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Abstract :  

 We experimentally and theoretically study self-phase modulation by Kerr effect in a 

liquid filled hollow core photonic crystal fiber. We perform a complete characterization of the 

linear optical properties of the hollow core photonic band gap fiber filled with deuterated 

acetone to determine all the characteristics of the propagation mode. The nonlinear coefficient 

of the fiber is determined by fitting the output spectra broadened by self-phase modulation 

with a new analytical expression giving the spectra of a secant hyperbolic pulse transmitted 

through a Kerr media. The experiment allows a precise determination of the nonlinear index 

change 

! 

n2
I  of acetone-d6 equal to (1.15±0.17)x10-19 m2W-1.  
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 The advances in the manufacturing of photonic crystal fibers [1] have opened the way 

to the development of new devices, with optimized performances. Among the different 

domains that profit from the better control of holey fiber characteristics, the field of nonlinear 

optics has seen major advances. The small dimension reached for the silica core fibers [2] 

allows to obtain a very small effective mode area (of the order of a few µm2) leading to values 

of the nonlinear coefficient γ up to several tens of W-1km-1 [3]. Associated to a zero dispersion 

wavelength displaced towards the visible spectrum, such small effective areas have lead to the 

development of efficient supercontinuum sources [3] that are now available commercially. 

Nevertheless the nonlinear performances of these fibers remain limited due to the use of silica 

as the nonlinear media. This problem has recently been adressed by the use of highly 

nonlinear glasses, such as chalcogenide glasses, for the realization of photonic crystal fibers 

that allow to increase the value of γ largely above thousands of W-1km-1 [4].  

 Another solution to overcome the limitations of silica, is to use hollow core photonic 

crystal fibers (HC-PCF) and fill them with gases or liquids. Compared to glass core fibers, gas 

or liquid filled HC-PCFs present the advantage of being very versatile. A given fiber structure 

can be used with several kinds of gases or liquids and give birth to a multitude of fiber 

devices with various properties [5]. Here again the field of nonlinear optics is particularly 

favored by liquid or gas-filled HC-PCFs, opening the way to new nonlinear cell development, 

as has already been shown with Raman converters. These hybrid cells combine the 

characteristics of gaseous and liquid nonlinear media (large Raman shift, small Raman 

linewidth, high nonlinear susceptibility, …) and the advantages of waveguided propagation 

(small mode diameter, large propagation length, …). Until recently research for this 

architecture focus on stimulated Raman scattering [6-10], and only very limited studies ever 

consider other nonlinear mechanisms such as Kerr nonlinearity [11-13] or 

Electromagnetically Induced Transparency [5, 14], with their numerous applications such as 

self-phase modulation, optical switching, supercontinuum generation, slow light production, 

and four wave mixing.  

 Beyond our first Raman experiments [8, 9, 15, 16], we provide a complete 

characterization of the Kerr effect in a liquid filled HC-PCF with a self-phase modulation 

experiment. This study is the basis for future experiments on the Kerr effect such as soliton 

production, continuum generation or parametric generation through four wave mixing. 

Besides signal processing applications, this fiber structure also provides a very simple and 

powerful characterization tool to measure nonlinear properties of liquids and gases, 
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particularly to measure their nonlinear index change 

! 

n2
I . It can be used for high index liquids, 

using index guiding structures [12], as well as for low index liquids (or gases) using photonic 

band gap guiding [9], as we will show in this article. The fiber structure enables us to make 

use of most of the silica fiber formalism in the description of nonlinear mechanims [17], and 

to apply it with only minor adaptation. Propagation in the fiber can be made single mode 

which enables perfect definition and measurement of the mode parameters (power carried, 

mode diameter, …) independently from the laser characteristics. The interaction length can be 

large and should be adapted to the nonlinear performances of the liquid or gas to obtain 

sufficient nonlinear interaction for a clean measurement of the nonlinear mechanism. That 

precise measurement of all the parameters governing the nonlinear mechanism provides an 

accurate determination of the nonlinear index change of the core media.  

 In this paper we present a complete theoretical and experimental characterization of 

self-phase modulation in a photonic band gap fiber filled with a nonlinear liquid. In a first part 

we recall the principle of self-phase modulation by Kerr effect and present a new theoretical 

treatment of this well-known phenomenon, through which we obtain an analytical expression 

for the transmitted spectrum of a secant hyperbolic pulse through a Kerr medium. We then 

present a characterization of the linear optical properties of the liquid filled fiber in order to 

measure all the parameters that influence the nonlinear performances. Finally using the 

theoretical modeling and the nonlinear experimental data of the fiber, we characterize the 

nonlinear parameter of the fiber and deduce the Kerr coefficient of the liquid. We conclude by 

describing the perspective of our measurements and their generalization to other liquids.  

 

I. Self-phase modulation in fibers 

 Self-phase modulation has been extensively studied for several decades in silica fibers 

[17, 18]. This penomemon manifests itself by the creation of new wavelengths in the 

spectrum of a pulse, owing to the variation of the nonlinear index variation which follows the 

temporal evolution of the pulse. The amplitude of the pulse at the output of a fiber of length L 

is given by [17] :  

! 

U t,L( ) =U t,0( ) e
"
#L
2 ei$Leff U t ,0( ) 2      (1) 

in which 

! 

Leff = 1" e"#L( ) # is the effective length of the fiber and α accounts for linear losses. 

! 

" = 2# n2
I $Aeff( )  is the nonlinear coefficient (in W-1m-1) related to the nonlinear index 

change 

! 

n2
I  (in m2W-1), λ is the wavelength of the pulse and Aeff the effective mode area of the 
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fiber. 

! 

U t,0( ) = P0 f t( ) is the amplitude of the pulse at the entrance of the fiber with P0 the 

peak power of the pulse (in W), and f(t) the temporal shape of the pulse with a characteristic 

pulse duration τ. The spectral amplitude of the pulse is given by the Fourier transform of 

U(t,L): 

! 

˜ U ",L( ) = TF U t,L( )( ) = U t,L( ) ei"t
#$

+$

% dt     (2) 

 These expressions are obtained considering that the Kerr effect is the only nonlinear 

effect that causes self-phase modulation. This is definitely the case in silica fibers or in liquids 

or gases such as those that we use, but this is not necessarily true for semiconductor materials 

such as silicon or GaAs where free carriers generated by nonlinear absorption of the pulse 

energy can cause additional phase modulation [19, 20]. The second approximation made to 

obtain equation (1) is that the fiber dispersion can be neglected, meaning that the dispersion 

length 

! 

LD = "2 #2 , with β2 (in s2m-1) the group velocity dispersion parameter, is much larger 

than both the fiber length L and the nonlinear length 

! 

LNL = " P0( )#1.  
 In the general case, the spectrum of the transmitted pulse cannot be calculated 

analytically and only an approached expression giving the bandwidth of the transmitted 

spectrum is used [17, 18] :  

! 

"# t( ) = $%Leff
&
&t
U t,0( )

2
      (3) 

 In some special cases, we are able to find an analytical expression of the transmitted 

beam spectrum. In such cases, we stress that equation (1) can be rewritten as :  

! 

U t,L( ) = P0 f t( ) e
"
#L
2 i$LeffP0( )n

f t( )
2n

n!n=0

+%

&     (4) 

which, for the amplitude of the transmitted beam expressed in the Fourier domain, provides:  

! 

˜ U ",L( ) = P0 e
#
$L
2

i%LeffP0( )n

n!
TF f t( ) f t( )

2n[ ]
n=0

+&

'    (5) 

The evaluation of 

! 

TF f t( ) f t( )
2n[ ]  enables us to calculate the spectrum in the form of a finite 

sum (stopping the summation at a sufficient order) for different shapes of the input pulse 

(gaussian, exponential or secant hyperbolic). Nevertheless in some special cases we can go 

further. Indeed in the case of a secant hyperbolic pulse 

! 

f t( ) = sech t "( ), such as those 

delivered by a mode locked laser, the Fourier transform can be written as [21] :  

! 

TF f t( )2n+1[ ] "( ) =
4n # $
2n( )!

1
2

+ i $"
2

% 

& 
' 

( 

) 
* 
n

1
2
+ i $"

2
% 

& 
' 

( 

) 
* 
n

sech # $"
2

% 

& 
' 

( 

) 
*    (6) 
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using the Pochhammer symbol (a)n=a(a+1)…(a+n-1) [22].  

 Using the fact that (2n)!=4n(1)n(1/2)n, the amplitude in the Fourier domain writes: 

! 

˜ U ",L( ) = P0 e
#
$L
2 % & sech % &"

2
' 

( 
) 

* 

+ 
, 

1
2

+ i &"
2

' 

( 
) 

* 

+ 
, 

n

1
2
# i &"

2
' 

( 
) 

* 

+ 
, 

n

1
2
' 

( 
) 
* 

+ 
, 

n

1( )n

i-LeffP0( )n

n!n=0

+.

/   (7) 

The infinite sum corresponds to the definition of the tabulated generalized hypergeometric 

function 2F2({a1,a2},{b1,b2},z) [22], that gives in the end:  

! 

˜ U ",L( ) = P0 e
#
$L
2 % & sech % &"

2
' 
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) 

* 

+ 
, 2F2

1
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2
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2
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,   (8) 

and for the intensity spectrum of the transmitted pulse :  

! 

I" ",L( ) = ˜ U ",L( )
2

= P0 e#$L%2 &2 sech2 % &"
2
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 (9) 

This relation shows that, as expected, the self-phase modulation spectrum is symmetrical and 

that its effect is independant of the sign of the nonlinear coefficient when dispersion is 

neglected.  

 The main advantage of this expression compared to the classical expression (Eq. (3)), 

is that it enables us to fit the whole transmitted intensity spectrum giving an exploitable value 

of the experimental nonlinear phase shift 

! 

"NL = #LeffP0  at low values, contrary to experiments 

using the approached expression (Eq.(3)). Indeed, Eq. (3) can only be used with spectra 

presenting a larger than π shift (and sometimes even 1.5π) [18]. This is because, for low 

nonlinear phase shifts, experimental evaluation of the spectral broadening is problematic [23]. 

 The intensity spectra (Fig.1) obtained from Eq. (9) present the classical shapes 

associated with self-phase modulation [17, 18]. These spectra also show a perfect match with 

the spectra that we obtained through a numerical nonlinear beam propagation simulation 

using the Split Step Fourier Method [17].  

 As a result, we have at our disposal a very simple analytical expression to calculate the 

spectral broadening of a secant hyperbolic pulse induced by self-phase modulation by the 

Kerr effect. Even though this is only valid for this particular temporal shape of the pulse, this 

model is quite general nonetheless, because most pulsed mode locked lasers deliver such kind 

of pulse shapes. Moreover most trends that can be extracted with this model are exploitable 



 6 

for other temporal pulse shapes with only small adaptations. We propose in the following to 

study this process in a liquid filled photonic crystal fiber.   

 
Figure 1 : Calculated intensity spectrum of a secant hyperbolic pulse through a 1m nonlinear fiber, for 

different values of the nonlinear phase shift (absorption is neglected for simplicity). The solid lines 
correspond to the analytical model (Eq. (9)) and the markers to the numerical simulation using the 

split step Fourier method. 
 

II. Linear propagation properties of the liquid filled hollow core fiber 

 The spectral broadening caused by self-phase modulation depends on many fiber 

parameters (absorption, dispersion, effective mode area and nonlinear index change) and on 

the experimental set-up (work wavelength, pulse duration and incident power). Most of these 

parameters can be obtained experimentally by independent measurements, which we will 

describe. The only exception is the nonlinear index change 

! 

n2
I  that will be determined by 

careful analysis of the self-phase modulated signal. 

 

 II.1. Experimental set-up 

 The experimental set-up is shown on Fig. 2. The beam of a tunable mode-locked 

picosecond Ti:Sapphire laser is sent into a liquid filled HC-PCF where it experiences self-

phase modulation by Kerr effect. The output beam (signal beam) is imaged on a CCD camera, 

using a microscope objective and an achromatic lens, to analyze the near field spatial structure 

of the mode propagating in the fiber. The same beam is also sent on a Si detector or in a fiber 

connected to an optical spectrum analyzer. Part of the incident beam is extracted via a beam 

splitter cube to form a reference beam. The reference beam is recombined with the signal 

beam using a second beam splitter cube. This reference beam enables us to measure the 

incident intensity spectrum, as well as the dispersion of the fiber using the interferometric 

time of flight technique [24] (connected to the detector providing a measurement of the 

constrast of the interference signal between the signal and the reference beams).  
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Figure 2 : Schematic experimental set-up. BS: beam splitter cube, λ/2: Half wave plate, Pol.: Polarizer, 
M.Obj.: x6.3 microscope objective, D: Detector, OSA: Optical spectrum analyzer, PCF: Liquid filled 

hollow core photonic crystal fiber.  
 

 The fiber is fixed in tanks closed by BK7 windows and all the fiber holes are totally 

filled using a process described in [15]. The average power of the input and output beams are 

measured before and after the microscope objectives respectively, using a power meter. They 

are corrected from the transmission of the microscope objective and of the BK7 windows of 

the tank to measure the power injected inside the fiber and collected at the exit facet of the 

fiber. 

 

 II.2. The picosecond Ti:Sapphire laser 

 The laser source is a mode-locked picosecond Ti:Sapphire laser (Tsunami from 

Spectra-Physics) tunable between 700nm and 980nm, which delivers pulses close to 

1 picosecond in duration at a repetition rate fR=80MHz. The output of the laser is 

continuously monitored with an autocorrelator that measures τAC, the full width at half 

maximum of the autocorrelation function, with a precision on the order of ±1 to ±2%. For a 

secant hyperbolic pulse (

! 

f t( ) = sech t "( )) delivered by such a mode locked laser, the pulse 

duration is given by τ = τAC/2.720 [24]. Using this temporal shape, it is easy to link the peak 

power P0 of the pulse to the pulse energy Ep and to the average power 

! 

P  of the beam.  

! 

P0 =
Ep

2"
=

P 
2"fR

      (10) 

With these parameters we can also calculate the spectrum of the incident beam, given by :  

! 

I" ",L( ) = P0 e
#$L%2 &2 sech2 % &"

2
' 

( 
) 

* 

+ 
,      (11) 

and compare it with the measured spectrum (Fig. 3).  
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Figure 3 : Comparison between a batch of experimental spectra obtained with identical operating 

conditions for the laser (λ=926.8nm) and the theoretical spectrum calculated using Eq. (11) and the 
value of τ=0.794ps deduced from the autocorrelation measurement.  

 

 We can see on Fig. 3 the very good agreement between the theoretical spectrum and 

the experimental ones, despite the slight dispersion in the measured data that were obtained 

with identical operating conditions for the laser but at different measurement times. From the 

measured spectra of the incident beam, we confirm that the pulses delivered by the 

Ti:Sapphire laser are Fourier transformed with secant hyperbolic temporal shapes. In the 

following, the laser is aligned in order to deliver these secant hyperbolic Fourier transformed 

pulses with durations measured via the autocorrelator with a precision on the order of ±1-2% 

depending on the measurement.  

 

 II.3. The liquid filled hollow core fiber 

 The choice of the liquid filled hollow core fiber in the present experiment is based on 

several constraints, such as the operating wavelength of the laser source, the nonlinear 

efficiency of the liquid and its ease of use, or the availability of both fiber and liquid. We 

choose to operate with a commercial hollow core photonic band gap fiber [5] (HC-1550-02 

from Crystal Fiber) filled with deuterated acetone (acetone-d6). When the fiber is filled with a 

liquid with the index of refraction of acetone-d6 (around 1.35) [25, 26], the transmission band 

of the fiber around 1550nm is shifted towards 800nm [27]. Experimentally, the entire spectral 

range of the Ti:Sapphire laser is covered, as shown on Fig. 4.  
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Figure 4 : Power of a supercontinuum source transmitted through the HC-1550-02 hollow core fiber 

filled with acetone (blue dotted curve) and acetone-d6 (red line). The additional losses due to 
overtones of IR absorption bands of acetone are eliminated by deuteration, giving a full transmission 
band for the acetone-d6 filled fiber. The shift of the lower edge of the transmission band of the fiber 
filled with acetone-d6 is due to the slightly lower index of acetone-d6 compared to non-deuterated 

acetone [25]. The black dots show the measured variation of the group index of the fiber, from which 
the dispersion is deduced. 

 

 The absolute transmission of the fiber is more complex to evaluate. We typically 

obtain a transmission greater than 50% without too much effort, without being able to 

completely decouple the coupling and the mode propagation losses. The best value obtained 

for the transmission is 87% i.e. a 0.6dB loss for the 80cm long fiber. That would correspond 

to an upper limit for the propagation losses equal to 0.75dB.m-1 (i.e. α < 0.17m-1) considering 

a perfect coupling efficiency. As a result, we can reasonably consider that propagation losses 

are negligible on a distance of 1m of fiber, which we use in all our experiments.  

 The fact that propagation losses can be neglected also means that the value of the 

collected output power of the fiber provides a good measurement of the power propagating 

inside the fiber and can therefore, be used as a measurement of the incident average power 

! 

P  

and the pulse energy Ep using Eq. (10). The maximum measured transmitted average power is 

on the order of 40mW with a precision close to ±2% typically. This gives a pulse energy that 

reaches 600pJ per pulse at maximum power with the same typical error. The influence of the 

propagation losses on the value of the nonlinear coefficient measured in the nonlinear 

experiment is discussed in Appendix A. 

 Using the experimental set-up, we also measure the variation of the propagation time 

∆t (related to the variation of position of the delay line) as a function of wavelength in the 

liquid filled hollow core fiber. From this measurement, we deduce the variation of group 

index 

! 

"ng = c "t L  as a function of wavelength (Fig. 4). The fit of the 

! 

"ng  experimental data 

as a function of ω by a polynomial curve provides the group velocity dispersion of the fiber 

! 

"2 = 1 c( )#$ng #% . We obtain 

! 

"2(in s2m-1) = -1.304576733x10-20 + 5.70128632x10-17 λ-1 - 
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9.964374186x10-14 λ-2 + 8.70611331x10-11 λ-3 - 3.802860616x10-8 λ-4 + 6.6437917x10-6 λ-5 

with λ in nm. From these data we show that the dispersion length is greater than 10m (i.e. 

LD>>L) on the whole spectral range extending from 820nm to 970nm, with a zero dispersion 

wavelength located around 946nm. Therefore, we are in the conditions in which the 

theoretical model applies.  

 Inspite of the fact that propagation in the liquid filled hollow core fiber is not strictly 

single mode [9], the gaussian fundamental mode of the fiber can be selectively excited 

without much difficulty. By imaging the fiber output plane on a CCD camera (Fig. 2), we are 

able to determine the mode intensity radius w at 1/e2 and Aeff=πw2 the effective area [17] of 

the gaussian transmitted mode (Fig. 5). We measure at λ=926nm, w=4.4±0.2µm and 

Aeff=61±5µm2 and at λ=951nm, w=4.2±0.2µm and Aeff=55±5µm2. The mode energy is then 

almost completely included in the 10.9µm core diameter of the fiber.  

 
Figure 5 : Image on the CCD camera of the fundamental mode exiting the fiber (black and white) at 

λ=951nm, with a 2D gaussian curve fit (color).  
 

III. Self-phase modulation in the liquid filled hollow core photonic crystal fiber 

 Once the linear characteristics of the fiber are determined, we measure and analyze the 

spectrum of the beam transmitted by the fiber when the pump power is increased at different 

wavelengths. Fig. 6 shows typical transmitted spectra at the highest power demonstrating a 

clear symmetrical broadening attributed to self-phase modulation by Kerr effect with a 

nonlinear phase shift reaching 1.5π (see Fig. 1) [17, 18]. The broadened spectra are compared 

with the spectra calculated from Eq. (9) derived from the analytical model, and the numerical 

Split Step Fourier model taking into account the dispersion of the fiber, measured previously. 

The agreement between the different spectra is excellent.  

 The influence of dispersion is not visible in the curve presented on the linear scale. If 

we use a Log scale (Fig. 6D), we observe a variation in the transmitted spectra due to 

dispersion. By comparing the different theoretical curves, we see additional components 

appearing on the edges of the broadened spectra at normalized intensity levels below 10-3. 
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Nevertheless experimentally these effects are hardly visible as they are masked by small 

imperfections of the incident beam spectra and fluctuations of the transmitted spectra which 

are on the same order of magnitude as the expected spectral variation. We can then conclude 

that no clear experimental evidence of the influence of dispersion can be seen in our 

measurements, validating the approximation of negligible dispersion that was made in order 

to establish our analytical model. We can also see a small assymetry in the amplitude of the 

broadened peaks for some of the curves. This behaviour is not clearly reproducible and we 

attribute it to fluctuations in the detected signal (see Fig.3 for another example) rather than to 

the influence of a temporal assymetry of the incident pulse as discussed in ref. [18]. 

 
Figure 6 : Measured transmitted spectrum at different wavelengths at maximum pump power (green 

line): A: 926.8nm (τ=0.794ps), B: 950.8nm (τ=0.934ps), C: 957.7nm (τ=0.934ps), D corresponds to C 
presented in Log scale. The spectra are compared with the spectra calculated using expression (9) 

(blue dotted curves) and spectra given by the numerical Split Step Fourier Model taking into account 
the measured dispersion of the fiber (red dashed line). The pulse durations are deduced from the 

autocorrelation measurement.   
 

 The experimental transmitted spectra at different pulse energies are then fitted with the 

theoretical model to determine the nonlinear parameters of the transmitted spectrum (Fig. 7). 

For the fit we use the theoretical expression given by Eq. (9). As the pulse duration τ is 

known through the autocorrelation measurement, we only need two parameters to fit the 

experimental data: the nonlinear phase shift 

! 

"LeffEp 2#( )( ) and the amplitude of the signal 

which combines the normalization factor 

! 

Ep e
"#L$2 % 2( )  and the coupling coefficient of the 

transmitted signal to the optical spectrum analyzer (we use Eq. (10) to take into account the 

dependence of P0 with the pulse duration). In practice, we note that the precision of the fitting 

parameters is governed by the precision on the value of the pulse duration. By varying the 
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pulse duration within the error bars (typically 1% to 2%) and performing several fits of the 

experimental curves, we are able to estimate the error bars on the fitting parameters.  

 
Figure 7 : Spectra of the pulses (red curve) transmitted through the liquid filled hollow core fiber  and 

the fit (blue curve) with Eq. (9) at different incident pulse energies in the fiber at a wavelength of 
926.8nm (the incident spectra are the ones shown in Fig. 3).  

 

 The quality of the fits is very good as shown on Figure 7 where we show the 

experimental spectra and their fits for λ=926.8nm. From these fits we determine the value of 

the nonlinear parameter at different energies and plot them as a function of Ep (Fig. 8). The 

points show the expected linear dependence whose slope gives the coefficient 

! 

"Leff = "L . The 

alignment of the experimentally determined points on the fitting line is very good except for 

the two points at small energy at λ=957.5nm. For the point at lowest energy, the nonlinear 

parameter determined by the fit was zero, giving an indication of the minimal broadening 

necessary to realize a proper fit of the transmitted spectrum. Considering that the highest 

achieved nonlinear phase shift is around 1.5π, a nonlinear phase shift of the order of 0.1π to 

0.2π should be sufficient for the characterization of the nonlinear performances of a sample. 

This is one order of magnitude lower than the classical treatment of self-phase modulation 

spectra based on a measurement of the frequency broadening [18].  
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Figure 8 : Plot of the nonlinear coefficient determined by fitting the transmitted spectrum as a function 

of the energy of the pulse with measurements at three different wavelengths.  
 

 Using the length L=1m of the fiber, we deduce from these measurements the value of 

the nonlinear coefficient γ with a precision on the order of 3% to 6% depending on the quality 

of the data series. The results are summarized in Table I. The value of γ is on the order of 13.4 

W-1km-1 for all wavelengths. Using the definition of γ we can also deduce from these 

measurements, the nonlinear index change 

! 

n2
I  of the fiber (which in our case will be the 

nonlinear coefficient of acetone-d6 as most of the mode energy propagates in the liquid core 

of the fiber) using the measured value of the effective mode area (Part II.3).  

 

λ (nm) Aeff (µm2) γ (W-1km-1) 

! 

n2
I  (10-19 m2W-1) 

926.8 61±5 13.61±0.40 1.22±0.17 

950.8 55±5 13.01±0.34 1.08±0.15 

957.5 55±5 13.71±0.87 1.14±0.16 

Table I : Nonlinear coefficient and nonlinear index change calculated from our measurements at 
different wavelengths in the liquid filled hollow core fiber.  

 

 The average value of 

! 

n2
I  is equal to (1.15±0.17)x10-19 m2W-1, which is 4 times higher 

than the 

! 

n2
I  of silica [17]. Across the wavelength range of the experiment 

! 

n2
I  presents no 

dispersion within the precision of the measurements. The precision of the measurement is 

mainly governed by the precision in the determination of the effective mode area (error on the 

order of ±8%), that is relatively high in this first experiment and can probably be improved for 

future measurements. No value of 

! 

n2
I  for acetone-d6 can be found in the literature. We can 

only compare our results with the 

! 

n2
I  value of acetone supposing that deuteration has only 

little influence on the Kerr effect. Our value is completely coherent with the previously 
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determined values of 

! 

n2
I  for acetone considering their large dispersion, because they range 

from 2.4x10-19 m2W-1 [28], to 0.59x10-19 m2W-1 [29], with an intermediate value of 1.33x10-19 

m2W-1 [30].  

 The value of the nonlinear coefficient γ of the liquid filled fiber obtained in this first 

experiment is promising. Indeed, despite the fact that the liquid used here is not known for its 

high nonlinear susceptibility (in this proof of principle experiment, we choose it essentially 

for practical reasons), γ is close to the values obtained in highly nonlinear photonic crystal 

fibers. This is all the more encouraging, considering that this value is obtained with a fiber 

that has an effective area close to that of classical silica fibers, opening the way to the 

realization of easy-to-use devices, easy to couple to other silica fiber devices such as couplers 

or fiber Bragg gratings. In order to access higher nonlinearities, we can change the liquid to 

beneficiate from a higher susceptibility, but we can also optimize the fibers to reduce the 

effective mode area, which would lead to higher values of the nonlinear coefficient because of 

the high nonlinear susceptibility of liquids and the small dimension of the fiber core.  

 

IV. Conclusion 

 Self-phase modulation by Kerr effect in a liquid filled hollow core photonic crystal 

fiber opens the way to a new and easy-to-use architecture for the measurement of the 

nonlinear refractive index change of liquids and gases. Compared to other techniques such as 

Z-scan measurements, the beam parameters are no longer controlled by the laser quality but 

by the modal properties of the fiber. This means, as we show in this paper, that all the 

parameters required for the determination of the nonlinear parameter can be measured with 

good precision and few assumptions. Coupled to a new analytical expression that can be used 

to fit the spectrum of the beam transmitted through the fiber, the experimental set-up enables 

us to determine the nonlinear index change of deuterated acetone with a good precision. With 

the preliminary set-up used in this first experiment, we provide a measured value with a 

precision on the order of ±15%, that is essentially limited by the quality of the measurement 

of the effective mode area. Further improvements of the set-up should allow us to decrease 

this uncertainty below ±10%, a value that should be sufficient to access the spectral variation 

of the nonlinear index change.  

 The experiment can be easily implemented with other liquids with relatively few 

changes in the set-up. For example, with the same fiber we used, a change of the refractive 

index of the liquid of ±0.03 induces a shift in the transmission band of ±100nm [27]. That 
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band still covers at least partially the wavelength range of the Ti:Sapphire laser. The 

experimental set-up can then be used with a large variety of liquids, from water (with n=1.33) 

to propanol (with n=1.38), and intermediate liquids with higher values of 

! 

n2
I  such as formic 

acid (n=1.37) [31]. Other fibers, with the same shape or with other shapes such as Kagome or 

derived fibers [10, 32], as well as other types of hollow core photonic crystal fibers [12] could 

be used with other liquids with higher index.  

 Beyond these self-phase modulation experiments, knowing the nonlinear properties of 

liquid and gas filled hollow core photonic crystal fibers, opens the way to the demonstration 

and characterization of other nonlinear mechanisms, such as soliton propagation or parametric 

generation through four wave mixing, which are well known in silica and glass core fibers, 

but are still poorly studied in liquid core fibers. The large variety of liquids and gases with 

their specific linear and nonlinear properties opens the way to the realization of a large variety 

of new optimized nonlinear functions.  
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Appendix A 

 All the interpretations of the nonlinear experimental results have been made by 

neglecting the effect of propagation losses in the fiber α. Taking into account this absorption 

is relatively easy, if we remember that the self-phase modulation spectral broadening is 

governed by a single parameter: the nonlinear phase shift 

! 

"NL = #LeffP0 . This parameter is 

determined independently from the assumptions made on the value of the propagation losses. 

As we measure the intensity at the output of the fiber, when taking the propagation losses into 

account, we can write 

! 

P0 = e"LPout , and the nonlinear phase shift rewrites as:  

! 

"NL = #$
e$L %1
$L

& 

' 
( 

) 

* 
+ LPout      (A.1) 

where 

! 

"# is the nonlinear coefficient including propagation losses. It is related to the 

coefficient determined by neglecting the propagation losses 

! 

" 0 related to 

! 

"NL = # 0LPout , by: 

! 

"# = " 0
#L
e#L $1

     (A.2) 
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 For the fiber studied here, the propagation losses are at worst equal to α =0.17m-1. 

This means that 

! 

0.92 " 0 < "# < " 0 , indicating that in the worst case scenario the nonlinear 

coefficient is overestimated by less that 10%. 
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