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Abstract. The use of machine learning tools is gaining popularity in
neuroimaging, as it provides a sensitive assessment of the information
conveyed by brain images. In particular, finding regions of the brain
whose functional signal reliably predicts some behavioral information
makes it possible to better understand how this information is encoded or
processed in the brain. However, such a prediction is performed through
regression or classification algorithms that suffer from the curse of dimen-
sionality, because a huge number of features (i.e. voxels) are available to
fit some target, with very few samples (i.e. scans) to learn the informa-
tive regions. A commonly used solution is to regularize the weights of
the parametric prediction function. However, model specification needs
a careful design to balance adaptiveness and sparsity. In this paper,
we introduce a novel method, Multi-Class Sparse Bayesian Regression

(MCBR ), that generalizes classical approaches such as Ridge regression
and Automatic Relevance Determination. Our approach is based on a
grouping of the features into several classes, where each class is regular-
ized with specific parameters. We apply our algorithm to the prediction
of a behavioral variable from brain activation images. The method pre-
sented here achieves similar prediction accuracies than reference meth-
ods, and yields more interpretable feature loadings.

1 Introduction

Machine learning approaches in neuroimaging have traditionally been limited to
diagnostic problems, where patients were classified into different groups based
on anatomical or functional data; by contrast, the standard framework for func-
tional or anatomical brain mapping was based on mass univariate inference pro-
cedures. Recently, a new way of analyzing neuroimaging data has emerged, that
consists in assessing how well behavioral information or cognitive states can be
predicted from brain activation images such as those obtained with functional
Magnetic Resonance Imaging (fMRI); see e.g. [5]. This approach opens new ways
to understanding the mental representation of various perceptual and cognitive
parameters. The accuracy of the prediction of the behavioral or cognitive target



variable, as well as the spatial layout of predictive regions, can provide valuable
information about functional brain organization; in short, it helps to decode the
brain system [6]. The main difficulty in this procedure is that there are far more
features than samples, which leads to overfitting and poor generalization. In such
cases, the use of the kernel trick is known to yield good performance, but the
corresponding predictive feature maps are hard to interpret, because the predic-
tive function is not sparse in the primal space (voxels space). Another way to
deal with this issue is to use approaches such as feature selection or dimension
reduction. However, it is suboptimal to perform feature selection and parameter
estimation procedure separately, and there is a lot of interest in methods that
perform both simultaneously, as sparsity inducing penalizations [12].

Let us introduce the following regression model :

y = Φ w + ǫ

where y represents the target data (y ∈ R
n) and w the parameters (w ∈ R

m). m

is the number of features (or voxels) and Φ is the design matrix (Φ ∈ R
n×m, each

row is an m-dimensional sample). The crucial issue here is that n ≪ m, so that
estimating w is an ill-posed problem. One way to perform the estimation of w is
to penalize the ℓ2 norm of the weights. This requires the amount of penalization
to be fixed beforehand, and possibly optimized by cross-validation. Bayesian
regression techniques can be used instead to include regularization parameters
in the estimation procedure, as penalization by weighted ℓ2 norm is equivalent
to setting Gaussian priors on the weights :

w ∼ N (0, A−1), A = diag(α1, ..., αm) (1)

Bayesian Ridge Regression (BRR) [1] corresponds to the particular case α1 =
... = αm, i.e. all the weights are regularized identically. BRR is not well-suited
for datasets where only few sets of features are truly informative. Automatic

Relevance Determination (ARD) [10] is the particular case where αi 6= αj if
i 6= j, i.e. all the weights have a specific regularization parameter. However,
by regularizing separately each feature, ARD is prone to overfitting when the
model contains too many regressors [9]. In order to cope with the drawbacks
of BRR and ARD, we can group the features into different classes, and thus
regularize these classes differently. This is the main idea behind the group Lasso

(ℓ21 norm) [13]. However, group Lasso needs pre-defined classes and is thus
not applicable in most standard situations, in which classes are not available
beforehand; defining them arbitrarily is not consistent with a bias free search
of predictive features. Thus, the different classes underlying the regularization
have to be estimated from the data. In this paper, we develop an intermediate
approach for sparse regularized regression, which assigns voxels to one among K

classes. Regularization is performed in each class separately, leading to a stable
and adaptive regularization, while avoiding overfit. This approach, called Multi-

Class Sparse Bayesian Regression (MCBR ), is thus an intermediate between
BRR and ARD. It reduces the overfitting problem of ARD in large dimension
settings without the use of kernels, and is far more adaptive than BRR. The
closest work to our approach is the Bayesian regression detailed in [8], but the



construction relies on ad hoc voxel selection steps, so that there is no proof that
the solution is optimal. After introducing our model and giving some details
on the parameter estimation algorithm (Gibbs sampling procedure), we show
that the proposed algorithm yields similar accuracy as reference methods, and
provides more interpretable weights maps. 6

2 Model and Algorithm

Multi-Class Sparse Bayesian Regression We use classical priors for re-
gression, see[1, 10]. First, we model the noise as an i.i.d. Gaussian variable:

ǫ ∼ N (0, λ−1In) (2)

p(λ) = Γ (λ1, λ2) (3)

where Γ stands for the gamma density with two hyper-parameters λ1, λ2. In
order to combine the sparsity of ARD with the stability of BRR, we introduce an
intermediate representation, in which each feature i belongs to one class among
K indexed by a discrete variable zi. All the features within a class k ∈ {1, ..,K}
share the same precision parameter αk. We use the following prior on the z

variable :

p(z) =

m
∏

i=1

K
∏

k=1

π
ηik

k with

{

ηik = 0 if zi 6= k

ηik = 1 if zi = k
(4)

We introduce an additional Dirichlet prior on π, p(π) = Dir(δ), with hyper-
parameter δ. By updating at each step the probabilities πk of each class, the
sampling algorithm can prune classes. As in Eq. (1), we make use of an inde-
pendent Gaussian prior for the weights :

w ∼ N (0, A−1), A = diag(αz1
, ..., αzm

) (5)

p(αk) = Γ (γk
1
, γk

2
), k = 1, ..,K (6)

where αk, k ∈ {1, ..,K} are the precision parameters, each one having two hyper-
parameters γk

1
, γk

2
. The complete generative model of MCBR is summarized in

Fig.1. We have developed a Gibbs sampling procedure to estimate the parameters
of our model (due to lack of space, the conditional distributions are not detailed
in this paper). The link between this model and other regularization methods is
obvious : with K = 1, we retrieve the model of the BRR, and with K = m and
fixing p(z) =

∏m

i=1
δzi,i, we retrieve ARD regularization.

Initialization and priors on the model parameters Our model needs
few hyper-parameters; we choose here to use slightly informative and class-
specific hyper-parameters in order to reflect a wide range of possible behav-
iors for the weights distribution. We set K = 9, with weakly informative priors

6 Supplementary material can be found at http://parietal.saclay.inria.fr/research/decoding-
and-modelling-of-brain-function-with-fmri/misc/supp-mat.pdf/view



γk
1

= 10k−3, k ∈ {1, ..,K} and γk
2

= 10−2 , k ∈ {1, ..,K}. Moreover, we set
λ1 = λ2 = 1. Starting with a given number of classes and letting the model
automatically prune the classes, can be seen as a means to avoid costly model
selection procedures. The number of iterations used in the Gibb sampling is
fixed to 1000 in all our experiments. Results on both simulated and real data
(not shown), show that this number allows the algorithm to reach a stationary
distribution.

Reference methods and evaluation procedure Multi-Class Sparse Bayesian

Regression is compared to different methods :

– Bayesian Ridge Regression (or BRR), which is simply MCBR with K = 1.
– ARD regularization on regression. We work in the primal space, hence we

do not use a kernel approach in our experiments. This method does not need
any parameter optimization.

– the Elastic net (or Enet) approach [14, 2], which is a combined ℓ1 and ℓ2
regularization. This method requires a double optimization for the two pa-
rameters λ (amount of ℓ2 regularization) and s (fraction of the ℓ1 norm).
We use a cross-validation loop within the training set to optimize them. The
values are in the range 10−3 to 103 in multiplicative steps of 10 for λ, and
in the range 0 to 1 in steps of 0.1 for s.

– Support Vector Regression (or SVR) with a linear kernel (see [4]), which is the
reference method in neuroimaging, due to its robustness in large dimension.
The C parameter is optimized by cross-validation in the range 10−3 to 103

in multiplicative steps of 10.

The performance of the different regression models is evaluated using ζ, the
ratio of explained variance (or R2 coefficient):

ζ(Φl, yl, Φt, yt) =
var(yt) − var (yt − ŷt))

var(yt)
(7)

where Φl, yl are a learning set, Φt, yt a test set and ŷt refer to the target predicted
using the learning set. This is the amount of variability in the response that can
be explained by the model (perfect prediction yields ζ = 1, while ζ < 0 if
prediction is worse than chance).

3 Experiments and Results

We have performed some simulations, where a combination of signals from sev-
eral regions in smooth images is correlated to some target information. Due to
lack of place, we do not show the results here, but provide them as supplementary
material. We observed that:

– the MCBR outperforms other methods, and recovers correct feature maps.
– using informative and class-dependent priors yield higher accuracy than iden-

tical priors. A decrease of 0.3 in explained variance is observed when using
identical priors for all the classes.



Fig. 1. Generative model of the Multi-Class Sparse Bayesian Regression.

Experiments on Real Data We used a real dataset related to an exper-
iment on the representation of objects, described precisely in [7]. During the
experiment, ten healthy volunteers viewed objects of three different sizes and
four different shapes, with 4 repetitions of each stimulus in each one of 6 ses-
sions, resulting in a total of n = 72 images by subject. Functional images were
acquired on a 3-T MR system with eight-channel head coil (Siemens Trio, Er-
langen, Germany) as T2*-weighted echo-planar image (EPI) volumes. Twenty
transverse slices were obtained with a repetition time of 2 s (echo time, 30 ms;
flip angle, 70◦; 2 × 2 × 2-mm voxels; 0.5-mm gap). Realignment, normalization
to MNI space and General Linear Model (GLM) fit were performed with the
SPM5 software. For our analysis we used the resulting session-wise parameter
estimate images. The four different shapes of objects are pooled across the three
sizes, and we are interested in discrimination between sizes. This can be han-
dled as a regression problem, where we aim at predicting the size of an object
corresponding to an fMRI scan. We used parcellation as a preprocessing, which
allows important unsupervised reduction of the feature space dimension. Our
parcellation uses Ward’s hierarchical agglomerative clustering algorithm [11] to
create groups of voxels that have similar activity across trials. Thus, the signal
is averaged in each parcel. The number of parcels used here is fixed to 400 for
the whole brain. Note that we do not focus on the influence of the parcellation
on the results, but on the comparison of the results of different regression meth-
ods. The dimensions of the real data set are m = 400 and n = 72 (divided in
3 sizes). The prediction score is computed with a 4-folds cross-validation (i.e.
a leave-one-object-out validation) for each subject in the intra-subject analysis,
and with a 10-folds cross-validation (i.e. a leave-one-subject-out validation) for
the inter-subject analysis. In that case, the procedure builds a predictor of ob-
ject size that generalizes across subjects. The parameters of Enet and SVR are
optimized with a 4-folds cross-validation in the ranges given before.



Results on a real functional neuroimaging dataset The results of the
different methods (mean and standard deviation of ζ across 10 subjects) with
fMRI data are shown Tab.1 for the intra-subject analysis, and Tab.2 for the inter-
subject analysis. The proposed algorithm yields equivalent results to Enet in the
intra-subject case, but 8% increase of the explained variance in the inter-subject
case. Moreover, the MCBR algorithm is almost as good as the SVR in both
cases. The histograms of the (voxel-level) weights averaged across subjects are
given in Fig.2 for Enet, MCBR and SVR algorithms. We can see that the feature
maps obtained in the Enet method are less sparse than those obtained with the
MCBR method. Indeed, our algorithm regularizes more strongly uninformative
features, and more weakly the weights of informative features.

BRR ARD Enet SVR MCBR

Mean ζ -0.15 0.85 0.89 0.91 0.89
Std ζ 0.51 0.08 0.05 0.03 0.04

Table 1. Intra-subject analysis - Mean
and standard deviation of ζ averaged
across 10 subjects.

BRR ARD Enet SVR MCBR

Mean ζ 0.01 0.7 0.71 0.8 0.79
Std ζ 0.37 0.15 0.16 0.13 0.05

Table 2. Inter-subject analysis - Mean
and standard deviation of ζ averaged
across 10 subjects.

The averaged weights of the parcels across subjects in the intra-subject anal-
ysis are shown in Fig.2 for Enet (a), MCBR (b) and SVR (c) algorithms. The
MCBR algorithm finds the relevant regions of interest in the occipital region, as
expected, while leaving the remainder of the brain with null weights. Starting
from the whole brain, MCBR selects very few parcels in the occipital cortex,
corresponding to visual areas (V2-V3) and a part of the posterior-dorsal lateral
occipital region of the lateral occipital complex. This is consistent with the fact
that lateral visual cortex contains highly reliable signals discriminative of size
differences between object exemplars. The Enet method finds a relevant region in
the lateral occipital complex too, but selects also more questionable regions (e.g.
in the temporal lobe), yielding less interpretable activation maps. The results of
the SVR algorithm are very difficult to interpret.

4 Discussion

Regularization of voxels loadings significantly increases the generalization abil-
ity of the predictive model. However, this regularization has to be adapted to
each particular dataset. In place of costly cross-validation procedures, we cast
regularization in a Bayesian framework and treat the regularization weights as
hyper-parameters. This approach yields an adaptive and efficient regularization,
and can be seen as a compromise between a global regularization (BRR) which
does not take into account the sparse or focal distribution of the information,
and ARD, that is subject to overfit in high-dimensional feature spaces.

Results on real data show that our algorithm gives access to interpretable fea-
ture maps which are a powerful tool for understanding brain activity. Moreover,
the MCBR algorithm yields more accurate predictions than other regularization
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Fig. 2. Intra-subject analysis - Results obtained with real data in a whole brain analy-
sis. Representation of the average weights across subjects superimposed on the anatom-
ical image of one particular subject (left), and corresponding histograms of the averaged
weights (right) for Enet (top), MCBR (middle) and SVR (bottom). With Enet, there
are a lot of parcels with non-null weight. For the MCBR algorithm, starting from a
whole-brain analysis, very few parcels have a non-null weight, yielding an interpretable
predictive pattern: these parcels are embedded in the occipital region (V1-V3) and
extend laterally. Finally, the weights for the voxels found by the SVR algorithm are
less sparse, and spread throughout the whole brain, so that the interpretation of such
a map is challenging.

methods (BRR, ARD and Enet). The standard method SVR performs slightly
better than the MCBR algorithm (yet, the difference is not significant), probably
due to the fact that the kernel helps to deal with the high dimensionality of the
data. However, SVR does not yield meaningful feature maps, since it enforces
sparsity in the dual space and not in the primal space.

The question of model selection (i.e. the number of classes K) has not been
addressed in this paper, but the method detailed in [3] can be used within our
framework. Here, model selection is performed implicitly by emptying classes
that do not fit the data well. In that respect, the choice of heterogeneous priors
for different classes is crucial: replacing our priors with class-independent priors
yields a decrease of 0.3 in explained variance on simulated data. Moreover, our
results are insensitive to the particular numerical choice on hyper-priors (data
not shown), provided that the associated distributions cover the range of rele-
vant parameter distributions. Crucially, the priors used here can be used in any



regression problem, provided that the target data is approximately scaled to the
range of values used in our experiments. In that sense, the present choice of
priors can be seen as universal.

Conclusion We have presented a multi-class regularization approach that in-
cludes adaptive ridge regression and automatic relevance determination as limit
cases. Experiments on real data show that our approach is well-suited for neu-
roimaging, as it yields accurate predictions and also stable and interpretable
feature loadings.
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