discriminants 1957,
2777, 3981 (see Table 1) are G.E. The totally real number fields of degree 4 and
discriminants 46400 and 51200 (see Table 1) are G.E.

Proof. In fact, in all these cases, our algorithm establish that we are under the
previous hypotheses. For discriminant 1957, we have M(K) = 2 and one orbit with
one element in S. For discriminant 2777, we have M(K) = 5/3 and one orbit with
2 elements in S. For discriminant 3981, we have M(K) = 3/2 and one orbit with
one element in S. For discriminant 46400, we have M(K) = 5/4 and one orbit with
3 elements in S. For discriminant 51200, we have M(K) = 7/2 and one orbit with
one element in S. �

Now, if there are several orbits in S, and we want to use Theorem 3.6, we have
to see whether, for one element ξ by orbit, and for every orbit, we have hK(ξ) ≥ 1,
in which case necessarily K is G.E. The problem is now: how can we compute
hK(ξ)? Our algorithm gives us every such ξ by its coordinates in a Z-basis of ZK .
These coordinates are of the form (a1/d, a2/d, . . . , an/d) where ai ∈ Z for every i
and d ∈ Z>0. Furthermore we can compute mK(µ) for every µ ∈ K. Hence, it is
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easy to see that, to compute hK(ξ), it is sufficient to compute mK(Υξ) for every Υ
with coordinates in {0, 1, . . . , d− 1} for our basis, such that Υξ 6∈ ZK . This is easy
to check. By definition, the value of hK(ξ) will be the minimum of these mK(Υξ).
Of course if for every ξ and every such Υ we have Υξ ∈ S mod ZK , then K is G.E.
Using this last approach we have established the following result.

Theorem 3.9. The following totally real number fields of degree n are G.E. but
not norm-Euclidean :

• when n = 3, the fields in Table 1 with discriminants 2597, 4212, 4312, 5684;
• when n = 4, the fields in Table 1 with discriminants 21025, 32625.

Proof. We just give a typical example. For n = 3 and discriminant 2597, we have
two orbits in S, the first one O1 with two elements (±(e1 +2e2 +2e3)/3 modulo ZK

where (ei) is the Z-basis of ZK returned by PARI [1]) and te second one O2 with
one element ((e1 +e2 +e3)/2 modulo ZK). Then we can easily check that ZK ·O1 =
O1 ∪{0} and that ZK ·O2 = O2 ∪{0}. The same thing happens in other cases with
sometimes more complicated equalities but always with ZK · O ⊆ S ∪ {0}. �

Remark 3. If we want to treat all the non-principal number fields of degree 3 and
discriminant < 6000, it remains to study the two number fields with discriminant
3969. In these cases, our previous method does not work, because we have some
ξ = α/β ∈ S such that hK(ξ) < 1. The first one, K1, is defined by x3 − 21x − 28.
For this field, S is composed of five orbits Oi, 1 ≤ i ≤ 5. For four of them, say for
1 ≤ i ≤ 4, we have ZK · Oi ⊆ S ∪ {0}; but for the last one, O5, this is not true.
Take an element α/β of O5: here we can take α = 3e1 +2e2 +2e3 and β = 6 where
(e1, e2, e3) is the Z-basis returned by PARI [1]. We can then prove directly as in
Section 3.2 that the ideal (α, β) is not principal. We conclude that K1 is G.E.

For the second field, K2, defined by x3 − 21x− 35 the situation is different. Here S
is composed of seven orbits Oi, 1 ≤ i ≤ 7 and four of them, say Oi with 1 ≤ i ≤ 4,
are such that ZK · Oi ⊆ S ∪ {0}. Now if we look at the three others, we find that
two of them contain an α/β for which (α, β) is principal. For completeness these
(α, β) are (7e1 + 12e2 + 4e3, 21) and (7e1 + 5e2 + 11e3, 21) with the usual notation.
Consequently K2 is not G.E. All the computations, which are long and complicated
– in particular for K2 – have been done by hand and checked using PARI [1]. We do
not give them here for lack of space; anyway they are not especially enlightening.

Finally, we put all these results together to give us Theorem 1.4.

4. The 2-stage Euclidean number fields

Let us begin with an example. Let K be the totally real cubic number field with
discriminant 3988, defined by x3 − 16x − 4. Using our algorithm we see that the
upper part of the Euclidean spectrum of K has five elements:

sp(K) ∩ [1,∞) = {19/8, 11/8, 5/4, 19/16, 133/128}.

The set S is composed of five orbits, respectively the orbits of ae1 + be2 + ce3 with
(a, b, c) = (0, 1/2, 1/2), (1/2, 1/2, 0), (1/2, 1/2, 1/2), (0, 3/4, 1/2) and (0, 3/8, 1/2),
where (e1, e2, e3) is the Z-basis of ZK returned by PARI [1]. These orbits have
respectively 1, 1, 1, 2 and 4 elements. For one element ξ by orbit, we try to find



10 JEAN-PAUL CERRI

q1, q2 ∈ ZK such that

(6)
∣

∣

∣
NK/Q

(

ξ − q1 −
1

q2

)
∣

∣

∣
<

1

|NK/Q(q2)|
,

by testing “small” q1 ∈ ZK and “small” q2 ∈ ZK\{0}. In each case this is possible,
so that for every ξ ∈ S, (6) is true. Finally this implies that K is 2-stage norm-
Euclidean. Using exactly the same approach we have established the results of
Theorem 1.5.

Remark 4. Obviously these fields, which are principal and not norm-Euclidean, are
not G.E.
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