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Generalized transition waves and their properties

In this paper, we generalize the usual notions of waves, fronts and propagation speeds in a very general setting. These new notions, which cover all classical situations, involve uniform limits, with respect to the geodesic distance, to a family of hypersurfaces which are parametrized by time. We prove the existence of new such waves for some time-dependent reaction-diffusion equations, as well as general intrinsic properties, some monotonicity properties and some uniqueness results for almost planar fronts. The classification results, which are obtained under some appropriate assumptions, show the robustness of our general definitions.
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Introduction and main results

We first introduce the general notions of transition waves and fronts. We then give some standard and new examples of such waves. Lastly, we state some of their qualitative properties.

Definitions of generalized transition waves, global mean speed and further specifications

Travelling fronts describing the transition between two different states are a special important class of time-global solutions of evolution partial differential equations. One of the simplest examples is concerned with the homogeneous scalar semilinear parabolic equation

u t = ∆u + f (u) in R N , (1.1) 
where u = u(t, x) and ∆ is the Laplace operator with respect to the spatial variables in R N . In this case, assuming f (0) = f (1) = 0, a planar traveling front connecting the uniform steady states 0 and 1 is a solution of the type

u(t, x) = φ(x • e -ct)
such that φ : R → [0, 1] satisfies φ(-∞) = 1 and φ(+∞) = 0. Such a solution propagates in a given unit direction e with the speed c. Existence and possible uniqueness of such fronts, formulae for the speed(s) of propagation are well-known [START_REF] Aronson | Multidimensional nonlinear diffusions arising in population genetics[END_REF][START_REF] Fife | Mathematical aspects of reacting and diffusing systems[END_REF][START_REF] Kolmogorov | Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF] and depend upon the profile of the function f on [0, 1].

In this paper, we generalize the standard notion of traveling fronts. That will allow us to consider new situations, that is new geometries or more complex equations. We provide explicit examples of new types of waves and we prove some qualitative properties. Although the definitions given below hold for general evolution equations (see Section 1.4), we mainly focus on parabolic problems, that is we consider reaction-diffusion-advection equations, or systems of equations, of the type

u t = ∇ x • (A(t, x)∇ x u) + q(t, x) • ∇ x u + f (t, x, u) in Ω, g[t, x, u] = 0 on ∂Ω, (1.2) 
where the unknown function u, defined in R × Ω, is in general a vector field

u = (u 1 , • • • , u m ) ∈ R m
and Ω is a globally smooth non-empty open connected subset of R N with outward unit normal vector field ν. By globally smooth, we mean that there exists β > 0 such that Ω is globally of class C 2,β , that is there exist r 0 > 0 and M > 0 such that, for all y ∈ ∂Ω, there is a rotation R y of R N and there is a C 2,β map φ y : B

N -1

2r 0 → R such that φ y (0) = 0, φ y C 2,β B N -1 2r 0 ≤ M and Ω ∩ B(y, r 0 ) = y + R y {x ∈ R N ; (x 1 , . . . , x N -1 ) ∈ B N -1
2r 0 , φ y (x 1 , . . . , x N -1 ) < x N } ∩B(y, r 0 ), where B(y, r 0 ) = {x ∈ R N ; |x -y| < r 0 }, | | denotes the Euclidean norm in R N and, for any s > 0, B N -1 s is the closed Euclidean ball of R N -1 with center 0 and radius s (notice in particular that R N is globally smooth).

Let us now list the general assumptions on the coefficients of (1.2). The diffusion matrix field (t, x) → A(t, x) = (a ij (t, x)) 1≤i,j≤N is assumed to be of class C 1,β (R × Ω) and there exist 0 < α 1 ≤ α 2 such that α 1 |ξ| 2 ≤ a ij (t, x)ξ i ξ j ≤ α 2 |ξ| 2 for all (t, x) ∈ R × Ω and ξ ∈ R N , under the usual summation convention of repeated indices. The vector field (t, x) → q(t, x)

ranges in R N and is of class C 0,β (R × Ω). The function f : R × Ω × R m → R m (t, x, u) → f (t, x, u)
is assumed to be of class C 0,β in (t, x) locally in u ∈ R m , and locally Lipschitz-continuous in u, uniformly with respect to (t, x) ∈ R × Ω. Lastly, the boundary conditions g[t, x, u] = 0 on ∂Ω may for instance be of the Dirichlet, Neumann, Robin or tangential types, or may be nonlinear or heterogeneous as well. The notation g[t, x, u] = 0 means that this condition may involve not only u(t, x) itself but also other quantities depending on u, like its derivatives for instance.

Throughout the paper, d Ω denotes the geodesic distance in Ω, that is, for every pair (x, y) ∈ Ω × Ω, d Ω (x, y) is the infimum of the arc lengths of all C 1 curves joining x to y in Ω. We assume that Ω has an infinite diameter with respect to the geodesic distance d Ω , that is diam Ω (Ω) = +∞, where diam Ω (E) = sup d Ω (x, y); (x, y) ∈ E × E for any E ⊂ Ω. For any two subsets A and B of Ω, we set d Ω (A, B) = inf d Ω (x, y); (x, y) ∈ A × B .

For x ∈ Ω and r > 0, we set B Ω (x, r) = y ∈ Ω; d Ω (x, y) < r and S Ω (x, r) = y ∈ Ω; d Ω (x, y) = r .

The following definition of a generalized transition wave involves two families (Ω - t ) t∈R and (Ω + t ) t∈R of open nonempty and unbounded subsets of Ω such that

                 Ω - t ∩ Ω + t = ∅, ∂Ω - t ∩ Ω = ∂Ω + t ∩ Ω =: Γ t , Ω - t ∪ Γ t ∪ Ω + t = Ω, sup d Ω (x, Γ t ); x ∈ Ω + t = +∞, sup d Ω (x, Γ t ); x ∈ Ω - t = +∞, (1.3) 
for all t ∈ R. In other words, Γ t splits Ω into two parts, namely Ω - t and Ω + t (see Figure 1.1 below). The unboundedness of the sets Ω ± t means that these sets have infinite diameters with respect to geodesic distance d Ω . Moreover, for each t ∈ R, these sets are assumed to contain points which are as far as wanted from the interface Γ t . We further impose that, in dimension N = 1, Γ t is a singleton Γ t = {x t } for each t ∈ R, and that, in dimensions N ≥ 2, the interfaces Γ t are made of a finite number of graphs. Namely, when N ≥ 2, we require that there is an integer n ≥ 1 such that, for each t ∈ R, there are n open subsets ω i,t ⊂ R N -1 , n continuous maps ψ i,t : ω i,t → R and n rotations R i,t of R N (for all 1 ≤ i ≤ n), such that Γ t ⊂ 1≤i≤n R i,t x ∈ R N ; (x 1 , . . . , x N -1 ) ∈ ω i,t , x N = ψ i,t (x 1 , . . . , x N -1 ) .

(1.4) Definition 1.1 (Generalized transition wave) Let p ± : R × Ω → R m be two classical solutions of (1.2). A (generalized) transition wave connecting p -and p + is a time-global classical 1 solution u of (1.2) such that u ≡ p ± and there exist some sets (Ω ± t ) t∈R and (Γ t ) t∈R satisfying (1.3) and (1.4) with u(t, x)p ± (t, x) → 0 uniformly in t ∈ R as d Ω (x, Γ t ) → +∞ and x ∈ Ω ± t , that is, for all ε > 0, there exists M such that In Definition 1.1, a central role is played by the uniformity of the limits u(t, x)p ± (t, x) → 0.

∀ t ∈ R, ∀ x ∈ Ω ± t , d Ω (x, Γ t ) ≥ M =⇒ |u(t, x) -p ± (t, x)| ≤ ε .
These limits hold far away from the hypersurfaces Γ t inside Ω. To make the definition meaningful, the distance which is used is the distance geodesic d Ω . It is the right notion to fit with the geometry of the underlying domain. Furthermore, it is necessary to describe the propagation of transition waves in domains such as curved cylinders (like in Figure 1.1), spiral-shaped domains, exterior domains, etc. Notice that the sets (Ω ± t ) t∈R and (Γ t ) t∈R are not uniquely determined, given a generalized transition wave. Nevertheless, in the scalar case, under some assumptions on p ± and Ω ± t and oblique Neumann boundary conditions on ∂Ω, the sets Γ t somehow reflect the location of the level sets of u. Namely, one has: Theorem 1.2 Assume that m = 1 (scalar case), that p ± are constant solutions of (1.2) such that p -< p + and let u be a time-global classical solution of (1.2) such that

u(t, x); (t, x) ∈ R × Ω = (p -, p + ) and g[t, x, u] = µ(t, x) • ∇ x u(t, x) = 0 on R × ∂Ω, for some unit vector field µ ∈ C 0,β (R × ∂Ω) such that inf µ(t, x) • ν(x); (t, x) ∈ R × ∂Ω > 0. 2 1.
Assume that u is a generalized transition wave connecting p -and p + , or p + and p -, that there exists τ > 0 such that

sup d Ω (x, Γ t-τ ); t ∈ R, x ∈ Γ t < +∞, (1.5)
and that

sup d Ω (y, Γ t ); y ∈ Ω ± t ∩ S Ω (x, r) → +∞ as r → +∞ uniformly in t ∈ R, x ∈ Γ t . (1.6) Then (i) for all λ ∈ (p -, p + ), sup d Ω (x, Γ t ); u(t, x) = λ < +∞ (1.7)

and

(ii) for all C ≥ 0,

p -< inf u(t, x); d Ω (x, Γ t ) ≤ C ≤ sup u(t, x); d Ω (x, Γ t ) ≤ C < p + . (1.8) 2.
Conversely, if (i) and (ii) hold for some choices of sets (Ω ± t , Γ t ) t∈R satisfying (1.3) and (1.4), and if there is d 0 > 0 such that the sets

(t, x) ∈ R × Ω; x ∈ Ω + t , d Ω (x, Γ t ) ≥ d and (t, x) ∈ R × Ω; x ∈ Ω - t , d Ω (x, Γ t ) ≥ d are connected for all d ≥ d 0 ,
then u is a generalized transition wave connecting p -and p + , or p + and p -.

The assumption (1.5) means that the interfaces Γ t and Γ t-τ are in some sense not too far from each other. For instance, if all Γ t are parallel hyperplanes in Ω = R N , then the assumption (1.5) means that the distance between Γ t and Γ t-τ is bounded independently of t, for some τ > 0. The exact meaning of property (1.6) 

is that inf sup d Ω (y, Γ t ); y ∈ Ω + t ∩ S Ω (x, r) ; t ∈ R, x ∈ Γ t → +∞ inf sup d Ω (y, Γ t ); y ∈ Ω - t ∩ S Ω (x, r) ; t ∈ R, x ∈ Γ t → +∞ as r → +∞
and it reflects the fact that the interfaces Γ t are somehow not too curved, uniformly with respect to t ∈ R. As far as the connectedness assumptions made in part 2 of Theorem 1.2 are concerned, there are a technical tool in the proof, to guarantee the uniform convergence of u to p ± or p ∓ far away from Γ t in Ω ± t . One can now define more specific notions of fronts, pulses, invasions (or traveling waves) and almost planar waves. These notions are related to some properties of the limiting states p ± or of the sets (Ω ± t ) t∈R and (Γ t ) t∈R , and are listed in the following definitions, where u denotes a transition wave connecting p -and p + , associated to two families (Ω ± t ) t∈R and (Γ t ) t∈R , in the sense of Definition 1.1.

Definition 1.3 (Fronts and spatially extended pulses)

Let p ± = (p ± 1 , • • • , p ± m ). We say that the transition wave u is a front if, for each 1 ≤ k ≤ m, either inf p + k (t, x) -p - k (t, x); x ∈ Ω > 0 for all t ∈ R or inf p - k (t, x) -p + k (t, x); x ∈ Ω > 0 for all t ∈ R.
The transition wave u is a spatially extended pulse if p ± depend only on t and p -(t) = p + (t) for all t ∈ R.

In the scalar case (m = 1), our definition of a front corresponds to the natural extension of the usual notion of a front connecting two different constants. In the pure vector case (m ≥ 2), if a bounded C 0,β (R × Ω) transition wave u = (u 1 , . . . , u m ) is a front for problem

u t = ∇ x • (A(t, x)∇ x u) + q(t, x) • ∇ x u + f (t, x, u) in the sense of Definitions 1.1 and 1.3, if u k ≡ p ± k for some 1 ≤ k ≤ m, then the function u k is a front connecting p - k and p + k for the problem (u k ) t = ∇ x • (A(t, x)∇ x u k ) + q(t, x) • ∇ x u k + f k (t, x, u k )
associated with the same sets (Ω ± t ) t∈R and (Γ t ) t∈R as u, where

f k (t, x, s) = f (t, x, u 1 (t, x), . . . , u k-1 (t, x), s, u k+1 (t, x), . . . , u m (t, x))
and f = (f 1 , . . . , f m ). The same observation is valid for spatially extended pulses as well.

Definition 1.4 (Invasions) We say that p + invades p -, or that u is an invasion of p -by p + (resp. p -invades p + , or u is an invasion of p + by p -) if

Ω + t ⊃ Ω + s (resp. Ω - t ⊃ Ω - s ) for all t ≥ s and d Ω (Γ t , Γ s ) → +∞ as |t -s| → +∞.
Therefore, if p + invades p -(resp. p -invades p + ), then u(t, x)p ± (t, x) → 0 as t → ±∞ (resp. as t → ∓∞) locally uniformly in Ω with respect to the distance d Ω . One can then say that, roughly speaking, invasions correspond to the usual idea of traveling waves. Notice that a generalized transition wave can always be viewed as a spatial connection between p - and p + , while an invasion wave can also be viewed as a temporal connection between the limiting states p -and p + . Definition 1.5 (Almost planar waves in the direction e) We say that the generalized transition wave u is almost planar (in the direction e ∈ S N -1 ) if, for all t ∈ R, the sets Ω ± t can be chosen so that

Γ t = x ∈ Ω; x • e = ξ t
for some ξ t ∈ R.

By extension, we say that the generalized transition wave u is almost planar in a moving direction e(t) ∈ S N -1 if, for all t ∈ R, Ω ± t can be chosen so that

Γ t = x ∈ Ω; x • e(t) = ξ t for some ξ t ∈ R.
As in the usual cases (see Section 1.2), an important notion which is attached to a generalized transition wave is that of its global mean speed of propagation, if any. Definition 1.6 (Global mean speed of propagation) We say that a generalized transition wave u associated to the families (Ω ± t ) t∈R and (Γ t ) t∈R has global mean speed c (≥ 0) if

d Ω (Γ t , Γ s ) |t -s| → c as |t -s| → +∞.
We say that the transition wave u is almost-stationary if it has global mean speed c = 0. We say that u is quasi-stationary if

sup {d Ω (Γ t , Γ s ); (t, s) ∈ R 2 } < +∞,
and we say that u is stationary if it does not depend on t.

The global mean speed c, if it exists, is unique. Moreover, under some reasonable assumptions, the global mean speed is an intrinsic notion, in the sense that it does not depend on the families (Ω ± t ) t∈R and (Γ t ) t∈R . This is indeed seen in the following result:

Theorem 1.7 In the general vectorial case m ≥ 1, let p ± be two solutions of (1.2)

satisfying inf |p -(t, x) -p + (t, x)|; (t, x) ∈ R × Ω > 0.
Let u be a transition wave connecting p -and p + with a choice of sets (Ω ± t ) t∈R and (Γ t ) t∈R satisfying (1.3), (1.4) and (1.6). If u has global mean speed c, then, for any other choice of sets ( Ω ± t ) t∈R and ( Γ t ) t∈R satisfying (1.3), (1.4) and (1.6), u has a global mean speed and this global mean speed is equal to c.

Classical cases and new examples

In this subsection, we list some basic examples of transition waves, which correspond to the classical notions in the standard situations. We also state the existence of new examples of transition fronts in a time-dependent medium.

For the homogeneous equation (1.1) in R N , a solution

u(t, x) = φ(x • e -ct),
with φ(-∞) = 1 and φ(+∞) = 0 (assuming f (0) = f (1) = 0) is an (almost) planar invasion front connecting p -= 1 and p + = 0, with (global mean) speed |c|. The uniform stationary state p -= 1 (resp. p + = 0) invades the uniform stationary p + = 0 (resp. p -= 1) if c > 0 (resp. c < 0). The sets Ω ± t can for instance be defined as

Ω ± t = x ∈ R N ; ±(x • e -ct) > 0 .
The general definitions that we just gave also generalize the classical notions of pulsating traveling fronts in spatially periodic media (see [START_REF] Berestycki | Front propagation in periodic excitable media[END_REF][START_REF] Berestycki | The principal eigenvalue of elliptic operators with large drift and applications to nonlinear propagation phenomena[END_REF][START_REF] Berestycki | The speed of propagation for KPP type problems. I -Periodic framework[END_REF][START_REF] Berestycki | Analysis of the periodically fragmented environment model : II -Biological invasions and pulsating traveling fronts[END_REF][START_REF] Hamel | Qualitative properties of KPP and monostable fronts: monotonicity and exponential decay[END_REF][START_REF] Hamel | Uniqueness and stability properties of monostable pulsating fronts[END_REF][START_REF] Hudson | Existence of traveling waves for reaction-diffusion equations of Fisher type in periodic media[END_REF][START_REF] Shigesada | Traveling periodic waves in heterogeneous environments[END_REF][START_REF] Xin | Existence of planar flame fronts in convective-diffusive periodic media[END_REF][START_REF] Xin | Analysis and modeling of front propagation in heterogeneous media[END_REF]), with possible periodicity or almost-periodicity in time (see [START_REF] Fréjacques | Travelling waves in infinite cylinders with time-periodic coefficients[END_REF][START_REF] Nadin | Travelling fronts in space-time periodic media[END_REF][START_REF] Nolen | Existence of KPP fronts in spatially-temporally periodic advection and variational principle for propagation speeds[END_REF][START_REF] Nolen | Existence of KPP type fronts in space-time periodic shear flows and a study of minimal speeds based on variational principle[END_REF][START_REF] Shen | Traveling waves in time almost periodic structures governed by bistable nonlinearities, I. Stability and uniqueness[END_REF][START_REF] Shen | Traveling waves in time almost periodic structures governed by bistable nonlinearities, II. Existence[END_REF][START_REF] Shen | Dynamical systems and traveling waves in almost periodic structures[END_REF]) or in spatially almost-periodic media (see [START_REF] Matano | Traveling waves in spatially inhomogeneous diffusive media -The non-periodic case[END_REF]).

In the particular one-dimensional case, when equation (1.2) is scalar and when the limiting states p ± are ordered, say p + > p -, Definition 1.1 corresponds to that of "wave-like" solutions given in [START_REF] Shen | Traveling waves in diffusive random media[END_REF]. However, Definition 1.1 also includes more general situations involving complex heterogeneous geometries or media. Existence, uniqueness and stability results of generalized almost planar transition fronts in one-dimensional media or straight higherdimensional cylinders with combustion-type nonlinearities and arbitrary spatial dependence have just been proved in [START_REF] Mellet | Stability of generalized transition fronts[END_REF][START_REF] Mellet | Sire Generalized fronts for one-dimensional reactiondiffusion equations[END_REF][START_REF] Nolen | Traveling waves in a one-dimensional heterogeneous medium[END_REF][START_REF] Zlatoš | Generalized traveling waves in disordered media: existence, uniqueness, and stability[END_REF]. In general higher-dimensional domains, generalized transition waves which are not almost planar can also be covered by Definition 1.1: such transition waves are known to exist for the homogeneous equation (1.1) in R N for usual types of nonlinearities f (combustion, bistable, Kolmogorov-Petrovsky-Piskunov type), see [START_REF] Berestycki | Generalized traveling waves for raction-diffusion equations[END_REF][START_REF] Bonnet | Existence of non-planar solutions of a simple model of premixed Bunsen flames[END_REF][START_REF] Hamel | Existence and qualitative properties of conical multidimensional bistable fronts[END_REF][START_REF] Hamel | Travelling waves and entire solutions of the Fisher-KPP equation in R N[END_REF][START_REF] Haragus | Corner defects in almost planar interface propagation[END_REF][START_REF] Huang | Stability of curved KPP fronts[END_REF][START_REF] Ninomiya | Existence and global stability of traveling curved fronts in the Allen-Cahn equations[END_REF][START_REF] Taniguchi | Traveling fronts of pyramidal shapes in the Allen-Cahn equation[END_REF][START_REF] Taniguchi | The uniqueness and asymptotic stability of pyramidal traveling fronts in the Allen-Cahn equations[END_REF] for details. Further on, other situations can also be investigated, such as the case when some coefficients of (1.2) are locally perturbed and more complex geometries, like exterior domains (the existence of almost planar fronts in exterior domains with bistable nonlinearity f has just been proved in [START_REF] Berestycki | Bistable traveling waves passing an obstacle[END_REF]), curved cylinders, spirals, etc can be considered.

It is worth mentioning that, even in dimension 1, Definition 1.1 also includes a very interesting class of transition wave solutions which are known to exist and which do not fall within the usual notions, that is invasion fronts which have no specified global mean speed. For instance, for (1.1) 

in dimension N = 1, if f = f (u) satisfies f is C 2 concave in [0, 1], positive in (0, 1) and f (0) = f (1) = 0, (1.9) 
then there are invasion fronts connecting 0 and 1 for which Ω - t = (x t , +∞), Ω + t = (-∞, x t ) and [START_REF] Hamel | Travelling waves and entire solutions of the Fisher-KPP equation in R N[END_REF]). There are also some fronts for which x t /t → c 1 ≥ 2 f ′ (0) as t → -∞ and x t /t → +∞ as t → +∞. For further details, we refer to [START_REF] Berestycki | Generalized traveling waves for raction-diffusion equations[END_REF][START_REF] Hamel | Travelling waves and entire solutions of the Fisher-KPP equation in R N[END_REF]. In this paper, in order to illustrate the interest of the above definitions, we also analyse a specific example and we prove the existence of new generalized transition waves, which in general do not have any global mean speed, for a time-dependent equation. Namely, we consider one-dimensional reaction-diffusion equations of the type

x t t → c 1 as t → -∞ and x t t → c 2 as t → +∞ with 2 f ′ (0) ≤ c 1 < c 2 (see
u t = u xx + f (t, u) (1.10)
where the function f : R × [0, 1] → R is of class C 1 and satisfies:

                         ∀ t ∈ R, f (t, 0) = f (t, 1) = 0, ∀ (t, s) ∈ R × [0, 1], f (t, s) ≥ 0, ∃ t 1 < t 2 ∈ R, ∃ f 1 , f 2 ∈ C 1 ([0, 1]; R), ∀ (t, s) ∈ (-∞, t 1 ] × [0, 1], f (t, s) = f 1 (s), ∀ (t, s) ∈ [t 2 , +∞) × [0, 1], f (t, s) = f 2 (s), f ′ 1 (0) > 0, f ′ 2 (0) > 0, ∀ s ∈ (0, 1), f 1 (s) > 0, f 2 (s) > 0.
( 1.11) In other words, the function f is time-independent and non-degenerate at 0 for times less than t 1 and larger than t 2 , and for the times t ∈ (t 1 , t 2 ), the functions f (t, •) are just assumed to be nonnegative, but they may a priori vanish. If f 1 and f 2 are equal, then the nonlinearity f (t, s) can be viewed as a time-local perturbation of a time-independent equation. But, it is worth noticing that the functions f 1 and f 2 are not assumed to be equal nor even compared in general. When t ≤ t 1 , classical traveling fronts

(t, x) ∈ R 2 → ϕ 1,c (x -ct) ∈ [0, 1]
such that ϕ 1,c (-∞) = 1 and ϕ 1,c (+∞) = 0 are known to exist, for all and only all speeds c ≥ c * 1 , where c * 1 ≥ 2 f ′ 1 (0) > 0 only depends on f 1 (see e.g. [START_REF] Aronson | Multidimensional nonlinear diffusions arising in population genetics[END_REF]). The open questions are to know how these traveling fronts behave during the time interval [t 1 , t 2 ] and whether they can subsist and at which speed, if any, they travel after the time t 2 . Indeed, it is also known that, when t ≥ t 2 , there exist classical traveling fronts

(t, x) ∈ R 2 → ϕ 2,c (x -ct) ∈ [0, 1]
such that ϕ 2,c (-∞) = 1 and ϕ 2,c (+∞) = 0 for all and only all speeds c ≥ c * 2 , where c * 2 ≥ 2 f ′ 2 (0) > 0 only depends on f 2 . The following result provides an answer to these questions and shows the existence of generalized transition waves connecting 0 and 1 for equation (1.10), which fall within our general definitions and do not have any global mean speed in general. To state the result, we need a few notations. For each c ≥ c * 1 , we set

λ 1,c =        c 1 -c 2 1 -4f ′ 1 (0) 2 if c > c * 1 , c * 1 + c * 1 2 -4f ′ 1 (0) 2 if c = c * 1 .
(1.12)

We also denote

λ * ,- 2 = c * 2 -c * 2 2 -4f ′ 2 (0) 2 .
Theorem 1.8 For equation (1.10) under the assumption (1.11), there exist transition invasion fronts connecting p -= 0 and p + = 1, for which

Ω ± t = {x ∈ R, ±(x -x t ) < 0}, Γ t = {x t } for all t ∈ R, x t = c 1 t for t ≤ t 1 and x t t → c 2 as t → +∞,
where c 1 is any given speed in [c * 1 , +∞) and

c 2 =    λ 1,c 1 + f ′ 2 (0) λ 1,c 1 if λ 1,c 1 < λ * ,- 2 , c * 2 if λ 1,c 1 ≥ λ * ,- 2 . 
(1.13)

When f 1 = f 2 , then c * 1 = c * 2 and the transition fronts constructed in Theorem 1.8 are such that c 1 = c 2 , whence they have a global mean speed c = c 1 = c 2 in the sense of Definition 1.6. When

f 1 ≤ f 2 (resp. f 1 ≥ f 2 ), then c * 1 ≤ c * 2 (resp. c * 1 ≥ c * 2 ), the inequalities c 1 ≤ c 2 (resp. c 1 ≥ c 2 ) always hold and, for c 1 large enough so that λ 1,c 1 < λ * ,- 2 , the inequalities c 1 < c 2 (resp. c 1 > c 2 ) are strict if f ′ 1 (0) = f ′ 2 ( 
0) (hence, these transition fronts do not have any global mean speed).

In the general case, acceleration and slow down may occur simultanously, for the same equation (1.10) with the same function f , according to the starting speed c 1 : for instance, there are examples of functions f 1 and f 2 for which

c 2 > c 1 for all c 1 > c * 1 , and c 2 < c 1 for c 1 = c * 1 .
To do so, it is sufficient to choose f 2 of the Kolmogorov-Petrovsky-Piskunov type, that is

f 2 (s) ≤ f ′ 2 (0)s in (0, 1) whence c * 2 = 2 f ′ 2 (0) = 2λ * ,- 2 
, and to choose f 1 in such a way that

f ′ 1 (0) < f ′ 2 (0) and c * 1 > c * 2 (for instance, if f 2 is chosen as above, if M > 0 is such that √ 2M > c * 2 and if f 1 (s) ≥ M ε × (1 -|x -1 + ε|) on [1 -2ε, 1]
for ε > 0 small enough, then c * 1 > c * 2 for ε small enough, see [START_REF] Berestycki | Traveling waves solutions to combustion models and their singular limits[END_REF]). Lastly, it is worth noticing that, in Theorem 1.8, the speed c 2 of the position x t at large time is determined only from c 1 , f 1 and f 2 , whatever the profile of f between times t 1 and t 2 may be.

Remark 1.9 The solutions u constructed in Theorem 1.8 are by definition spatial transition fronts connecting 1 and 0. Furthermore, it follows from the proof given in Section 3 that these transition fronts can also be viewed as temporal connections between a classical traveling front with speed c 1 for the nonlinearity f 1 and another classical traveling front, with speed c 2 , for the nonlinearity f 2 .

Qualitative properties

We now proceed to some further qualitative properties of generalized transition waves. Throughout this subsection, m = 1, i.e. we work in the scalar case, and u denotes transition wave connecting p -and p + , for equation (1.2), associated with families (Ω ± t ) t∈R and (Γ t ) t∈R satisfying properties (1.3), (1.4), (1.5) and (1.6). We also assume that u and p ± are globally bounded in R × Ω and that

µ(x) • ∇ x u(t, x) = µ(x) • ∇ x p ± (t, x) = 0 on R × ∂Ω, (1.14) 
where µ is a C 0,β (∂Ω) unit vector field such that inf µ(x) • ν(x); x ∈ ∂Ω > 0.

First, we establish a general property of monotonicity with respect to time.

Theorem 1.10 Assume that A and q do not depend on t, that f and p ± are nondecreasing in t and that there is δ > 0 such that

s → f (t, x, s) is nonincreasing in (-∞, p -(t, x) + δ] and [p + (t, x) -δ, +∞) (1.15) for all (t, x) ∈ R × Ω. If u is an invasion of p -by p + with κ := inf p + (t, x) -p -(t, x); (t, x) ∈ R × Ω > 0, (1.16 
)

then u satisfies ∀ (t, x) ∈ R × Ω, p -(t, x) < u(t, x) < p + (t, x).
(1.17

)
and u is increasing in time t.

Notice that if (1.17) holds a priori and if f is assumed to be nonincreasing in s for s in

[p -(t, x), p -(t, x) + δ] and [p + (t, x) -δ, p + (t, x)] only, instead of (-∞, p -(t, x) + δ] and [p + (t, x) -δ, +∞)
, then the conclusion of Theorem 1.10 (strict monotonicity of u in t) holds. The simplest case is when f = f (u) only depends on u and p ± are constants and both stable, that is f ′ (p ± ) < 0.

The monotonicity result stated in Theorem 1.10 plays an important role in the following uniqueness and comparison properties for almost planar fronts: Theorem 1.11 Under the same conditions as in Theorem 1.10, assume furthermore that f and p ± are independent of t, that u is almost planar in some direction e ∈ S N -1 and has global mean speed c ≥ 0, with the stronger property that

sup d Ω (Γ t , Γ s ) -c|t -s| ; (t, s) ∈ R 2 < +∞, (1.18) 
where

Γ t = x ∈ Ω; x • e -ξ t = 0 and Ω ± t = x ∈ Ω; ±(x • e -ξ t ) < 0 .
Let u be another globally bounded invasion front of p -by p + for equation (1.2) and (1.14), associated with

Γ t = x ∈ Ω; x • e -ξ t = 0 and Ω ± t = x ∈ Ω; ±(x • e -ξ t ) < 0 and having global mean speed c ≥ 0 such that sup d Ω ( Γ t , Γ s ) -c|t -s| ; (t, s) ∈ R 2 < +∞. Then c = c and there is (the smallest) T ∈ R such that u(t + T, x) ≥ u(t, x) for all (t, x) ∈ R × Ω. Furthermore, there exists a sequence (t n , x n ) n∈N in R × Ω such that (d Ω (x n , Γ tn )) n∈N is bounded and u(t n + T, x n ) -u(t n , x n ) → 0 as n → +∞. Lastly, either u(t + T, x) > u(t, x) for all (t, x) ∈ R × Ω or u(t + T, x) = u(t, x) for all (t, x) ∈ R × Ω.
This result shows the uniqueness of the global mean speed among a certain class of almost planar invasion fronts. It also says that any two such fronts can be compared up to shifts. In particular cases listed below, uniqueness holds up to shifts. However, this uniqueness property may not hold in general.

Remark 1.12 Notice that property (1.18) and the fact that u is an invasion imply that the speed c is necessarily (strictly) positive.

As a corollary of Theorem 1.11, we now state a result which is important in that it shows that, at least under appropriate conditions on f , our definition does not introduce new objects in some classical situations: it reduces to pulsating traveling fronts in periodic media and to usual traveling fronts when there is translation invariance in the direction of propagation.

Theorem 1.13 Under the conditions of Theorem 1.11, assume that Ω, A, q, f , µ and p ± are periodic in x, in that there are positive real numbers L 1 , . . . , L N > 0 such that, for every

vector k = (k 1 , . . . , k N ) ∈ L 1 Z × • • • × L N Z,      Ω + k = Ω, A(x + k) = A(x), q(x + k) = q(x), f (x + k, •) = f (x, •), p ± (x + k) = p ± (x) for all x ∈ Ω, µ(x + k) = µ(x) for all x ∈ ∂Ω. (i) Then u is a pulsating front, namely u t + γ k • e c , x = u(t, x -k) for all (t, x) ∈ R × Ω and k ∈ L 1 Z × • • • × L N Z, (1.19)
where γ = γ(e) ≥ 1 is given by

γ(e) = lim (x,y)∈Ω×Ω, (x-y) e, |x-y|→+∞ d Ω (x, y) |x -y| . (1.20)
Furthermore, u is unique up to shifts in t.

(ii) Under the additional assumptions that e is one of the axes of the frame, that Ω is invariant in the direction e and that A, q, f , µ and p ± are independent of x • e, then u actually is a classical traveling front, that is:

u(t, x) = φ(x • e -ct, x ′ )
for some function φ, where x ′ denotes the variables of R N which are orthogonal to e. Moreover, φ is decreasing in its first variable.

(iii) If Ω = R N and A, q, f (•, s) (for each s ∈ R), p ± are constant, then u is a planar (i.e. one-dimensional) traveling front, in the sense that

u(t, x) = φ(x • e -ct),
where φ : R → (p -, p + ) is decreasing and φ(∓∞) = p ± .

Notice that properties (1.5) and (1.6) are automatically satisfied here -and property (1.5) is actually satisfied for all τ > 0-due to the periodicity of Ω, the definition of Ω ± t and assumption (1.18).

The constant γ(e) in (1.20) is by definition larger than or equal to 1. It measures the asymptotic ratio of the geodesic and Euclidean distances along the direction e. If the domain Ω is invariant in the direction e, that is Ω = Ω + se for all s ∈ R, then γ(e) = 1. For a pulsating traveling front satisfying (1.19), the "Euclidean speed" c/γ(e) in the direction of propagation e is then less than or equal to the global mean speed c (the latter being indeed defined through the geodesic distance in Ω).

Part (ii) of Theorem 1.13 still holds if e is any direction of R N and if Ω, A, q, f , µ and p ± are invariant in the direction e and periodic in the variables x ′ . This result can actually be extended to the case when the medium may not be periodic and u may not be an invasion front:

Theorem 1.14 Assume that Ω is invariant in a direction e ∈ S N -1 , that A, q, µ and p ± depend only on the variables x ′ which are orthogonal to e, that f = f (x ′ , u) and that (1.15) and (1.16) hold.

If u is almost planar in the direction e, i.e. the sets Ω ± t can be chosen as

Ω ± t = x ∈ Ω; ±(x • e -ξ t ) < 0 ,
and if u has global mean speed c ≥ 0 with the stronger property that

sup |ξ t -ξ s | -c|t -s| ; (t, s) ∈ R 2 < +∞, then there exists ε ∈ {-1, 1} such that u(t, x) = φ(x • e -εct, x ′ )
for some function φ. Moreover, φ is decreasing in its first variable.

If one further assumes that c = 0, then the conclusion holds even if f and p ± also depend on x • e, provided that they are nonincreasing in x • e. In particular, if u is quasi-stationary in the sense of Definition 1.6, then u is stationary.

In Theorems 1.13 and 1.14, we gave some conditions under which the fronts reduce to usual pulsating or traveling fronts. The fronts were assumed to have a global mean speed. Now, the following result generalizes part (iii) of Theorem 1.13 to the case of almost planar fronts which may not have any global mean speed and which may not be invasion fronts. It gives some conditions under which almost planar fronts actually reduce to one-dimensional fronts.

Theorem 1.15 Assume that Ω = R N , that A and q depend only on t, that the functions p ± depend only on t and x • e and are nonincreasing in x • e for some direction e ∈ S N -1 , that f = f (t, x • e, u) is nonincreasing in x • e, and that (1.15) and (1.16) hold. If u is almost planar in the direction e with

Ω ± t = x ∈ R N ; ±(x • e -ξ t ) < 0 such that ∃ σ > 0, sup |ξ t -ξ s |; (t, s) ∈ R 2 , |t -s| ≤ σ < +∞, (1.21)
then u is planar, i.e. u only depends on t and x • e :

u(t, x) = φ(t, x • e)
for some function φ : R 2 → R. Furthermore,

∀ (t, x) ∈ R × R N , p -(t, x • e) < u(t, x) < p + (t, x • e) (1.22)
and u is decreasing with respect to x • e.

Notice that the assumption sup {|ξ t+σξ t |; t ∈ R} < +∞ for every σ ∈ R is clearly stronger than property (1.5). But one does not need ξ t to be monotone or |ξ tξ s | → +∞ as |t -s| → +∞, namely u may not be an invasion front.

As for Theorem 1. As a particular case of the result stated in Theorem 1.14 (with c = 0), the following property holds, which states that, under some assumptions, any quasi-stationary front is actually stationary. Corollary 1.16 Under the conditions of Theorem 1.15, if one further assumes that the function t → ξ t is bounded and that A, q, f and p ± do not depend on t, then u depends on x • e only, that is u is a stationary one-dimensional front.

Further extensions

In the previous sections, the waves were defined as spatial transitions connecting two limiting states p -and p + . Multiple transition waves can be defined similarly. Definition 1.17 (Waves with multiple transitions) Let k ≥ 1 be an integer and let p 1 , . . . , p k be k time-global solutions of (1.2). A generalized transition wave connecting p 1 , . . . , p k is a time-global classical solution u of (1.2) such that u ≡ p j for all 1 ≤ j ≤ k, and there exist k

families (Ω j t ) t∈R (1 ≤ j ≤ k) of open nonempty unbounded subsets of Ω, a family (Γ t ) t∈R of nonempty subsets of Ω and an integer n ≥ 1 such that                      ∀ t ∈ R, ∀ j = j ′ ∈ {1, . . . , k}, Ω j t ∩ Ω j ′ t = ∅, ∀ t ∈ R, 1≤j≤k (∂Ω j t ∩ Ω) = Γ t , Γ t ∪ 1≤j≤k Ω j t = Ω, ∀ t ∈ R, ∀ j ∈ {1, . . . , k}, sup d Ω (x, Γ t ); x ∈ Ω j t = +∞, if N = 1 then Γ t is made of at most n points, if N ≥ 2 then (1.4) is satisfied, and u(t, x) -p j (t, x) → 0 uniformly in t ∈ R as d Ω (x, Γ t ) → +∞ and x ∈ Ω j t for all 1 ≤ j ≤ k.
Triple or more general multiple transition waves are indeed known to exist in some reaction-diffusion problems (see e.g. [START_REF] Bronsard | A three-layered minimizer in R 2 for a variational problem with a symmetric three-well potential[END_REF][START_REF] Fife | The approach of solutions of non-linear diffusion equations to traveling front solutions[END_REF]). The above definition also covers the case of multiple wave trains.

On the other hand, the spatially extended pulses, as defined in Definition 1.3 with p -(t) = p + (t), correspond to the special case k = 1, p 1 = p ± (t) and Ω 1 t = Ω - t ∪ Ω + t in the above definition. We say that they are extended since, for each time t, the set Γ t is unbounded in general. The usual notion of localized pulses can be viewed as a particular case of Definition 1.17.

Definition 1.18 (Localized pulses) In Definition 1.17, if k = 1 and if sup diam Ω (Γ t ); t ∈ R < +∞,
then we say that u is a localized pulse.

In all definitions of this paper, the time interval R can be replaced with any interval I ⊂ R. However, when I = R, the sets Ω ± t or Ω j t are not required to be unbounded, but one only requires that

lim t→+∞ sup d Ω (x, Γ t ); x ∈ Ω ± t } = +∞ or lim t→+∞ sup d Ω (x, Γ t ); x ∈ Ω j t } = +∞,
in the case of double or multiple transitions, if

I ⊃ [a, +∞) (resp. lim t→-∞ sup d Ω (x, Γ t ); x ∈ Ω ± t } = +∞ or lim t→-∞ sup d Ω (x, Γ t ); x ∈ Ω j t } = +∞ if I ⊃ (-∞, a]
). The particular case I = [0, T ) with 0 < T ≤ +∞ is used to describe the formation of waves and fronts for the solutions of Cauchy problems. For instance, consider equation (1.1) for t ≥ 0, with a function

f ∈ C 1 ([0, 1]) such that f (0) = f (1) = 0, f > 0 in (0, 1) and f ′ (0) > 0. If u 0 is in C c (R N
) and satisfies 0 ≤ u 0 ≤ 1 with u 0 ≡ 0 and if u(t, x) denotes the solution of (1.1) with initial condition u(0, •) = u 0 , then 0 ≤ u(t, x) ≤ 1 for all t ≥ 0 and x ∈ R N and it follows easily from [START_REF] Aronson | Multidimensional nonlinear diffusions arising in population genetics[END_REF][START_REF] Jones | Asymptotic behaviour of a reaction-diffusion equation in higher space domains, Rocky Mount[END_REF] that there exists a continuous increasing function [0, +∞)

∋ t → r(t) > 0 such that r(t)/t → c * > 0 as t → +∞ and      lim A→+∞ inf u(t, x); t ≥ 0, r(t) ≥ A, 0 ≤ |x| ≤ r(t) -A = 1, lim A→+∞ sup u(t, x); t ≥ 0, |x| ≥ r(t) + A = 0,
where c * > 0 is the minimal speed of planar fronts ϕ(x-ct) ranging in [0, 1] and connecting 0 and 1 for this equation (in other words, the minimal speed c * of planar fronts is also the spreading speed of the solutions u in all directions). If we define

Ω - t = x ∈ R N ; |x| < r(t) , Ω + t = x ∈ R N ; |x| > r(t) and Γ t = x ∈ R N ; |x| = r(t)
for all t ≥ 0, then the function u(t, x) can be viewed as a transition invasion wave connecting p -= 1 and p + = 0 in the time interval [0, +∞). We also refer to [START_REF] Berestycki | The speed of propagation for KPP type problems. II -General domains[END_REF] for further definitions and properties of the spreading speeds of the solutions of the Cauchy problem u t = ∆u+f (u) with compactly supported initial conditions, in arbitrary domains Ω and no-flux boundary conditions.

It is worth pointing out that, for the one-dimensional equation

u t = u xx + f (u) in R with C 1 ([0, 1], R) functions f such that f (0) = f (1) = 0, f (s) > 0 and f ′ (s) ≤ f (s)/s on (0, 1), there are solutions u : [0, +∞) × R → [0, 1], (t, x) → u(t, x) such that u(t, -∞) = 1, u(t, +∞) = 0 for all t ≥ 0, and lim t→+∞ u x (t, •) L ∞ (R) = 0,
see [START_REF] Hamel | Fast propagation in reaction-diffusion equations with slowly decaying initial conditions[END_REF]. At each time t, u(t, •) connects 1 to 0, but since the solutions become uniformly flater and flater as time runs, they are examples of solutions which are not generalized fronts connecting 1 and 0.

Time-dependent domains and other equations. We point out that all these general definitions can be adapted to the case when the domain

Ω = Ω t depends on time t.
Lastly, the general definitions of transition waves which are given in this paper also hold for other types of evolution equations

F [t, x, u, Du, D 2 u, • • • ] = 0
which may not be of the parabolic type and which may be non local. Here Du stands for the gradient of u with respect to all variables t and x.

Outline of the paper. The following sections are devoted to proving all the results we have stated here. Section 2 is concerned with level set properties and the intrinsic character of the global mean speed. In Section 3, we prove Theorem 1.8 on the existence of generalized transition waves for the time-dependent equation (1.10). Section 4 deals with the proof of the general time-monotonicity result (Theorem 1.10). Section 5 is concerned with the proofs of Theorems 1.11 and 1.13 on comparison of almost planar invasion fronts and reduction to pulsating fronts in periodic media. Lastly, in Section 6, we prove the remaining Theorems 1.14 and 1.15 concerned with almost planar fronts in media which are invariant or monotone in the direction of propagation.

Intrinsic character of the interface localization and the global mean speed

Given a generalized transition wave u, we can view the set Γ t as the continuous interface of u at time t. Of course this set is not uniquely defined, however, as we shall prove here, its localization in terms of (1.7) and (1.8) is intrinsic. Thus, this gives a meaning to the "interface" in this continuous problem (even though it is not a free boundary). This section is divided into two parts, the first one dealing with the properties of the level sets and the second one with the intrinsic character of the global mean speed.

2.1 Localization of the level sets: proof of Theorem 1.2

Heuristically, the fact that u converges to two distinct constant states p ± in Ω ± t uniformly as d Ω (x, Γ t ) → +∞ will force any level set to stay at a finite distance from the "interfaces" Γ t , and the solution u to stay away from p ± in tubular neighbourhoods of Γ t .

More precisely, let us first prove part 1 of Theorem 1.2. Assertion (i) is almost immediate. Indeed, assume it does not hold for some λ ∈ (p -, p + ). Then there exists a sequence

(t n , x n ) n∈N in R × Ω such that u(t n , x n ) = λ for all n ∈ N and d Ω (x n , Γ tn ) → +∞ as n → +∞.
Up to extraction of some subsequence, two cases may occur: either x n ∈ Ω - tn and then u(t n , x n ) → p -as n → +∞, or x n ∈ Ω + tn and then u(t n , x n ) → p + as n → +∞. In both cases, one gets a contradiction with the fact that u(t n , x n ) = λ ∈ (p -, p + ).

Assume now that assertion (ii) does not hold for some C ≥ 0. One may then assume that there exists a sequence (t n , x n ) n∈N of points in R × Ω such that

d Ω (x n , Γ tn ) ≤ C for all n ∈ N and u(t n , x n ) → p -as n → +∞ (2.1) 
(the case where u(t n , x n ) → p + could be treated similarly). Since d Ω (x n , Γ tn ) ≤ C for all n, it follows from (1.5) that there exists a sequence ( x n ) n∈N such that

x n ∈ Γ tn-τ for all n ∈ N and sup d Ω (x n , x n ); n ∈ N < +∞.

On the other hand, from Definition 1.1, there exists d > 0 such that

∀ t ∈ R, ∀ y ∈ Ω + t , d Ω (y, Γ t ) ≥ d =⇒ u(t, y) ≥ p -+ p + 2 .
From (1.6), there exists r > 0 such that, for each n ∈ N, there exists a point

y n ∈ Ω + tn-τ satisfying d Ω ( x n , y n ) = r and d Ω (y n , Γ tn-τ ) ≥ d.
Therefore,

∀ n ∈ N, u(t n -τ, y n ) ≥ p -+ p + 2 . (2.2)
But the sequence (d Ω (x n , y n )) n∈N is bounded and the function v = up -is nonnegative and is a classical global solution of an equation of the type

v t = ∇ x • (A(t, x)∇ x v) + q(t, x) • ∇ x v + b(t, x)v in R × Ω
for some bounded function b, with µ(t, x) • ∇ x v(t, x) = 0 on ∂Ω. Furthermore, the function v has bounded derivatives, from standard parabolic estimates. Since v(t n , x n ) → 0 as n → +∞ from (2.1), one concludes from the linear estimates that v(t nτ, y n ) → 0 as n → +∞. 3 But v(t nτ, y n ) ≥ (p +p -)/2 > 0 from (2.2). One has then reached a contradiction. This gives assertion (ii).

To prove part 2, assume now that (i) and (ii) hold and that there is

d 0 > 0 such that the sets (t, x) ∈ R × Ω; x ∈ Ω + t , d Ω (x, Γ t ) ≥ d and (t, x) ∈ R × Ω; x ∈ Ω - t , d Ω (x, Γ t ) ≥ d are connected for all d ≥ d 0 . Denote m -= lim inf x∈Ω - t , d Ω (x,Γt)→+∞ u(t, x) and M -= lim sup x∈Ω - t , d Ω (x,Γt)→+∞ u(t, x). One has p -≤ m -≤ M -≤ p + . Call λ = (m -+ M -)/2
. Assume now that m -< M -. Then λ ∈ (p -, p + ) and, from (i), there exists C 0 ≥ 0 such that

d Ω (x, Γ t ) < C 0 for all (t, x) ∈ R × Ω such that u(t, x) = λ.
Furthermore, there exist some times t 1 , t 2 ∈ R and some points

x 1 , x 2 with x i ∈ Ω - t i such that u(t 1 , x 1 ) < λ < u(t 2 , x 2 ) and d Ω (x i , Γ t i ) ≥ max(C 0 , d 0 ) for i = 1, 2. Since the set (t, x) ∈ R × Ω; x ∈ Ω - t , d Ω (x, Γ t ) ≥ max(C 0 , d 0 )
is connected and the function u is continuous in R × Ω, there would then exist t ∈ R and x ∈ Ω - t such that d Ω (x, Γ t ) ≥ max(C 0 , d 0 ) and u(t, x) = λ. But this is in contradiction with the choice of C 0 .

Therefore, p -≤ m -= M -≤ p + and u(t, x) → m -uniformly as d Ω (x, Γ t ) → +∞ and x ∈ Ω - t . 3 We use here the fact that, since the domain Ω is assumed to be globally smooth, as well as all coefficients A, q and µ of (1.2) and (1.14), in the sense given in Section 1, then, for every positive real numbers δ, ρ, σ, M, B and η > 0, there exists a positive real number ε = ε(δ, ρ, σ, M, B, η) > 0 such that, for any t 0 ∈ R, for any C 1 path P : [0, 1] → Ω whose length is less than δ, for any nonnegative classical supersolution u of

u t ≥ ∇ x • (A(t, x)∇ x u) + q(t, x) • ∇ x u + b(t, x)u
in the set

E = E t0,P,ρ,σ = [t 0 , t 0 + ρ]× x ∈ Ω; d Ω (x, P ([0, 1])) ≤ ρ ∪ [t 0 , t 0 + σ]×B Ω (P (0), ρ), satisfying (1.14) on ∂E ∩ (R × ∂Ω), ∇ x u L ∞ (E) ≤ M , b L ∞ (E) ≤ B and max u(t 0 , P (s)); s ∈ [0, 1] ≥ η, then u(t 0 + σ, P (0)) ≥ ε.
Similarly,

u(t, x) → m + ∈ [p -, p + ] uniformly as d Ω (x, Γ t ) → +∞ and x ∈ Ω + t .
If max(m -, m + ) < p + , then there is ε > 0 and C ≥ 0 such that u(t, x) ≤ p +ε for all (t, x)

with d Ω (x, Γ t ) ≥ C. But sup {u(t, x); d Ω (x, Γ t ) ≤ C} < p +
because of (ii). Therefore, sup {u(t, x); (t, x) ∈ R × Ω} < p + , which contradicts the fact the the range of u is the whole interval (p -, p + ). As a consequence, max(m -, m + ) = p + .

Similarly, one can prove that min(m -, m + ) = p -. Eventually, either m -= p -and m + = p + , or m -= p + and m + = p -, which means that u is a transition wave connecting p -and p + (or p + and p -). That completes the proof of Theorem 1.2.

Uniqueness of the global mean speed for a given transition wave

This section is devoted to the proof of the intrinsic character of the global mean speed, when it exists, of a generalized transition wave in the general vectorial case m ≥ 1, when p + and p - are separated from each other.

Proof of Theorem 1.7. We make here all the assumptions of Theorem 1.7 and we call

Γ t = ∂ Ω - t ∩ Ω = ∂ Ω + t ∩ Ω
for all t ∈ R. We first claim that there exists C ≥ 0 such that

d Ω (x, Γ t ) ≤ C for all t ∈ R and x ∈ Γ t .
Assume not. Then there is a sequence (t n , x n ) n∈N in R × Ω such that

x n ∈ Γ tn for all n ∈ N and d Ω (x n , Γ tn ) → +∞ as n → +∞.
Up to extraction of some subsequence, one can assume that x n ∈ Ω - tn (the case where x n ∈ Ω + tn could be handled similarly). Call

ε = inf |p -(t, x) -p + (t, x)|; (t, x) ∈ R × Ω > 0 and let A ≥ 0 be such that |u(t, z) -p + (t, z)| ≤ ε 2 for all (t, z) ∈ R × Ω with d Ω (z, Γ t ) ≥ A and z ∈ Ω + t .
Under the assumption (1.6), there exist r > 0 and a sequence (y n ) n∈N such that

y n ∈ Ω + tn , d Ω (x n , y n ) = r and d Ω (y n , Γ tn ) ≥ A for all n ∈ N. Therefore,
d Ω (y n , Γ tn ) → +∞ as n → +∞ and y n ∈ Ω - tn for n large enough. As a consequence,

u(t n , y n ) -p -(t n , y n ) → 0 as n → +∞.
On the other hand, d Ω (y n , Γ tn ) ≥ A and y n ∈ Ω + tn , whence

|u(t n , y n ) -p + (t n , y n )| ≤ ε 2 for all n ∈ N. It follows that lim sup n→+∞ |p -(t n , y n ) -p + (t n , y n )| ≤ ε 2 .
This contradicts the definition of ε. Therefore, there exists C ≥ 0 such that

∀ t ∈ R, ∀ x ∈ Γ t , d Ω (x, Γ t ) ≤ C. (2.3) 
Let now (t, s) ∈ R 2 be any couple of real numbers and let η > 0 be any positive number. There exists (x, y)

∈ Γ t × Γ s such that d Ω (x, y) ≤ d Ω (Γ t , Γ s ) + η. From (2.3), there exists ( x, y) ∈ Γ t × Γ s such that d Ω (x, x) ≤ C + η and d Ω (y, y) ≤ C + η.
Thus, d Ω ( x, y) ≤ d Ω (Γ t , Γ s ) + 2C + 3η and

d Ω ( Γ t , Γ s ) ≤ d Ω (Γ t , Γ s ) + 2C + 3η.
Since η > 0 was arbitrary, one gets that d

Ω ( Γ t , Γ s ) ≤ d Ω (Γ t , Γ s ) + 2C for all (t, s) ∈ R 2 . Hence, lim sup |t-s|→+∞ d Ω ( Γ t , Γ s ) |t -s| ≤ lim sup |t-s|→+∞ d Ω (Γ t , Γ s ) |t -s| = c.
With similar arguments, by permuting the roles of the sets Ω ± t and Ω ± t , one can prove that

d Ω (Γ t , Γ s ) ≤ d Ω ( Γ t , Γ s ) + 2 C
for all (t, s) ∈ R 2 and for some constant C ≥ 0. Thus,

c = lim inf |t-s|→+∞ d Ω (Γ t , Γ s ) |t -s| ≤ lim inf |t-s|→+∞ d Ω ( Γ t , Γ s ) |t -s| .
As a conclusion, the ratio d Ω ( Γ t , Γ s )/|t -s| converges as |t -s| → +∞, and its limit is equal to c. The proof of Theorem 1.7 is thereby complete.

Generalized transition waves for a time-dependent equation

In this section, we construct explicit examples of generalized invasion transition fronts connecting 0 and 1 for the one-dimensional equation (1.10) under the assumption (1.11). Namely, we do the Proof of Theorem 1.8. The strategy consists in starting from a classical traveling front with speed c 1 for the nonlinearity f 1 , that is for times t ∈ (-∞, t 1 ], and then in letting it evolve and in proving that the solution eventually moves with speed c 2 at large times. The key point is to control the exponential decay of the solution when it approches the state 0, between times t 1 and t 2 .

For the nonlinearity f 1 , there exists a family of traveling fronts ϕ 1,c (x-ct) of the equation

u t = u xx + f 1 (u),
where ϕ 1,c : R → (0, 1) satisfies ϕ 1,c (-∞) = 1 and ϕ 1,c (+∞) = 0, for each speed c ∈ [START_REF] Aronson | Multidimensional nonlinear diffusions arising in population genetics[END_REF][START_REF] Hadeler | Travelling fronts in nonlinear diffusion equations[END_REF]. Each ϕ 1,c is decreasing and unique up to shifts (one can normalize ϕ 1,c is such a way that ϕ 1,c (0

[c * 1 , +∞). The minimal speed c * 1 satisfies c * 1 ≥ 2 f ′ 1 (0), see
) = 1/2). Furthermore, if c > c * 1 , then ϕ 1,c (s) ∼ A 1,c e -λ 1,c s as s → +∞,
where A 1,c is a positive constant and λ 1,c > 0 has been defined in (1.12).

If c = c * 1 and c * 1 > 2 f ′ 1 (0), then the same property holds. If c = c * 1 and c * 1 = 2 f ′ 1 (0), then ϕ 1,c (s) ∼ (A 1,c s + B 1,c ) e -λ 1,c s as s → +∞,
where A 1,c ≥ 0, and B 1,c > 0 if A 1,c = 0, see [START_REF] Aronson | Multidimensional nonlinear diffusions arising in population genetics[END_REF].

Let any speed c 1 ∈ [c * 1 , +∞) be given, let ξ be any real number (which is just a shift parameter) and let u be the solution of (1.10) such that u(t, x) = ϕ 1,c 1 (xc 1 t + ξ) for all t ≤ t 1 and x ∈ R.

Define

x t = c 1 t for all t ≤ t 1 .

(3.1)

The function u satisfies

u(t, x) → 1 as x -x t → -∞, u(t, x) → 0 as x -x t → +∞, uniformly w.r.t. t ≤ t 1 . (3.2) 
Let us now study the behavior of u on the time interval [t 1 , t 2 ] and next on the interval [t 2 , +∞). From the strong parabolic maximum principle, there holds 0 < u(t, x) < 1 for all (t, x) ∈ R 2 . For each t ≥ t 1 , the function u(t, •) remains decreasing in R since f does not depend on x. Furthermore, from standard parabolic estimates, the function u satisfies the limiting conditions u(t, -∞) = 1 and u(t, +∞) = 0 locally in t ∈ R,

since f (t, 0) = f (t, 1) = 0. Therefore, setting

x t = x t 1 = c 1 t 1 for all t ∈ (t 1 , t 2 ], (3.4) 
one gets that

u(t, x) → 1 as x -x t → -∞, u(t, x) → 0 as x -x t → +∞, uniformly w.r.t. t ∈ (t 1 , t 2 ]. (3.5) 
Let ε be any positive real number in (0, λ 1,c 1 ). From the definition of u and the above results, it follows that there exists a constant C ε > 0, which also depends on ξ, A 1,c 1 and

B 1,c 1 , such that u(t 1 , x) ≤ min C ε e -(λ 1,c 1 -ε)x , 1 for all x ∈ R.
Let M be the nonnegative real number defined by

M = sup (t,s)∈[t 1 ,t 2 ]×(0,1] f (t, s) s .
This quantity is finite since f is of class C 1 and f (t, 0) = 0 for all t. Denote

α = λ 1,c 1 -ε + M λ 1,c 1 -ε > 0 and u(t, x) = min C ε e -(λ 1,c 1 -ε) (x-α(t-t 1 )) , 1 for all (t, x) ∈ [t 1 , t 2 ] × R.
The function u is positive and it satisfies u(t

1 , •) ≤ u(t 1 , •) in R. Furthermore, for all (t, x) ∈ [t 1 , t 2 ] × R, if u(t, x) < 1, then u t (t, x) -u xx (t, x) -f (t, u(t, x)) ≥ u t (t, x) -u xx (t, x) -M u(t, x) = C ε [α (λ 1,c 1 -ε) -(λ 1,c 1 -ε) 2 -M ] e -(λ 1,c 1 -ε) (x-α(t-t 1 ))
= 0 from the definitions of M and α. Thus, u is a supersolution of (1.10) on the time interval [t 1 , t 2 ] and it is above u at time t 1 . Therefore,

u(t, x) ≤ u(t, x) ≤ C ε e -(λ 1,c 1 -ε) (x-α(t-t 1 )) for all (t, x) ∈ [t 1 , t 2 ] × R (3.6)
from the maximum principle. On the other hand, from the behavior of ϕ 1,c 1 at +∞, there exists a constant

C ′ ε > 0 such that u(t 1 , x) ≥ min C ′ ε e -(λ 1,c 1 +ε)x , 1 2 for all x ∈ R.
Let u the solution of the heat equation u t = u xx for all t ≥ t 1 and x ∈ R, with value But, for all x ∈ R,

u(t 1 , x) = min C ′ ε e -(λ
u(t 2 , x) = +∞ -∞ p(t 2 -t 1 , x -y) u(t 1 , y) dy ≥ C ′ ε +∞ xε p(t 2 -t 1 , x -y) e -(λ 1,c 1 +ε)y dy,
where x ε is the unique real number such that C ′ ε e -(λ 1,c 1 +ε)xε = 1/2 and p(τ, z) = (4πτ ) -1/2 e -z 2 /(4τ ) is the heat kernel. Thus, for all x ≥ x ε + 4(t 2t 1 ), there holds

u(t 2 , x) ≥ C ′ ε 4π(t 2 -t 1 ) x+ √ 4(t 2 -t 1 )
x-

√ 4(t 2 -t 1 ) e - (x-y) 2 4(t 2 -t 1 ) -(λ 1,c 1 +ε)y dy ≥ 2 C ′ ε e -1-(λ 1,c 1 +ε) √ 4(t 2 -t 1 )
√ π × e -(λ 1,c 1 +ε)x .

(3.8)

It follows from (3.6), (3.7) and (3.8) that, for all ε ∈ (0, λ 1,c 1 ), there exist two positive constants C ± ε and a real number X ε such that

C + ε e -(λ 1,c 1 +ε)x ≤ u(t 2 , x) ≤ C - ε e -(λ 1,c 1 -ε)
x for all x ∈ [X ε , +∞). Remember also that 0 < u(t 2 , x) < 1 for all x ∈ R, and that u(t 2 , -∞) = 1. Since f (t, s) = f 2 (s) for all t ≥ t 2 and s ∈ [0, 1], the classical front stability results (see e.g. [START_REF] Larson | Transient bounds and time-asymptotic behavior of solutions to nonlinear equations of Fisher type[END_REF][START_REF] Uchiyama | The behavior of solutions of some semilinear diffusion equation for large time[END_REF]) imply that

sup x∈R u(t, x) -ϕ 2,c 2 (x -c 2 t + m(t)) → 0 as t → +∞, (3.9) 
where m ′ (t) → 0 as t → +∞, and c 2 > 0 is given by (1.13). Here, ϕ 2,c 2 denotes the profile of the front traveling with speed c 2 for the equation u t = u xx + f 2 (u), such that ϕ 2,c 2 (-∞) = 1 and ϕ 2,c 2 (+∞) = 0. Therefore, there exists t 3 > t 2 such that the map t → c 2 tm(t) is increasing in [t 3 , +∞), and c 2 t 3m(t 3 ) ≥ c 1 t 1 . Define Eventually, setting Ω ± t = x ∈ R; ±(xx t ) < 0 and Γ t = {x t } for each t ∈ R, where the real numbers x t 's are defined in (3.1), (3.4) and (3.10), one concludes from (3.2), (3.5) and (3.11) that the function u is a generalized transition front connecting p -= 0 and p + = 1. Furthermore, since the map t → x t is nondecreasing and x tx s → +∞ as ts → +∞, this transition front u is an invasion of 0 by 1. The proof of Theorem 1.8 is thereby complete.

x t = c 1 t 1 if t ∈ (t 2 , t 3 ), c 2 t -m(t) if t ∈ [t 3 , +∞). ( 3 

Monotonicity properties

This section is devoted to the proof of the time-monotonicity properties, that is Theorem 1.10. This result has its own interest and it is also one of the key points in the subsequent uniqueness and classification results. The proof uses several comparison lemmata and some versions of the sliding method with respect to the time variable. Let us first show the following Proposition 4.1 Under the assumptions of Theorem 1.10, one has

∀ (t, x) ∈ R × Ω, p -(t, x) < u(t, x) < p + (t, x).
Proof. We only prove the inequality p -(t, x) < u(t, x), the proof of the second inequality is similar. Remember that u and p -are globally bounded. Assume now that

m := inf u(t, x) -p -(t, x); (t, x) ∈ R × Ω < 0. Let (t n , x n ) n∈N be a sequence in R × Ω such that u(t n , x n ) -p -(t n , x n ) → m < 0 as n → +∞. Since p + (t, x) -p -(t, x) ≥ κ > 0 for all (t, x) ∈ R × Ω, it follows from Definition 1.1 that the sequence (d Ω (x n , Γ tn )) n∈N is bounded.
From assumption (1.5), there exists a sequence of points ( x n ) n∈N such that the sequence (d Ω (x n , x n )) n∈N is bounded and x n ∈ Γ tn-τ for every n ∈ N. From Definition 1.1, there exists d ≥ 0 such that

∀ t ∈ R, ∀ z ∈ Ω + t , d Ω (z, Γ t ) ≥ d =⇒ u(t, z) ≥ p + (t, z) -κ .
From property (1.6), there exist r > 0 and a sequence (y n ) n∈N of points in Ω such that

y n ∈ Ω + tn-τ , d Ω (y n , x n ) = r and d Ω (y n , Γ tn-τ ) ≥ d for all n ∈ N.
One then gets that 4 and since m < 0, the function v solves

u(t n -τ n , y n ) ≥ p + (t n -τ, y n ) -κ (4.1) for all n ∈ N. Call v(t, x) = p -(t, x) + m and w(t, x) = u(t, x) -v(t, x) = u(t, x) -p -(t, x) -m ≥ 0 for every (t, x) ∈ R × Ω. Since p -solves (1.2), since f (t, x, •) is nonincreasing in (-∞, p -(t, x) + δ] for each (t, x) ∈ R × Ω,
v t ≤ ∇ x • (A(x)∇ x v) + q(x) • ∇ x v + f (t, x, v) in R × Ω
(remember that A and f do not depend on t, but this property is actually not used here). In other words, v is a subsolution for (1.2). But u solves (1.2) and f (t, x, s) is locally Lipschitzcontinuous in s uniformly in (t, x) ∈ R × Ω. There exists then a bounded function b such that

w t ≥ ∇ x • (A(x)∇ x v) + q(x) • ∇ x v + b(t, x)w in R × Ω.
Lastly, w satisfies µ • ∇ x w = 0 on R × ∂Ω. Since the sequences (d Ω (x n , x n )) n∈N and (d Ω (y n , x n )) n∈N are bounded, the sequence (d Ω (x n , y n )) n∈N is bounded as well. Thus, since w ≥ 0 in R × Ω and w(t n , x n ) → 0 as n → +∞, one gets, as in the proof of part 1 of Theorem 1.2, that w(t nτ, y n ) → 0 as n → +∞. But w(t nτ, y n ) satisfies

w(t n -τ, y n ) = u(t n -τ, y n ) -p -(t n -τ, y n ) -m ≥ p + (t n -τ, y n ) -κ -p -(t n -τ, y n ) -m ≥ -m > 0
for all n ∈ N because of (4.1). One has then reached a contradiction. As a conclusion, m ≥ 0, whence

u(t, x) ≥ p -(t, x) for all (t, x) ∈ R × Ω.
If u(t 0 , x 0 ) = p -(t 0 , x 0 ) for some (t 0 , x 0 ) ∈ R × Ω, then the strong parabolic maximum principle and Hopf lemma imply that u(t, x) = p -(t, x) for all x ∈ Ω and t ≤ t 0 , and then for all t ∈ R by uniqueness of the Cauchy problem for (1.2). But this is impossible since p +p -≥ κ > 0 in R × Ω and u(t, x)p + (t, x) → 0 uniformly as x ∈ Ω + t and d Ω (x, Γ t ) → +∞ (notice actually that for each t ∈ R, there are some points z n ∈ Ω + t such that d Ω (z n , Γ t ) → +∞ as n → +∞, from (1.3)).

As already underlined, the proof of the inequality u < p + is similar.

Let us now turn to the

Proof of Theorem 1.10. In the hypotheses (1.15) and (1.16), one can assume without loss of generality that 0 < 2δ ≤ κ, even if it means decreasing δ. In what follows, for any s ∈ R, we define u s in R × Ω by

∀ (t, x) ∈ R × Ω, u s (t, x) = u(t + s, x).
The general strategy is to prove that u s ≥ u in R × Ω for all s > 0 large enough, and then for all s ≥ 0 by sliding u with respect to the time variable. First, from Definition 1.1, there exists A > 0 such that

∀ (t, x) ∈ R × Ω,    x ∈ Ω - t and d Ω (x, Γ t ) ≥ A =⇒ u(t, x) ≤ p -(t, x) + δ , x ∈ Ω + t and d Ω (x, Γ t ) ≥ A =⇒ u(t, x) ≥ p + (t, x) - δ 2 . ( 4 

.2)

Since p + invades p -, there exists s 0 > 0 such that

∀ t ∈ R, ∀ s ≥ s 0 , Ω + t+s ⊃ Ω + t and d Ω (Γ t+s , Γ t ) ≥ 2A.
Fix any t ∈ R, s ≥ s 0 and x ∈ Ω. If x ∈ Ω + t , then x ∈ Ω + t+s and d Ω (x, Γ t+s ) ≥ 2A since any continuous path from x to Γ t+s in Ω meets Γ t . On the other hand, if x ∈ Ω - t and d Ω (x, Γ t ) ≤ A, then d Ω (x, Γ t+s ) ≥ A and x ∈ Ω + t+s . In both cases, one then has that

u s (t, x) = u(t + s, x) ≥ p + (t + s, x) - δ 2 ≥ p + (t, x) -δ since p + is nondecreasing in time. To sum up, ∀ s ≥ s 0 , ∀ (t, x) ∈ R × Ω, x ∈ Ω + t or x ∈ Ω - t and d Ω (x, Γ t ) ≤ A =⇒ u s (t, x) = u(t + s, x) ≥ p + (t, x) -δ . (4.3) Lemma 4.2 Call ω - A = {(t, x) ∈ R × Ω; x ∈ Ω - t and d Ω (x, Γ t ) ≥ A}.
For all s ≥ s 0 , one has

u s ≥ u in ω - A .
Proof. Fix s ≥ s 0 and define

ε * = inf ε > 0; u s ≥ u -ε in ω - A .
Since u is bounded, ε * is a well-defined nonnegative real number and one has

u s ≥ u -ε * in ω - A . (4.4)
One only has to prove that ε * = 0. Assume by contradiction that ε * > 0. There exist then a sequence (ε n ) n∈N of positive real numbers and a sequence of points (t n , x n ) n∈N in ω - A such that

ε n → ε * as n → +∞ and u s (t n , x n ) < u(t n , x n ) -ε n for all n ∈ N. (4.5)
We first note that, when x ∈ Ω - t and d Ω (x, Γ t ) = A, then u(t, x) ≤ p -(t, x) + δ from (4.2), while u s (t, x) ≥ p + (t, x)δ from (4.3). Hence

u s (t, x) -u(t, x) ≥ p + (t, x) -p -(t, x) -2δ ≥ κ -2δ ≥ 0 when x ∈ Ω - t and d Ω (x, Γ t ) = A. (4.6)
Since ∇ x u is globally bounded in R × Ω, it follows from (4.5) and the positivity of ε * that there exists ρ > 0 such that lim inf

n→+∞ d Ω (x n , Γ tn ) ≥ A + 2ρ.
Even if it means decreasing ρ, one can also assume without loss of generality that

0 < ρ < τ,
where τ is given in (1.5), and that

ρ × (u -p + ) t L ∞ (R×Ω) + ∇ x (u -p + ) L ∞ (R×Ω) ≤ ε * 2 (4.7)
since u and p + have bounded derivatives.

Next, we claim that the sequence (d Ω (x n , Γ tn )) n∈N is bounded. Otherwise, up to extraction of some subsequence, one has

d Ω (x n , Γ tn ) → +∞ and then u(t n , x n ) -p -(t n , x n ) → 0 as n → +∞.
But, from Proposition 4.1 and the fact that p -is nondecreasing in time, one has

u(t n , x n ) -p -(t n , x n ) > ε n + u(t n + s, x n ) -p -(t n , x n ) ≥ ε n + p -(t n + s, x n ) -p -(t n , x n ) ≥ ε n → ε * > 0 as n → +∞,
which gives a contradiction. Therefore, the sequence (d Ω (x n , Γ tn )) n∈N is bounded.

Since x n ∈ Ω - tn and d Ω (x n , Γ tn ) ≥ A + ρ for n large enough (say, for n ≥ n 0 ), and since p + invades p -, it follows that

x n ∈ Ω - t and d Ω (x n , Γ t ) ≥ A + ρ for all n ≥ n 0 and t ≤ t n and even that

x ∈ Ω - t and d Ω (x, Γ t ) ≥ A for all n ≥ n 0 , x ∈ B Ω (x n , ρ) and t ≤ t n . (4.8)

As a consequence, since ρ < τ , there exists a sequence of points (y n ) n∈N, n≥n 0 in Ω such that

y n ∈ Ω - tn-τ +ρ and A + ρ = d Ω (y n , Γ tn-τ +ρ ) = d Ω (x n , Γ tn-τ +ρ ) -d Ω (x n , y n ) (4.9)
for all n ≥ n 0 . Thus, for each n ∈ N with n ≥ n 0 , there exists a C 1 path P n : [0, 1] → Ω - tn-τ +ρ such that P n (0) = x n , P n (1) = y n , the length of P n is equal to d Ω (x n , y n ) and

d Ω (P n (σ), Γ tn-τ +ρ ) ≥ A + ρ for all σ ∈ [0, 1].
Once again, since p + invades p -, it follows that

∀ n ≥ n 0 , ∀ σ ∈ [0, 1], ∀ x ∈ B Ω (P n (σ), ρ), ∀ t ≤ t n -τ + ρ, x ∈ Ω - t and d Ω (x, Γ t ) ≥ A.
(4.10) Together with (4.8), one gets that, for each n ≥ n 0 , the set

E n = [t n -τ, t n ]×B Ω (x n , ρ) ∪ [t n -τ, t n -τ + ρ]× x ∈ Ω; d Ω (x, P n ([0, 1])) ≤ ρ is included in ω - A . As a consequence, for all n ≥ n 0 , v := u s -(u -ε * ) ≥ 0 in E n from (4.4), and u(t, x) -ε * < u(t, x) ≤ p -(t, x) + δ for all (t, x) ∈ E n from (4.2). Thus, (u -ε * ) t = ∇ x • (A(x)∇ x (u -ε * )) + q(x) • ∇ x (u -ε * ) + f (t, x, u) ≤ ∇ x • (A(x)∇ x (u -ε * )) + q(x) • ∇ x (u -ε * ) + f (t, x, u -ε * ) in E n for all n ≥ n 0 , because f (t, x, •) is nonincreasing in (-∞, p -(t, x) + δ].
In other words, the function uε * is a subsolution of (1.2) in E n for all n ≥ n 0 . As far as the function u s (t, x) = u(t + s, x) is concerned, it satisfies

u s t = ∇ x • (A(x)∇ x u s ) + q(x) • ∇ x u s + f (t + s, x, u s ) ≥ ∇ x • (A(x)∇ x u s ) + q(x) • ∇ x u s + f (t, x, u s ) for all (t, x) ∈ R × Ω because f (•, x, ξ) is nondecreasing for all (x, ξ) ∈ Ω × R.
Notice that we here use the fact that A and q are independent from the variable t. Furthermore,

u s still satisfies µ(x) • ∇ x u s (t, x) = 0 on R × ∂Ω because µ is independent of t.
In other words, u s is a supersolution of (1.2). Consequently, since the functions f (t, x, •) are locally Lipschitz-continuous uniformly with respect to (t, x) ∈ R × Ω, the function v satisfies inequations of the type

v t ≥ ∇ x • (A(x)∇ x v) + q(x) • ∇ x v + b(t, x)v in E n
for all n ≥ n 0 , where the sequence ( b L ∞ (En) ) n∈N, n≥n 0 is bounded. On the other hand, since the sequence (d Ω (x n , Γ tn )) n∈N is bounded, it follows from assumption (1.5) that there exists then a sequence of points ( x n ) n∈N in Ω such that

x n ∈ Γ tn-τ for all n ∈ N, and sup d Ω (x n , x n ); n ∈ N < +∞.

Thus, for all n ≥ n 0 ,

d Ω (x n , y n ) = d Ω (x n , Γ tn-τ +ρ ) -(A + ρ) ≤ d Ω (x n , Γ tn-τ ) -(A + ρ) ≤ d Ω (x n , x n ) -(A + ρ) since x n ∈ Ω -
tn and the sets Ω - t are non-increasing with respect to t in the sense of the inclusion (because p + invades p -). The sequence (d Ω (x n , y n )) n∈N, n≥n 0 is then bounded. Lastly, remember that the function ∇ x v is bounded in R×Ω. As a conclusion, since v(t n , x n ) → 0 as n → +∞ (because of (4.5) and v(t n , x n ) ≥ 0), it follows from the linear parabolic estimates that v(t nτ, y n ) → 0 as n → +∞. (

But, because of (4.9), there exists a sequence (z n ) n∈N, n≥n 0 such that

z n ∈ Ω - tn-τ +ρ , d Ω (y n , z n ) = ρ and d Ω (z n , Γ tn-τ +ρ ) = A
for all n ≥ n 0 . Thus, for all n ≥ n 0 ,

u s (t n -τ, y n ) -p + (t n -τ, y n ) ≥ u s (t n -τ + ρ, z n ) -p + (t n -τ + ρ, z n ) - ε * 2 ≥ -δ - ε * 2 from (4.
3) and (4.7). Moreover,

u(t n -τ, y n ) ≤ p -(t n -τ, y n ) + δ for all n ≥ n 0 from (4.
2) and (4.10). Eventually, for all n ≥ n 0 , there holds

v(t n -τ, y n ) = u s (t n -τ, y n ) -u(t n -τ, y n ) + ε * = u s (t n -τ, y n ) -p + (t n -τ, y n ) + p + (t n -τ, y n ) -u(t n -τ, y n ) + ε * ≥ -δ - ε * 2 + p + (t n -τ, y n ) -p -(t n -τ, y n ) -δ + ε * ≥ κ -2δ + ε * 2 ≥ ε * 2 > 0 from (1.16
) and the inequality 2δ ≤ κ.

One has then reached a contradiction with (4.11). Hence ε * = 0 and the proof of Lemma 4.2 is thereby complete.

Similarly, using now that

f (t, x, •) is nonincreasing in [p + (t, x)-δ, +∞) and that u s (t, x) ≥ p + (t, x)-δ/2 ≥ p + (t, x)-δ provided that (t, x) ∈ ω -
A and s ≥ s 0 , we shall prove the following: Lemma 4.3 For all s ≥ s 0 , one has

u s ≥ u in ω + A := R × Ω \ ω - A .
Proof. The proof uses some of the tools of that of Lemma 4.2, but it is not just identical, because the time-sections of ω + A , namely the sets Ω + t ∪ x ∈ Ω - t ; d Ω (x, Γ t ) < A , are now nondecreasing with respect to time t in the sense of the inclusion. Fix s ≥ s 0 and define

ε * = inf ε > 0; u s + ε ≥ u in ω + A .
This nonnegative real number is well-defined since u is globally bounded, and one has

w := u s + ε * -u ≥ 0 in ω + A . Furthermore, Lemma 4.2 implies that w ≥ ε * in ω - A . (4.12) 
In particular, w is nonnegative in R × Ω.

To get the conclusion of Lemma 4.3, it is sufficient to prove that ε * = 0. Assume by contradiction that ε * > 0. There exists then a sequence (ε n ) n∈N of positive real numbers and a sequence of points (t n , x n ) n∈N in ω + A such that ε n → ε * as n → +∞, and u s (t n , x n ) + ε n < u(t n , x n ) for all n ∈ N.

If the sequence (d Ω (x n , Γ tn )) n∈N were not bounded, then, up to extraction of a subsequence, it would converge to +∞, whence

x n ∈ Ω + tn ⊂ Ω + tn+s and d Ω (x n , Γ tn+s ) ≥ d Ω (x n , Γ tn ) for large n. Therefore, d Ω (x n , Γ tn+s ) → +∞ and u s (t n , x n ) -p + (t n + s, x n ) → 0 as n → +∞. But u s (t n , x n ) -p + (t n + s, x n ) < u(t n , x n ) -ε n -p + (t n + s, x n ) ≤ p + (t n , x n ) -p + (t n + s, x n ) -ε n ≤ -ε n → -ε * < 0 as n → +∞
from Proposition 4.1 and since p + is nondecreasing in time. This gives a contradiction. Thus, the sequence (d Ω (x n , Γ tn )) n∈N is bounded. From (1.5), there exists then a sequence ( x n ) n∈N in Ω such that

x n ∈ Γ tn-τ for all n ∈ N, and sup d Ω (x n , x ); n ∈ N < +∞.

Because of (1.6), there exist r > 0 and a sequence (y n ) n∈N in Ω such that

y n ∈ Ω - tn-τ , d Ω ( x n , y n ) = r and d Ω (y n , Γ tn-τ ) ≥ A for all n ∈ N.
There exists then a sequence (z n ) n∈N in Ω such that

z n ∈ Ω - tn-τ and A = d Ω (z n , Γ tn-τ ) = d Ω (y n , Γ tn-τ ) -d Ω (y n , z n ) for all n ∈ N. (4.13) 
Since d Ω (y n , z n ) ≤ d Ω (y n , Γ tn-τ ) ≤ d Ω (y n , x n ) = r and since the sequence (d Ω (x n , x n )) n∈N is bounded, one gets finally that the sequence (d Ω (x n , z n )) n∈N is bounded. Choose now ρ > 0 so that

ρ (u s -u) t L ∞ (R×Ω) + 2 ρ ∇ x (u s -u) L ∞ (R×Ω) < ε * (4.14) 
and K ∈ N\{0} so that

K ρ ≥ max τ, sup d Ω (x n , z n ); n ∈ N . (4.15) 
For each n ∈ N, there exists then a sequence of points (X n,0 , X n,1 , . . . , X n,K ) in Ω such that

X n,0 = x n , X n,K = z n and d Ω (X n,i , X n,i+1 ) ≤ ρ for each 0 ≤ i ≤ K -1.
For each n ∈ N and 0

≤ i ≤ K -1, set E n,i = t n - i + 1 K τ, t n - i K τ × B Ω (X n,i , 2 ρ).
Since w(t n , x n ) → 0 as n → +∞, it follows from (4.14) and (4.15) that w < ε * in E n,0 for large n, whence E n,0 ⊂ ω + A from (4.12). Consequently,

u s (t, x) + ε * > u s (t, x) ≥ p + (t, x) -δ in E n,0 for large n from (4.3). Since f (t, x, •) is nonincreasing in [p + (t, x) -δ, +∞
) for all (t, x) ∈ R × Ω and since u s is a supersolution of (1.2), it follows then as in the proof of Lemma 4.2 that the nonnegative function w satisfies inequations of the type

w t ≥ ∇ x (A(x)∇ x w) + q(x) • ∇ x w + b(t, x)w in E n,0
for n large enough, where the sequence ( b L ∞ (E n,0 ) ) n∈N is bounded. Remember also that µ(x) • ∇ x w(t, x) = 0 for all (t, x) ∈ R × ∂Ω, and that ∇ x w is bounded in R × Ω. Since w(t n , X n,0 ) = w(t n , x n ) → 0 as n → +∞, one concludes from the linear parabolic estimates that w t n -τ K , X n,1 → 0 as n → +∞.

An immediate induction yields w(t niτ /K, X n,i ) → 0 as n → +∞ for each i = 1, . . . , K. In particular, for i = K, w(t nτ, z n ) → 0 as n → +∞.

But z n ∈ Ω - tn-τ and d Ω (z n , Γ tn-τ ) = A for all n ∈ N. As a consequence, for all n ∈ N,

(t n -τ, z n ) ∈ ω -
A and w(t nτ, z n ) ≥ ε * from (4.12). One has then reached a contradiction, which means that ε * = 0. That completes the proof of Lemma 4.3.

End of the proof of Theorem 1.10. It follows from Lemmata 4.2 and 4.3 that

u s ≥ u in R × Ω for all s ≥ s 0 . Now call s * = inf {s > 0; u σ ≥ u in R × Ω for all σ ≥ s}.
One has 0 ≤ s * ≤ s 0 and one shall prove that s * = 0. Assume that s * > 0. Since

u s * ≥ u in R × Ω, two cases may occur: either inf u s * (t, x) -u(t, x); d Ω (x, Γ t ) ≤ A > 0 or inf u s * (t, x) -u(t, x); d Ω (x, Γ t ) ≤ A = 0. Case 1: assume that inf u s * (t, x) -u(t, x); d Ω (x, Γ t ) ≤ A > 0.
Since u t is globally bounded, there exists η 0 ∈ (0, s * ) such that

∀ η ∈ [0, η 0 ], ∀ (t, x) ∈ R × Ω, d(x, Γ t ) ≤ A =⇒ u s * -η (t, x) ≥ u(t, x) . (4.16) 
For each η ∈ [0, η 0 ], one then has

u s * -η (t, x) ≥ u(t, x) for all (t, x) ∈ R × Ω such that x ∈ Ω - t and d Ω (x, Γ t ) = A, while u(t, x) ≤ p -(t, x) + δ if x ∈ Ω - t and d Ω (x, Γ t ) ≥ A (i.e. (t, x) ∈ ω - A ) from (4.
2). Therefore, the same arguments as in Lemma 4.2 imply that Notice that this is the place where we use the choice of δ/2 (< δ) in the second property of (4.2). Furthermore, remember from (4.16) and (4.17) that, for all η ∈ [0, η 0 ], u s * -η (t, x) ≥ u(t, x) for all (t, x) ∈ R × Ω such that x ∈ Ω - t , or x ∈ Ω + t and d Ω (x, Γ t ) ≤ A. As in Lemma 4.3, one then gets that

∀ η ∈ [0, η 0 ], u s * -η ≥ u in ω - A . ( 4 
∀η ∈ [0, η 0 ], x ∈ Ω + t and d Ω (x, Γ t ) ≥ A =⇒ u s * -η (t, x) ≥ u(t, x) .
One concludes that u s * -η ≥ u in R × Ω for all η ∈ [0, η 0 ]. That contradicts the minimality of s * and case 1 is then ruled out.

Case 2: assume that inf u s * (t, x)u(t, x); d Ω (x, Γ t ) ≤ A = 0.

There exists then a sequence (

t n , x n ) n∈N in R × Ω such that d Ω (x n , Γ tn ) ≤ A and u s * (t n , x n ) -u(t n , x n ) → 0 as n → +∞.
Since u s * is a supersolution of (1.2) in R × Ω (as already noticed in the proof of Lemma 4.2) and since u s * ≥ u in R × Ω, it follows from the linear parabolic estimates that

u(t n , x n ) -u(t n -s * , x n ) = u s * (t n -s * , x n ) -u(t n -s * , x n ) → 0 as n → +∞.
By immediate induction, one has that

u(t n , x n ) -u(t n -ks * , x n ) → 0 as n → +∞ (4.18)
for each k ∈ N. Fix any ε > 0. Let B ε > 0 be such that

∀ (t, x) ∈ R × Ω, x ∈ Ω - t and d Ω (x, Γ t ) ≥ B ε =⇒ u(t, x) ≤ p -(t, x) + ε .
On the other hand, since p + invades p -and since the sequence (d Ω (x n , Γ tn )) n∈N is bounded, there exists m ∈ N such that

x n ∈ Ω - tn-ms * and d Ω (x n , Γ tn-ms * ) ≥ B ε for all n ∈ N.

Hence, Let now B > 0 be such that

u(t n -ms * , x n ) ≤ p -(t n -ms * , x n ) + ε ≤ p -(t n , x n ) + ε for all n ∈ N since p -is
∀ (t, x) ∈ R × Ω, x ∈ Ω + t and d Ω (x, Γ t ) ≥ B =⇒ u(t, x) ≥ p + (t, x) - κ 2 ,
where κ > 0 has been defined in (1.16). From assumption (1.5), and since the sequence (d Ω (x n , Γ tn )) n∈N is bounded, there exists a sequence ( x n ) n∈N in Ω such that

x n ∈ Γ tn-τ for all n ∈ N, and sup d Ω (x n , x n ); n ∈ N < +∞.

From (1.6), there exist r > 0 and a sequence (y n ) n∈N in Ω such that

y n ∈ Ω + tn-τ , d Ω (y n , x n ) = r and d Ω (y n , Γ tn-τ ) ≥ B for all n ∈ N. Thus, u(t n -τ, y n ) ≥ p + (t n -τ, y n ) - κ 2 for all n ∈ N.
Remember now that both u ≥ p -are two bounded solutions of (1.2) and that f (t, x, ξ) is locally Lipschitz-continuous in ξ, uniformly with respect to (t, x) ∈ R × Ω. Notice also that the sequence (d

Ω (x n , y n )) n∈N is bounded. Since u(t n , x n ) -p -(t n , x n ) → 0 as n → +∞ because of (4.19), one concludes that u(t n -τ, y n ) -p -(t n -τ, y n ) → 0 as n → +∞. But u(t n -τ, y n ) -p -(t n -τ, y n ) ≥ p + (t n -τ, y n ) - κ 2 -p -(t n -τ, y n ) ≥ κ 2 > 0
owing to the definition of κ. One has then reached a contradiction and case 2 is then ruled out too. As a consequence, s * = 0 and

u s ≥ u in R × Ω for all s ≥ 0.
Let us now prove that the inequality is strict if s > 0. Choose any s > 0 and assume that u s (t 0 , x 0 ) = u(t 0 , x 0 ) for some (t 0 , x 0 ) ∈ R × Ω.

Since u s (≥ u) is a supersolution of (1.2), one gets that u s (t, x) = u(t, x) for all t ≤ t 0 and x ∈ Ω from the strong parabolic maximum principle and Hopf lemma. Fix any t ≤ t 0 and x ∈ Ω. For all k ∈ N, one then has

0 ≤ u(t, x) -p -(t, x) = u(t -ks) -p -(t, x) ≤ u(t -ks, x) -p -(t -ks, x)
because p -is nondecreasing in time. But the right-hand side converges to 0 as k → +∞, because s > 0 and because of Definition 1.4 (here, p + invades p -). It follows that u(t, x) = p -(t, x) for all t ≤ t 0 and x ∈ Ω, which is impossible because of Proposition 4.1.

As a conclusion, u s (t, x) > u(t, x) for all (t, x) ∈ R × Ω and s > 0. That completes the proof of Theorem 1.10.

Uniqueness of the mean speed, comparison of almost planar fronts and reduction to pulsating fronts

In this section, we prove, under some appropriate assumptions, the uniqueness of the speed among all almost-planar invasion fronts, and that the transition fronts reduce in some standard situations to the usual planar or pulsating fronts. Let us first process with the Proof of Theorem 1.11. Notice first that c and c are (strictly) positive. Indeed,

d Ω (Γ t , Γ s ), d Ω ( Γ t , Γ s ) → +∞ as |t -s| → +∞,
and the quantities d Ω (Γ t , Γ s )c |t -s| and d Ω ( Γ t , Γ s )c |t -s| are assumed to be bounded uniformly with respect to (t, s) ∈ R 2 . One shall prove that c = c and that u is above u up to shift in time. Assume that c < c (the other case can be treated similarly by permuting the roles of u and u). Define

v(t, x) = u c c t, x
and notice that

v t (t, x) = c c u t c c t, x ≥ u t c c t, x = ∇ x • (A(x)∇ x v(t, x)) + q(x) • ∇ x v(t, x) + f (x, v(t, x))
because c/ c ≥ 1 and u t ≥ 0 from Theorem 1.10. We also use the fact that both A, q and f are independent of t. Furthermore, µ(x)•∇ x v(t, x) = 0 on R×∂Ω. Therefore, the function v, as well as all its time-shifts, is a supersolution for (1. are bounded independently of (t, s) ∈ R 2 . As a consequence, the map On the other hand, Definition 1.1 applied to u implies that there exists A > 0 such that

t → d Ω (Γ t , Γ 0 ) -d Ω ( Γ ct/e c , Γ 0 ) is bounded in R.
∀ (t, x) ∈ R × Ω,    x ∈ Ω - t and d Ω (x, Γ t ) ≥ A =⇒ u(t, x) ≤ p -(x) + δ x ∈ Ω + t and d Ω (x, Γ t ) ≥ A =⇒ u(t, x) ≥ p + (x) - δ 2 .
(5.3)

Since u and u are almost planar in the same direction e and since u is an invasion of p - by p + , properties (5.1) and (5.2) yield the existence of s 0 > 0 such that, for all s ≥ s 0 and for all (t, x) ∈ R × Ω,

x ∈ Ω + t or x ∈ Ω - t and d Ω (x, Γ t ) ≤ A =⇒ v s (t, x) = v(t + s, x) ≥ p + (x) -δ .
Choose any s ≥ s 0 . Since p -≤ u, v ≤ p + (from Proposition 4.1) and

0 < 2δ ≤ κ := inf p + (t, x) -p -(t, x); (t, x) ∈ R × Ω
(even if it means decreasing δ without loss of generality), the arguments used in Lemma 4.2 imply that

u(t, x) ≤ v s (t, x) in ω - A , i.e. for all x ∈ Ω - t such that d Ω (x, Γ t ) ≥ A.
Therefore, the arguments used in the proof of Lemma 4.3 similarly imply that

u(t, x) ≤ v s (t, x) for all (t, x) ∈ R × Ω \ ω - A .
Thus, u ≤ v s in R × Ω for all s ≥ s 0 .

Call now s

* = inf {s ∈ R; u ≤ v s in R × Ω}.
One has s * ≤ s 0 and s * > -∞ because p -(x) < u(t, x) < p + (x) for all (t, x) ∈ R × Ω (from Theorem 1.10) and v s (0,

x 0 ) = u c c s, x 0 → p -(x 0 ) as s → -∞
for all x 0 ∈ Ω (see Definition 1.4). There holds

u ≤ v s * in R × Ω.
In particular,

x ∈ Ω + t and d Ω (x, Γ t ) ≥ A =⇒ v s * (t, x) ≥ u(t, x) ≥ p + (x) - δ 2 .
(5.4)

Assume now that inf v s * (t, x)u(t, x); d Ω (x, Γ t ) ≤ A > 0.

(5.5)

The same property then holds when s * is replaced with s *η for any η ∈ [0, η 0 ] and η 0 > 0 small enough, since v t (like u t ) is globally bounded. From (5.4), one can assume that η 0 > 0 is small enough so that

x ∈ Ω + t and d Ω (x, Γ t ) ≥ A =⇒ v s * -η (t, x) ≥ p + (x) -δ for all η ∈ [0, η 0 ]
. The first property of (5.3) implies, as in Lemma 4.2, that v s * -η (t, x) ≥ u(t, x) for all η ∈ [0, η 0 ] and (t, x) ∈ R × Ω with x ∈ Ω - t and d Ω (x, Γ t ) ≥ A.

The above inequality then holds for all (t, x) ∈ R × Ω such that x ∈ Ω - t , or x ∈ Ω + t and d Ω (x, Γ t ) ≤ A. As in Lemma 4.3, one then gets that

v s * -η (t, x) ≥ u(t, x) for all η ∈ [0, η 0 ] and (t, x) ∈ R × Ω with x ∈ Ω + t and d Ω (x, Γ t ) ≥ A. Eventually, v s * -η ≥ u in R × Ω for all η ∈ [0, η 0 ].
That contradicts the minimality of s * and assumption (5.5) is false. Therefore

, inf v s * (t, x) -u(t, x); d Ω (x, Γ t ) ≤ A = 0.
Then, there exists a sequence (t

n , x n ) ∈ R × Ω such that d Ω (x n , Γ tn ) ≤ A for all n ∈ N and v s * (t n , x n ) -u(t n , x n ) → 0 as n → +∞.
Because of (1.5), there exists a sequence ( x n ) n∈N in Ω such that

x n ∈ Γ tn-τ for all n ∈ N, and sup d Ω (x n , x n ); n ∈ N < +∞.

Since v s * is a supersolution of (1.2) and v s * ≥ u in R × Ω, it follows from the linear parabolic estimates that

max v s * (t, x) -u(t, x); t n -τ -1 ≤ t ≤ t n -τ, d Ω (x, x n ) ≤ 1 → 0 as n → +∞ and, since the functions v s * t , v s * x i , v s * x i x j , u t , u x i and u x i x j are globally Hölder continuous in R × Ω for all 1 ≤ i, j ≤ N , one gets that v s * t (t n -τ, x n ) -u t (t n -τ, x n ) + v s * x i (t n -τ, x n ) -u x i (t n -τ, x n ) + v s * x i x j (t n -τ, x n ) -u x i x j (t n -τ, x n ) → 0 as n → +∞ for all 1 ≤ i, j ≤ N . But    c c v s * t = ∇ x • (A(x)∇ x v s * ) + q(x) • ∇ x v s * + f (x, v s * ), u t = ∇ x • (A(x)∇ x u) + q(x) • ∇ x u + f (x, u). Hence u(t n -2τ -σ ′ , z n ) ≤ u(t n -2τ, z n ) ≤ u(t n -2τ -σ ′ , z n ) + σ ′ ε
for n large enough, and then

u(t n -2τ, z n ) -u(t n -2τ -σ ′ , z n ) → 0 as n → +∞
because ε > 0 was arbitrary and σ ′ was independent of ε. But

u(t n -2τ, z n ) -u(t n -2τ -σ ′ , z n ) ≥ p + (z n ) - κ 3 -p -(z n ) - κ 3 ≥ κ 3
> 0 for all n ∈ N because of (5.6), (5.7) and of the definition of κ in (1.16). One has then reached a contradiction.

As a consequence, c ≥ c.

The other inequality follows by reversing the roles of u and u. Thus, c = c. The above arguments also imply that, for u and u as in Theorem 1.11, there exists (the smallest) T ∈ R such that u(t + T, x) ≥ u(t, x) for all (t, x) ∈ R × Ω. The strong parabolic maximum principle and Hopf lemma imply that either the inequality is strict everywhere, or the two functions u and u T are identically equal. That completes the proof of Theorem 1.11.

Let us now turn to the proof of the reduction of almost planar invasion fronts to pulsating fronts in periodic media.

Proof of Theorem 1.13. To prove part

(i), fix k ∈ L 1 Z × • • • × L N Z. By periodicity, the function u(t, x) = u(t, x + k)
is a solution of (1.2). Furthermore, u, like u, satisfies all assumptions of Theorem 1.11. Thus, there exists (the smallest) T ∈ R such that

u(t + T, x) = u(t + T, x + k) ≥ u(t, x) for all (t, x) ∈ R × Ω (5.8)
and there exists a sequence of points (t

n , x n ) n∈N in R × Ω such that (d Ω (x n , Γ tn )) n∈N is bounded and u(t n + T, x n + k) -u(t n , x n ) → 0 as n → +∞. (5.9) It shall then follow that lim inf n→+∞ |u(t n , x n ) -p ± (x n )| > 0.
(5.10) Indeed, assume for instance that, up to extraction of some subsequence,

u(t n , x n )-p -(x n ) → 0 as n → +∞ (the case u(t n , x n ) -p + (x n ) → 0 as n → +∞ could be handled similarly). Then max u(t n -τ, y) -p -(y); d Ω (y, x n ) ≤ C → 0 as n → +∞
for any C ≥ 0, from the linear parabolic estimates applied to the nonnegative function u-p - (remember that τ > 0 is given in (1.5)). But there is a sequence (y n ) n∈N in Ω such that

(d Ω (y n , x n )) n∈N is bounded , y n ∈ Ω + tn-τ and u(t n -τ, y n ) ≥ p + (y n ) - κ 2 
for all n ∈ N direction e. We start with the Proof of Theorem 1.15. Up to rotation of the frame, one can assume without loss of generality that e = e 1 = (1, 0, . . . , 0). We shall then prove that u is decreasing in x 1 and that it does not depend on the variable x ′ = (x 2 , . . . , x N ). First, notice that the same arguments as in Proposition 4.1 yield the inequalities (1.22). The proof is even simpler here due to the facts that Γ t = {x 1 = ξ t } and that assumption (1.21) is made.

Actually, because of (1.21) and Definition 1.1, one can assume without loss of generality in the sequel that the map t → ξ t is uniformly continuous in R.

Fix any vector θ ∈ R N -1 and call

v(t, x) = u(t, x 1 , x ′ + θ).
Since the coefficients of (1.2) are assumed to be independent of x ′ , the function v is a solution of the same equation (1.2) as u, with the same choice of sets (Ω ± t ) t∈R and (Γ t ) t∈R . Let A ≥ 0 be such that

∀ (t, x) ∈ R × R N ,    x 1 -ξ t ≥ A =⇒ u(t, x) ≤ p -(t, x 1 ) + δ x 1 -ξ t ≤ -A =⇒ u(t, x) ≥ p + (t, x 1 ) - δ 2 . ( 6.1) 
For all ξ ≥ 2A and x 1ξ t ≤ A, one has

v ξ (t, x) := v(t, x 1 -ξ, x ′ ) ≥ p + (t, x 1 -ξ) - δ 2 ≥ p + (t, x 1 ) -δ ≥ p -(t, x 1 ) + δ (6.2)
because p + is nonincreasing in x 1 and one can assume, without loss of generality, that 0 < 2δ ≤ κ, under the notation used in (1.15) and (1.16).

Lemma 6.1 For all ξ ≥ 2A, there holds

v ξ (t, x) ≥ u(t, x) for all (t, x) ∈ R × R N such that x 1 -ξ t ≥ A (6.3) and v ξ (t, x) ≥ u(t, x) for all (t, x) ∈ R × R N such that x 1 -ξ t ≤ A. (6.4) 
Proof. Fix any ξ ≥ 2A. We will just prove property (6.3), the proof of the second one being similar. Since u is bounded, the nonnegative real number

ε * = inf ε > 0; v ξ (t, x) ≥ u(t, x) -ε for all (t, x) ∈ R × R N with x 1 -ξ t ≥ A is well-defined. Observe that v ξ (t, x) ≥ u(t, x) -ε * for all (t, x) ∈ R × R N with x 1 -ξ t ≥ A. (6.5) 
Assume by contradiction that ε * > 0. Then there exist a sequence (ε n ) n∈N of positive real numbers and a sequence (

t n , x n ) n∈N = (t n , x 1,n , x ′ n ) n∈N in R × R N such that ε n → ε * as n → +∞, and x 1,n -ξ tn ≥ A, v ξ (t n , x n ) < u(t n , x n ) -ε n for all n ∈ N. (6.6)
Since v ξ (t, x) ≥ u(t, x) when x 1ξ t = A from (6.1) and (6.2), and since u is globally

C 1 (R × R N ), there exists κ > 0 such that v ξ (t, x) ≥ u(t, x) - ε * 2 for all (t, x) ∈ R × R N such that |x 1 -ξ t -A| < κ. (6.7)
In particular, there holds x 1,nξ tn ≥ A + κ for large n.

Furthermore, we claim that the sequence (x 1,nξ tn ) n∈N is bounded. Otherwise, up to extraction of a subsequence, it would converge to +∞. Thus, Since ξ ≥ 0 and p -(t, x 1 ) is nonincreasing with respect to x 1 , it would then follow that lim inf n→+∞ v ξ (t n , x n )u(t n , x n ) ≥ 0, which contradicts (6.6). Thus, the sequence (x 1,nξ tn ) n∈N is bounded. Remember now that, because of (1.21) and Definition 1.1, the function t → ξ t can be assumed to be uniformly continuous. In particular, the sequence (ξ tnξ tn-1 ) n∈N is bounded, whence the sequence (x 1,nξ tn-1 ) n∈N is bounded as well. Moreover, there exists a real number ρ such that 0 < ρ ≤ For each n ∈ N and i = 0, . . . , K, set

v ξ (t n , x n ) -p -(t n , x 1,n -ξ) = u(t n , x
x n,i = x 1,n + i K (ξ tn-1 + A -x 1,n )
and

E n,i = t n - i + 1 K , t n - i K × [ x n,i -2 ρ, x n,i + 2 ρ] × x ′ ∈ R N -1 ; |x ′ -x ′ n ] ≤ 1}.
Observe that | x n,i+1x n,i | ≤ ρ for all 0 ≤ i ≤ K -1, from (6.9). Furthermore, since x 1,nξ tn > A + κ for large n, say for n ≥ n 0 , it follows from (6.8) and (6.9) that

x n,0 -2 ρ = x for all n ≥ n 0 from (6.1) and (6.5). Since f (t, x 1 , •) is nonincreasing in (-∞, p -(t, x 1 ) + δ], it follows that uε * is a subsolution of (1.2) in E n,0 for all n ≥ n 0 , while v ξ is a supersolution of (1.2) in R × R N , because A and q only depend on t, and f (t, x 1 , s) is nonincreasing in x 1 .

Finally, for all n ≥ n 0 , the globally C 1 (R × R N ) function w is nonnegative in E n,0 , it satisfies inequations of the type w t ≥ ∇ x • (A(t)∇ x w) + q(t) • ∇ x w + b(t, x)w in E n,0 where the sequence ( b L ∞ (E n,0 ) ) n∈N is bounded. Since w(t n , x n,0 , x ′ n ) = w(t n , x n ) → 0 as n → +∞, one finally concludes from the linear parabolic estimates that w t n -1 K , x n,1 , x ′ n → 0 as n → +∞. (6.11)

But since

x n,1ξ tn-1/K ≥ x n,0ρξ tn-1/K ≥ A from (6.10) for all n ≥ n 0 , it follows from (6.7) and (6.11) that x n,1ξ tn-1/K ≥ A + κ for n large enough. By repeating the arguments inductively, one concludes that

x n,iξ tn-i/K ≥ A + κ for all i = 1, . . . , K and for n large enough.

One gets a contradiction at i = K, since x n,K = ξ tn-1 + A. As a conclusion, the assumption ε * > 0 was false. Hence, the claim (6.3) is proved, and, as already emphasized, the proof of (6.4) follows the same scheme.

End of the proof of Theorem 1.15. Lemma 6.1 yields

v ξ ≥ u in R × R N for all ξ ≥ 2A.

Now define

ξ * = inf ξ > 0, v ξ ′ ≥ u in R × R N for all ξ ′ ≥ ξ .

One has 0 ≤ ξ * ≤ 2A, and v ξ * (t, x) ≥ u(t, x) for all (t, x) ∈ R × R N . Assume now that ξ * > 0. Two cases may occur: Case 1: assume here that inf v ξ * (t, x)u(t, x); |x 1ξ t | ≤ A > 0.

From the boundedness of u x 1 , there exists then η 0 ∈ (0, ξ * ) such that v ξ * -η (t, x) ≥ u(t, x) for all η ∈ [0, η 0 ] and |x 1ξ t | ≤ A. (6.12) Since v ξ * (t, x) ≥ u(t, x) ≥ p + (t, x 1 ) -δ 2 for all x 1ξ t ≤ -A, one can assume that η 0 > 0 is small enough so that v ξ * -η (t, x) ≥ p + (t, x 1 )δ for all x 1ξ t ≤ -A.

Applying again the arguments used in Lemma 6.1, one then concludes that, for all η ∈ [0, η 0 ], there holds v ξ * -η (t, x) ≥ u(t, x) for all (t, x) ∈ R × R N such that x 1ξ t ≤ -A or x 1ξ t ≥ A.

Eventually, together with (6.12),

v ξ * -η ≥ u in R × R N
for all η ∈ [0, η 0 ], which contradicts the minimality of ξ * . Thus, case 1 is ruled out. Case 2: one then has inf v ξ * (t, x)u(t, x); |x 1ξ t | ≤ A = 0.

There exists then a sequence (t n , x n ) n∈N = (t n , x 1,n , x ′ n ) n∈N in R × R N such that |x 1,nξ tn | ≤ A for all n ∈ N, u(t n , x 1,nξ * , x ′ n + θ)u(t n , x n ) = v ξ * (t n , x n )u(t n , x n ) → 0 as n → +∞.

Fix now any σ > 0 and m ∈ N\{0}. Since v ξ * ≥ u and v ξ * is a supersolution of (1.2) in R × R N , the linear parabolic estimates then imply that u t n -σ m , x One has then reached a contradiction, which means that ξ * = 0. Then, v(t, x 1ξ, x ′ + θ) ≥ u(t, x 1 , x ′ ) for all (t, x 1 , x ′ ) ∈ R × R N , ξ ≥ 0 and θ ∈ R N -1 .

As a consequence, u is nonincreasing in x 1 and it does not depend on x ′ . Furthermore, the strong parabolic maximum principle, together with the same arguments as above, implies that u is actually decreasing in x 1 . That completes the proof of Theorem 1.15.

Proof of Theorem 1.14. Assume that all assumptions made in Theorem 1.14 are satisfied. Up to rotation of the frame, one can assume without loss of generality that e = e 1 = (1, 0, . . . , 0). Consider first the case where c > 0. There exists ε ∈ {-1, 1} such that ξ tξ s ts → ε c as ts → ±∞ and sup |ξ tε c t|; t ∈ R < +∞.

The function v(t, x) = u(t, x + ε c t e) = u(t, x 1 + ε c t, x ′ ) is well-defined for all (t, x) ∈ R × Ω (because Ω is invariant in the direction e) and it satisfies

v t = ∇ x • (A(x ′ )∇ x v) + q(x ′ ) • ∇ x v + ε c v x 1 + f (x ′ , v) in R × Ω, µ(x ′ ) • ∇ x v = 0 on R × ∂Ω,
because A, q, µ and f are independent of x 1 (and of t). Furthermore, since p ± only depend on x ′ , v is a transition front connecting p -and p + , with the sets Ω ± t = x ∈ Ω, ±x 1 < 0 and Γ t = x ∈ Ω, x 1 = 0 .

With the same type of arguments as in the proof of Theorem 1.15 above, one can then fix any ζ ∈ R and slide v(t + ζ, x) with respect to v in the x 1 -direction. It follows then that v(t + ζ, x 1ξ, x ′ ) ≥ v(t, x 1 , x ′ ) for all (t, x) ∈ R × Ω, ξ ≥ 0 and ζ ∈ R.

Therefore, v is independent of t and it is nonincreasing in x 1 . As above, v is then decreasing in x 1 . That gives the required conclusion in the case where c > 0.

In the case where c = 0, the function t → ξ t is then bounded. Because of Definition 1.1, one can then assume, without loss of generality, that ξ t = 0 for all t ∈ R. The functions p ± and f may depend on x 1 , but are assumed to be nonincreasing in x 1 . For any ζ ∈ R and ξ ≥ 0, the function u(t + ζ, x 1ξ, x ′ ) is then a supersolution of the equation (1.2) which is satisfied by u. One can then slide u(t + ζ, x 1 , x ′ ) with respect to u in the (positive) x 1 -direction, and it follows as in the proof of Theorem 1.15 that u(t + ζ, x 1ξ, x ′ ) ≥ u(t, x 1 , x ′ ) for all (t, x) ∈ R × Ω, ξ ≥ 0 and ζ ∈ R.

As usual, one concludes that u does not depend on t and is decreasing in x 1 .
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Figure 1 :

 1 Figure 1: A schematic picture of the sets Ω ± t and Γ t

  2). It also follows from Definition 1.1 that v(t, x)p ± (x) → 0 uniformly as x ∈ Ω ± ct/e c and d Ω (x, Γ ct/e c ) → +∞, (5.1) where Ω ± ct/e c = {x ∈ Ω, ±(x • eξ ct/e c ) < 0} and Γ ± ct/e c = {x ∈ Ω, x • e = ξ ct/e c }. Remember that the quantities d Ω ( Γ ct/e c , Γ cs/e c )c c c t -c c s = d Ω ( Γ ct/e c , Γ cs/e c ) -c|t -s|

κ 4 and

 4 |ξ sξ s ′ | ≤ κ 2 for all (s, s ′ ) ∈ R 2 such that |ss ′ | ≤ ρ.(6.8)Choose now K ∈ N\{0} such that K ρ ≥ max 1, sup |x 1,nξ tn-1 -A|; n ∈ N . (6.9)

  10, if the inequalities (1.22) are assumed to hold a priori and if f is assumed to be nonincreasing in s for s in [p -(t, x•e), p -(t, x•e)+δ] and [p + (t, x•e)-δ, p + (t, x•e)] only, instead of (-∞, p -(t, x • e) + δ] and [p + (t, x • e)δ, +∞), then the strict monotonicity of u in x • e still holds.

  Hence, even if it means decreasing η 0 > 0, one can assume without loss of generality that ∀η ∈ [0, η 0 ], x ∈ Ω + t and d Ω (x, Γ t ) ≥ A =⇒ u s * -η (t, x) ≥ p + (t, x)δ .

	from (4.2).
	.17)
	On the other hand,
	x ∈ Ω + t and d δ 2

Ω (x, Γ t ) ≥ A =⇒ u s * (t, x) ≥ u(t, x) ≥ p + (t, x) -

  nondecreasing in time. Together with (4.18) applied to k = m, one concludes that lim sup But u ≥ p -from Proposition 4.1, and ε > 0 was arbitrary. One obtains that u(t n , x n )p -(t n , x n ) → 0 as n → +∞. (4.19)

n→+∞ u(t n , x n )p -(t n , x n ) ≤ ε.

  Furthermore, both u and u are almost planar invasion fronts (p + invades p -) in the same direction e, whence the maps t → ξ t and t → ξ t are nondecreasing. Eventually, one gets that sup d Ω ( Γ ct/e c , Γ t ); t ∈ R < +∞ and sup | ξ ct/e cξ t |; t ∈ R < +∞.(5.2)

  1,nξ, x ′ n + θ)p -(t n , x 1,nξ) → 0 as n → +∞ and u(t n , x n )p -(t n , x 1,n ) → 0 as n → +∞.

  1,n -2 ρ ≥ ξ t + A for all t n -1 K ≤ t ≤ t nand for all n ≥ n 0 . Consequently,E n,0 ⊂ (t, x) ∈ R × R N ; x 1ξ t ≥ A} for all n ≥ n 0 . (6.10) Thus, w := v ξ -(uε * ) ≥ 0 in E n,0 and u(t, x)ε * < u(t, x) ≤ p -(t, x 1 ) + δ in E n,0

  σ, x 1,n -(m + 1)ξ * , x ′ n + (m + 1)θ)u(t n , x n ) ≤ σ u t L ∞ (R×R N ) .

	By immediate induction, one gets that			
	u t n -k	σ m	, x 1,n -(k + 1)ξ * , x ′ n + (k + 1)θ -u t n -k	σ m	, x 1,n -kξ * , x ′ n + kθ -→ n→+∞	0,
	for each k = 1, . . . , m. Therefore,			
	lim sup n→+∞	u(t n			

1,n -2ξ * , x ′ n + 2θu t n -σ m , x 1,nξ * , x ′ n + θ = v ξ * t n -σ m , x 1,nξ * , x ′ n + θu t n -σ m , x 1,nξ * , x ′ n + θ -→ 0 as n → +∞.

Similarly, by considering the points (t nkσ/m, x 1,n + kξ * , x ′ n + kθ), one gets that lim sup

n→+∞ u(t nσ, x 1,n + (m -1)ξ * , x ′ n + (m -1)θ)u(t n , x n ) ≤ σ u t L ∞ (R×R N ) .

Actually, from standard parabolic interior estimates, any classical solution of (1.2) is such that u, u t , u xi and u xixj , for all 1 ≤ i, j ≤ N , are locally Hölder continuous in R × Ω.

Therefore, u and its derivatives u t , u xi and u xixj , for all 1 ≤ i, j ≤ N , are bounded and globally Hölder continuous in R × Ω.

Here, we actually just use the fact that f (t, x, •) is nonincreasing in (-∞, p -(t, x)] for each (t, x) ∈ R×Ω.

Notice that, in this part (iii), one can assume without loss of generality that ξ t = c t for all t ∈ R, because of Definition 1.1.
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Therefore, ( c/c -1) u t (t nτ, x n ) → 0 as n → +∞, whence u t (t nτ, x n ) → 0 as n → +∞, because 0 < c < c.

On the other hand, there exists A ′ > 0 such that

x ∈ Ω + t and d Ω (x, Γ t ) ≥ A ′ =⇒ u(t, x) ≥ p + (x) -

where κ was defined in (1.16). From (1.5), there exists a sequence (y n ) n∈N in Ω such that y n ∈ Γ tn-2τ for all n ∈ N, and sup d Ω ( x n , y n ); n ∈ N < +∞.

From (1.6), there exist r > 0 and a sequence (z n ) n∈N in Ω such that

for all n ∈ N. Thus, u(t n -2τ, z n ) ≥ p + (z n ) -κ 3 for all n ∈ N.

(5.6)

Since the sequence (d Ω (z n , x n )) n∈N is bounded, since u t (t nτ, x n ) → 0 as n → +∞ and since the globally

< +∞ and µ(x) • ∇ x u t = 0 on R × ∂Ω, the linear parabolic estimates imply that u t (t n -2τ, z n ) → 0 as n → +∞.

Let now ε be any positive real number. Since the function u t is globally C 1 (R × Ω), there exist σ > 0 and

and then is less than ε for n ≥ n 1 (for some n 1 ∈ N). Therefore, in both cases σ ′ ≥ σ or σ ′ ≤ σ, one has

(one uses the facts that the sequence (d Ω (x n , Γ tn )) n∈N is bounded and that (1.6) is automatically satisfied by periodicity of Ω). One then gets a contradiction as n → +∞. Thus, (5.10) holds. Write

for all n ∈ N and (t, x) ∈ R × Ω. The functions u n satisfy the same equation (1.2) with the same boundary conditions (1.14) as u, since the domain Ω is periodic and the coefficients A, q, f and µ are periodic and independent of t. Up to extraction of a subsequence one can assume that x ′′ n → x ∞ ∈ Ω as n → +∞ and that, from standard parabolic estimates, u n (t, x) → u ∞ (t, x) locally uniformly in R×Ω, where u ∞ solves (1.2) and (1.14). Furthermore,

from (5.9). It follows then from the strong maximum principle, Hopf lemma and the uniqueness of the solution of the Cauchy problem for (1.2) and (1.14), that

(5.12) from (5.10).

On the other hand, as already noticed in the proof of Theorem 1.11, the global mean speed c is positive. Since the quantities d Ω (Γ t , Γ s ) -c|t -s| are bounded independently of (t, s) ∈ R 2 , since Ω ± t = {x ∈ Ω, ±(x • eξ t ) < 0} and since t → ξ t is nondecreasing (because p + invades p -), it follows from the definition of γ = γ(e) in (1.20) that there exists M ≥ 0 such that

(5.13) But, from Definition 1.1, since the geodesic distance is not smaller than the Euclidean distance, one has that

uniformly with respect to n and (t, x). Write

The sequence (x n • eξ tn ) n∈N is bounded because (d Ω (x n , Γ tn )) n∈N is bounded. The quantities ξ t + ξ tnξ t+tn are bounded independently of t and n because of (5.13). Lastly, the sequence (x ′′ n • e) n∈N is also bounded. Finally, one gets that

uniformly with respect to (t, x). Assume now, by contradiction, that T > γ(k • e)/c (one shall actually prove that T = γ(k • e)/c). Since (x ∞ + mk) • eξ mT → ∓∞ as m ∈ Z and m → ±∞ because of our assumption and because of (5.13), it follows that (5.11). One finally gets a contradiction with (5.12).

Therefore, the inequality T > γ(k • e)/c was impossible, whence T ≤ γ(k • e)/c and

Similarly, by fixing the function u(t, x + k) and sliding u(t, x) with respect to t, one can prove that

As a consequence,

namely u is a pulsating traveling front in the sense of (1.19). Its global mean speed is equal to c γ -1 in the sense of (1. [START_REF] Hamel | Uniqueness and stability properties of monostable pulsating fronts[END_REF]), but it is equal to c in the more intrinsic sense of Definition 1.6. Let now u and v be two fronts satisfying all assumptions of part (i) of Theorem 1.13. One shall prove that u and v are equal up to shift in time. From Theorem 1.11, there exists (the smallest) T ∈ R such that

Since both u and v satisfy (5.14) for all k ∈ L 1 Z × • • • × L N Z, one can assume without loss of generality that the sequence (x n ) n∈N is bounded. But since the sequence (d Ω (x n , Γ tn )) n∈N is itself bounded and since u is an invasion front, the sequence (t n ) n∈N is then bounded as well.

Up to extraction of some subsequence, one can then assume that (t

The strong parabolic maximum principle and Hopf lemma then yield

which completes the proof of part (i) of Theorem 1.13.

To prove part (ii), assume, without loss of generality, that e = e 1 = (1, 0, . . . , 0). Fix any σ ∈ R\{0}. The data Ω, A, q, f , µ and p ± are then periodic with respect to the positive vector (|σ|, L 2 , . . . , L N ). Part (i) applied to k = (σ, 0, . . . , 0) then implies that

for all (t, x) ∈ R × Ω, where γ = γ(e) = 1 since Ω is invariant in the direction e. Since this property holds for any σ ∈ R\{0} (and also for σ = 0 obviously), it follows that

where x ′ = (x 2 , . . . , x N ) and the function φ : Ω → R is defined by

The function φ is then decreasing in ζ since u is increasing in t and c > 0.

Lastly, part (iii) is a consequence of part (ii) and of Theorem 1.15. Namely, part (ii) implies that u depends only on x • ect and on the variables x ′ which are orthogonal to e, and Theorem 1.15 (its proof will be done in Section 6) implies that u does not depend on x ′ . 5 Therefore,

where the function φ : R → R is defined by φ(ζ) = u(-ζ/c, 0, . . . , 0) for all ζ ∈ R, is decreasing in R and satisfies φ(∓∞) = p ± . The proof of Theorem 1.13 is now complete.

6 The case of media which are invariant or monotone in the direction of propagation

In this section, we assume that the domain is invariant in a direction e and we prove that, under appropriate conditions on the coefficients of (1.2), the almost planar fronts, which may not be invasions, do not depend on the transverse variables or have a constant profile in the Hence, 

Since ξ * is assumed to be positive, there exists m ∈ N\{0} such that while it is less than or equal to κ/4 from (6.13) and (6.14).